
by the NOAO IRAF Team:
Mike Fitzpatrick

Rob Seaman
Frank Valdes

Nelson Zárate

IRAF CL Script Tips & Tricks

R. Seaman – 22 July 2003

“An Introductory User’s Guide to IRAF
Scripts” by Anderson and Seaman
Document refers to v2.8, but still valid
http://iraf.noao.edu/docs/prog.html
Further references within User’s Guide
 http://iraf.noao.edu/iraf/web/irafnews
 Keep it simple! Let the tasks do the work.

References

What’s new since the User’s Guide?
 scan() from a pipe
 printf() – more C-like than SPP
The CL printf is called as a task, not as a
function in expressions, but
 CL printf requires no call, unlike SPP
 CL printf supports same formats as SPP

What’s new?

All scripts should be procedure scripts
The task name must match the file name
 procedure arguments are query parameters
Two CL modes, “command” & “compute”
Command mode is used interactively
Compute mode requires parentheses,
commas and quoted string literals
 procedure scripts require CL compute mode

Procedure Scripts

Magic Words

The magic word for SPP is flpr
The magic word for CL scripts is unlearn
Any time a parameter is changed when
writing a script, unlearn the task

Don’t use printf and scan to ask questions
Use query parameters instead
 task askit = home$askit.cl

Prompting Users for Input

Prompting Users (example)

procedure askit (question)

bool question = yes {prompt="Do you want to continue?"}

begin
 bool l_question

 l_question = question

 if (l_question)
 printf ("The answer was yes\n")
 else
 printf ("The answer was no\n")
end

Prompting Users (example 2)

procedure askit2 (question)

bool question {prompt="must have some placeholder"}

begin
 bool l_question

 question.p_prompt = "Is this a question?"
 question.p_value = no

 l_question = question

 if (l_question)
 printf ("The answer was yes\n")
 else
 printf ("The answer was no\n")
end

Prompting Users (example 3)

cl> askit
Do you want to continue? (yes): <cr>
The answer was yes

cl> askit2
Is this a question? (no): yes
The answer was yes

List Directed Parameters

Use “list directed” parameters to read input from files.
A list directed parameter is specified by prepending an
asterisk to a parameter declaration of any type (but
typically string).
Open a file by assigning a value. (LHS)
Each subsequent reference will return the next line in
the file pointed to by the parameter. (RHS)
Close a file by reading to EOF or by assigning a null
string.

List Directed Parameters (ex.)
cl> type test1
this is line 1
this is line 2
this is line 3
cl> string *ld
cl> ld = "test1"
cl> = ld
this is line 1
cl> = ld
this is line 2
cl> = ld
this is line 3
cl> = ld
EOF

List Directed Parameters (ex. 2)

cl> task listit = listit.cl
cl> listit listit.cl
procedure listit (input)

string input {prompt="Input file"}
string *list

begin
 string l_input
 struct line

 l_input = input

 list = l_input
 while (fscan (list, line) != EOF) {
 printf ("%s\n", line)
 }
end

string versus struct

A string is a string is a string (or a char)
A struct is identical to a string for all
purposes except when scanning a value
Scanning into a string terminates at any
whitespace character
Scanning into a struct continues to the end
of the input line (up to 64 characters)

scan() and fscan()

Use fscan() to read from string
Use scan() to read from STDIN
Each function returns the number of values
successfully scanned – or returns EOF
A subsequent nscan() returns the no. of values
 scan() from pipe to capture task output into a
variable or several variables
 scan() from printf() is equivalent to sprintf()

scan() and fscan() (ex. 1)

cl> string test = "word 17 3.14 now is the time"
cl> = fscan (test, s1, i, x, line)
4
cl> = s1
word
cl> = i
17
cl> = x
3.14
cl> = line
now is the time
cl> = nscan()
4

scan() and fscan() (ex. 2)

STDIN may be used most places a filename
is allowed

fscan (STDIN, s1) is equivalent to scan (s1)
cl> = fscan (STDIN, s1)
asdf
1
cl> = s1
asdf

scan() and fscan() (ex. 3)

cl> = scan (s1) ^D
-2

cl> grep "EOF" /iraf/iraf/unix/hlib/iraf.h
define EOF -2

cl> !stty all
...
discard dsusp eof ...
^O ^Y ^D ...

scan() and fscan() (ex. 4)

cl> imstat dev$pix
IMAGE NPIX MEAN STDDEV MIN MAX
 dev$pix 262144 108.3 131.3 -1. 19936.

cl> imstat ("dev$pix", fields="mean,stddev", format-) | scan (x, y)
cl> = x
108.3154
cl> = y
131.298

cl> printf ("%6.2f +/- %6.2f\n", x, y) | scan (line)
cl> = line
108.32 +/- 131.30

Direct Command Execution

The cl can be called as a task to interpret a
command as with the Unix eval command:
cl> printf ("imstat ('%s', fields='%s', format-)\n", s1, s2) | cl
108.3154 262144

cl> printf ("imstat ('%s', fields='%s', format-)\n", s1, s2) | cl \
>>> | scan (x, i)
cl> real total
cl> total = x * i
cl> = total
28394232.2176

Host Command Execution

Sometimes the best way to perform some chore is
to escape from the CL to the Unix shell. (A little
of this goes a long way.)
cl> s1 = mktemp ("tmp$tmp")
cl> imhead ("dev$pix", lo+, > s1)
cl> printf (”!grep Overscan %s\n”, osfn(s1)) | cl
BT-FLAG = 'Apr 22 14:11 Overscan correction strip is [515:544,3:510]'

but, be sure you really need to do so, first:
cl> match ("Overscan", s1)
BT-FLAG = 'Apr 22 14:11 Overscan correction strip is [515:544,3:510]'

Host Commands (#2)

or even:
cl> imhead ("dev$pix", lo+) | match ("Overscan")
BT-FLAG = 'Apr 22 14:11 Overscan correction strip is [515:544,3:510]'

and, if you do need to run a host level command,
a foreign task is often best:
cl> task $grep = "$grep $1 $(2)" # parentheses substitute host path
cl> grep ("Overscan", s1)
BT-FLAG = 'Apr 22 14:11 Overscan correction strip is [515:544,3:510]'

Host Commands (#3)

Note that foreign tasks can be run in the IRAF
background and that their input and output can be
redirected to a file or pipe:
cl> imhead ("dev$pix", lo+) | grep ("Overscan")
BT-FLAG = 'Apr 22 14:11 Overscan correction strip is [515:544,3:510]'

And a reminder that IRAF networking is ubiquitous:
cl> !hostname
tucana
cl> !gemini!hostname
gemini

String and Math Functions

User’s Guide mentions various references, e.g.:
cl> phelp language # and individual help pages
cl> phelp strings # strings can also be directly manipulated
cl> phelp mathfcns # typical variety of functions

Strings can be compared using ==, or operated on
directly, e.g., // concatenation. Functions are:
s1 = str (x) # convert x to a string
s1 = substr ("abcdefg", 2, 4) # s1 = "bcd"
 i = stridx ("abc", " eeboq") # i = 4
 i = strlen ("abc") # i = 3
s1 = envget ("imtype") # s1 = "fits"

Temporary (Scratch) Files

Use the mktemp() function:
cl> string tmpfile
cl> tmpfile = mktemp (”tmp$junk”)
cl> hselect (”dev$pix”, “naxis*”, yes, > tmpfile)
cl> = tmpfile
tmp$junk9674a
cl> type tmp$junk9674a
2 512 512
cl> type (tmpfile)
2 512 512

Templates include single files and comma
delimited lists.
Templates include “*” and “?” wildcards.
Templates include “%” and “//” operators.
Templates include “@” files.
Don’t interpret image or file templates directly.
Don’t pass explicit lists of images or files.
Rather, use the sections or files tasks and allow
the user to pass in any template they wish.

Image and File Templates

Image and File Templates (ex.)

cl> sections *.fits
testim1.fits
testim2.fits
testim3.fits

cl> sections %test%out%im?.fits
outim1.fits
outim2.fits
outim3.fits

cl> sections (imlist, opt=”full”, > tmpfile)

Using Image Sections

Image sections are implicit in many image
processing operations:
imtranspose test[-*,*] cw90 # rotate 90 degrees clockwise
imtranspose test[*,-*] ccw90 # rotate 90 degrees counter-clockwise
imcopy test[-*,-*] rot180 # rotate 180°
imcopy test[-*,*] vflip # flip about the vertical (y) axis
imcopy test[*,-*] hflip # flip about the horizontal (x) axis

Subsample horizontally by a factor of three and
vertically by four or find the max data value in
the first fifty even numbered pixels of line seven:
imcopy test[*:3,*:4] test
imstat test[2:100:2,7] fields=max

 imgets requires special handling to work
correctly in the background
Background tasks cannot update parameters
 cache tasks to avoid problem, but
 hselect is better solution anyway since it
allows multiple keywords to be read at once

Reading Image Headers

Reading Image Headers (ex.)

cache imgets
imgets ("dev$pix", "ra")
s1 = imgets.value
x = real (s1)
imgets ("dev$pix", "dec")
s1 = imgets.value
x = real (s1)

versus
hselect ("dev$pix", "ra,dec", yes) | scan (x, y)

Note that sexigesimal values are recognized as
real numbers by the CL.

Put it all together

Task that expands an image template,
reads each header and does something:
cl> template *.fits
1: testim1.fits 13:29:24.00 (13.490) 47:15:34.00 (47.259)
2: testim2.fits 12:59:47.00 (12.996) 43:12:59.00 (43.216)
3: testim3.fits 09:22:13.00 (9.370) 11:38:13.00 (11.637)

cl> template @inlist
1: testim3.fits 09:22:13.00 (9.370) 11:38:13.00 (11.637)
2: testim2.fits 12:59:47.00 (12.996) 43:12:59.00 (43.216)
3: testim1.fits 13:29:24.00 (13.490) 47:15:34.00 (47.259)

Script for this example is on the following slide.

Expand image template, read headers, do something

procedure template (images)

string images {prompt="Input images"}
string *list

begin
 string l_images, img, tmpfile, ra, dec
 int i

 l_images = images

 tmpfile = mktemp ("tmp$tmp")
 sections (l_images, opt="full", > tmpfile)

 list = tmpfile
 for (i=1; fscan (list, img) != EOF; i+=1) {
 hselect (img, "ra,dec", yes) | scan (ra, dec)
 printf ("%d: %s %s (%6.3f) %s (%6.3f)\n",
 i, img, ra, real(ra), dec, real(dec))
 }

 delete (tmpfile, ver-, >& "dev$null")
end

sections or files
translit

fields

joinlines

match

mktemp

imextensions or mscextensions
imaccess or access
imexpr

wcstran

imstat or mimstat
hedit

Useful Tasks for Scripts

stty Playback Scripts

CL scripts are not the only type of IRAF scripts.
Playback (stty) scripts are ideal for demos and
regression testing (see help stty):
cl> stty login=test.stty
cl> imhead *.fits
...
cl> stty reset

cl> stty play=test.stty
cl> imhead *.fits # these lines were
testim1.fits[10][short]: m51 B 600s # automatically executed
testim2.fits[10][short]: m51 B 600s # by the computer
testim3.fits[10][short]: m51 B 600s #
cl> stty reset #

cl> edit test.stty # simple format for easy revision

What’s Next?
Visit http://iraf.noao.edu

Send email to iraf@noao.edu

