
Cleaning Images of Bad Pixelsand Cosmic Rays UsingIRAFLisa A. Wells David J. BellSeptember 13, 1994This document presents the possible uses and examples of the many tasks which may beused to clean images of bad pixels and cosmic rays with IRAF version 2.10. Basic knowledge ofIRAF structure and syntax is assumed.Contents1 Introduction 12 About the Tasks 13 Editing Images 43.1 Fixing Bad Pixels : 43.1.1 ccdproc : 53.1.2 �xpix : 53.1.3 imarith : 63.2 Fixing Cosmic Rays : 73.2.1 cosmicrays : 73.2.2 imsum : 93.2.3 combine and imcombine : 103.2.4 lineclean : 123.3 Fixing Images by Hand : 133.3.1 imreplace : 133.3.2 epix : 143.3.3 imedit : 144 Fixing Spectral Data 164.1 apall : 164.2 scombine : 184.3 splot : 19A Some Important Parameters 20A.1 Rejection Option Associated Parameters (combine, imcombine, & scombine) : : : 20B Technical Issues and Problems 21i

C Getting Bad Pixel and Cosmic Ray Positions 22D Useful Tasks for Making Masks 25D.1 mkpattern : 25D.2 imreplace : 26D.3 badpiximage : 26D.4 imcopy : 27D.5 imexpr : 27E Adding Noise to an Image: mknoise 28F Other Useful Documentation 28

ii

1 IntroductionThis document presents the many options within IRAF for �xing bad pixels and cleaning cosmicrays from CCD images. Images and spectra are treated somewhat di�erently, so both appli-cations will be discussed. The text is based on the tasks available in IRAF Version 2.10.3. Itis assumed that the reader has some preliminary knowledge of IRAF, including the packagestructure, getting help, listing and editing task parameters, and executing tasks in general. Abeginner's guide and other useful documentation are listed in Appendix F.Before reading any further, you should decide if you even want to clean your images. Thetechniques presented in this document range from cleaning through sophisticated statistical al-gorithms to straightforward data editing. In some cases, these methods are designed to extractas much useful information from an image as possible, while in others they involve data manip-ulation for purely cosmetic reasons. We will merely present your options and attempt to leaveyou well aware of what each task does. The decision as to which cleaning techniques, if any,should be performed will depend on the statistical and cosmetic requirements of your project.There are many ways of �xing bad pixel regions in a CCD image. These features are due tominor
aws in the detector and thus will usually be seen in the same locations in every image.Sometimes, a pixel will be broken entirely, preventing the rest of its line or column from beingaccessed during readout. More commonly, a single pixel or a pixel region will simply be \hot"or \cold," with a sensitivity di�erent from the rest of the chip. The
at �eld will take care ofmost of these features so it is a good idea to �rst process some test images and examine themto see if bad regions persist. If they do, you have the choice of �xing them before
at-�elding,or you may correct the already
attened data. There are several ways to do this, from settingconstant values in these regions, to interpolation across the smallest dimension, to creating amask image which may be applied using image arithmetic. If all images in a set have the same
aws, then a batch job can be used to process through all the images non-interactively.Cosmic rays are treated di�erently, as they are random events and have obvious pro�les.Since usually no two images of the same object will have cosmic rays in the same location, com-bining multiple registered images, using suitable pixel-rejection criteria, will generally removethese features. When dealing with individual images, cosmic ray features can often be detectedand removed with statistical models. They can also be edited out by hand, which is more timeconsuming but may be necessary for cosmic rays with non-standard pro�les, i.e., those that aretrailed.Spectra may be extracted from 2D images using optimal rejection techniques which correctfor cosmic rays on the spectral pro�le. If background subtraction is being performed, statisticalthresholds can be used to reject deviant data in the background as well. If these options areused, the need for cosmetic corrections at the end of the processing is often avoided. However,manual interpolation may also be performed on 1D spectra using splot.2 About the TasksThere are many tasks which may be used to clean bad pixels and cosmic rays from images, andoften the same results can be obtained in di�erent ways. Here we give a brief description of eachtask to help users decide which are best suited to their needs.� ccdproc - The image processing task which allows speci�cation of a bad pixel �le. Theparameter �xpix must be turned on, and a bad pixel list speci�ed. Images are corrected1

in the same manner as in the task �xpix.� �xpix - An input list of bad pixel positions are read and interpolation across the smallestdimension of each region speci�ed is performed. This is used on each image individually.� imarith - Uses image arithmetic to apply a mask image,
agging the bad regions bysetting them to 0, a very high, or a very low value.� cosmicrays - Locates and removes cosmic rays using a statistical model. This may havetrouble distinguishing between multiple close events and stellar objects with small PSFs.� imsum - Combines multiple images of the same object using sum or average options.Rejection of low or high valued pixels is used.� combine, imcombine - Combine multiple images of the same object with many optionalrejection algorithms.� lineclean - Edits pixels using simple sigma clipping and replaces highly deviant pixels bythe �t.� imreplace - Replaces all pixels within a certain range of values with a given constant.� epix - Edits an individual pixel by replacement with supplied value.� imedit - Edits an image interactively, using the cursor to mark regions, either by inter-polation or replacement with a speci�ed value.The �rst two tasks listed above, ccdproc and �xpix, are best used to �x bad pixel regions,which are usually well known for a particular CCD. These tasks require an input list of badregions (assumed the same in every image), which are replaced by interpolation across thesmallest dimension of each region. Replacement of bad regions by a constant may be done usingimreplace, which can be given either the coordinates of a replacement region or a range in pixelvalues to be replaced. This should be used with caution since the value range may include pixelsoutside the truly bad regions. Image arithmetic (imarith) may be used to apply a mask to alist of images. This will simply replace the bad regions with a very large number, a very smallnumber, or zero. All these tasks may be run in batch mode by specifying lists of input images.The tasks ccdproc and �xpix perform the operation in place, overwriting the input images,though ccdproc can be set to save the input images using the backup parameter in the ccdredpackage parameter set. Section 3.1 goes into more detail about these tasks. See Appendix D forinformation on making mask images.Cosmic rays are random events with distinct pro�les that are usually con�ned to one pixel.These can be removed by taking multiple exposures of a �eld and combining them, with ap-propriate rejection criteria, using imsum, combine, or imcombine. Hopefully no two imagestaken of the same object will have cosmic rays in the same place, although (by setting theappropriate parameter) more than one pixel value at any given coordinate may be rejected toget around this problem. If multiple exposures of an object are not available for use with thecombine tasks, then cosmicrays1 may be used to locate deviant pixels from image statistics.1This task should be used with great caution on HST images, as stars in these images may be confused withcosmic rays and be deleted. Instead, the task crrej in the STSDAS.HST CALIB.WFPC package should be used,though this task is not presented in this document. The STSDAS package is add-on software developed anddistributed by STScI and is available by anonymous ftp to stsci.edu (130.167.1.2).2

The task lineclean will get rid of highly deviant cosmic rays by specifying an appropriate levelfor the rejection limits. This task may remove good data so care should be taken when using iton 2D images. The above tasks are explained in more detail in Section 3.2.The imreplace task performs replacement by a constant only. It is non-interactive andallows regions and/or pixel value ranges to be speci�ed. The epix task works non-interactively,one pixel at a time, requiring a pixel position and new value for each pixel. It is most usefulfor cases in which there are only a few cosmic rays to be removed. The task imedit is aninteractive task which uses the display device and image cursor. The replacement regions maybe set to any radius interactively and the shape also may be changed. The task allows a varietyof replacement algorithms from interpolation to replacement by a constant. The image can beautomatically updated after each operation for inspection purposes. The above tasks may beused for cosmic ray or bad pixel removal (see Section 3.3).Spectral images should also be
at-�elded before determining whether bad pixels are to beremoved. The tasks best used for pixel �xing are ccdproc and �xpix, which are described inSection 3.1. This process of removing bad pixels is usually done before extraction, while cosmicrays may be removed before, during, or after the extraction process. The previously mentionedtasks can be used on any type of data, while the following are particular to spectral images:� apall - Uses optimum extraction techniques to remove cosmic rays during the extractionprocess.� scombine - Like the task combine for images, this averages 1D or multispec formatspectra which have been dispersion corrected.� splot - Used to interactively edit out bad regions in spectra.The weighted extraction techniques in apall may take care of cosmic rays during the extractionto 1D spectra simply by setting the appropriate parameters. For multiple spectra taken of anobject, scombine combines input spectra by interpolating them (if necessary) to a commondispersion sampling, rejecting pixels exceeding speci�ed low and high thresholds. This works on1D or multispec format spectra, where certain apertures may be speci�ed to be combined intothe �nal output spectrum. The spectra must have dispersion solutions since these are used inmatching the input spectra, rather than their physical or logical pixel coordinates. For editingindividual extracted spectra, an \etch-a-sketch" mode is available in splot. This may be usedfor interactive interpolation by eye to replace a cosmic ray or bad pixel region, including poorlysubtracted sky lines, with a straight line de�ned by two positions of the cursor. The image mustthen be saved (since it is not done automatically) by replacing the new spectrum in the oldname or renaming the output spectrum. More information and examples of these tasks may befound in Section 4.Several additional tasks are mentioned in the Appendices:� rimcoord - Used to �nd cursor positions in display device.� imexamine - Used to examine an image and �nd pixel coordinates.� implot - Used to �nd pixel coordinates without a display device.� badpiximage - Creates a mask from a bad pixel coordinate �le.� mkpattern - Creates/modi�es patterns in images or image sections.3

� imcopy - Used to copy image sections or create pixel list masks.� imexpr - Allows many enhanced arithmetic image expressions.� mknoise - Adds noise or cosmic rays to an image or image section.3 Editing ImagesEach of these sections will describe the task and parameters, the input format for �les, and giveat least one good example of its use. Some tasks are better for �xing bad pixels while othersare better at removing cosmic rays. The editing tasks described in the last section are useful forboth applications. We advise you to at least brie
y glance over each section before deciding onhow to clean your images. Depending on the nature of your data and cleaning needs, the sameoperation that would be tedious with one task might be straightforward with another. Cleaningcan be performed at several di�erent stages in the reduction process, and a particular cleaningoperation might be unnecessary or even undesirable depending on how the data will be usedwith other tasks. For instance, when combining several images of the same object, it is usuallynot necessary to clean cosmic rays from the individual images. Instead, statistical techniquescan be used to reject deviant pixels during the combining process.Bad regions can also be treated with a pixel \mask". A mask here refers to a map describingthe good and bad regions of an image. For instance, instead of individually editing severalimages with the same bad pixel regions, we might instead create a binary mask. This could bean image with values of \0" in all the bad regions and \1" in all the good regions. Each dataimage could then be multiplied by the mask to set all the bad regions to 0. The tasks combineand imcombine can also use masks for pixel rejection during the combining process (instead ofmultiplication, pixels are simply used or not used based on the mask). In this case, the masksmust be of the \pixel list" �le type, designated in IRAF with a \.pl" extension. These \.pl" �lesstore all the header and pixel information in one �le, and are more compact and e�cient thanimages for cases in which many of the pixels are of the same value (as in a mask). Nonetheless,these �les can be created, edited, operated upon, graphed, and displayed with the same tasks aswould be used for images. Possible uses of mask images and pixel lists are discussed in sections3.1.3 and 3.2.3, and tasks useful for creating masks are described in Appendix D.3.1 Fixing Bad PixelsBad pixel regions are unique for a given CCD and do not move around randomly as do cosmicray events. These regions may be a pixel, line, column or 2D region of any shape where thestatistics are higher or lower than the overall background statistics. Before using any of thetasks described below, the images should be
at-�eld corrected, since bad lines and columns willoften be �xed by applying the
at image. In rare cases, bad regions may be made worse and sothey must be �xed before processing the images. After processing, examining the images withimplot, or display may reveal persistent bad regions, see Appendix C. In this case coordinatesde�ning the edges of the bad regions must be acquired for input to some of the following tasks.See the help pages for these tasks for more information.Be warned that the tasks ccdproc and �xpix perform their operations in place, overwritingthe input image. If you wish to attempt a test processing procedure to learn whether pixel �xingshould be performed before
at-�elding, you should do it on a test copy of one of the images.In either case, unless you are already familiar with the cosmetic characteristics of your CCD,4

you may wish to save local backup copies of your unprocessed data. For ccdproc this may bedone by setting the ccdred package parameter backup to a directory (in which case it shouldend with a slash) or a pre�x. Use \epar ccdred" for access to the package parameters.3.1.1 ccdprocThis task for image processing is found in the IMRED.CCDRED package. It includes an optionto �x bad pixel regions from a speci�ed bad pixel �le de�ning the regions to be �xed. Thisworks like the task �xpix (see next section) in that both use interpolation across the smallestdimension of the region speci�ed. The �xpix parameter must be set to yes, and the list of badregions speci�ed in a �le, the name of which must be speci�ed in the �x�le parameter. Theformat for this table is the �rst and last columns of the bad region followed by the �rst and lastlines of the bad region, i.e., \xbegin xend ybegin yend" separated by spaces not commas. SeeAppendix C for information on tasks which may be used to obtain coordinates for the bad pixelregions.cl> type imagesobj0003obj0004obj0005obj0006obj0007obj0008cl> type badpix189 189 258 258480 562 378 378493 521 390 397cl> ccdproc @images �xpix=yes �x�le=badpixIn this example, a list of �les is input to the task and processed. The badpix �le in the example�rst de�nes one individual bad pixel, then a bad line, and then a larger rectangular region. Ifthe bad region borders the edge of the image then the interpolation is by replication of the �rstgood pixel in the direction of interpolation, otherwise linear interpolation between the borderinglines or columns is used. Note that if the �les have already been processed without pixel �xing,rerunning the task as above will �x pixels without it repeating its other operations. If ccdprochas already been used to �x pixels in a image, the operation will not be done again, even if anew bad pixel �le is given. If additional bad pixel regions are discovered after ccdproc �xinghas been performed, one must delete the FIXPIX header keyword, or instead use the �xpixtask.3.1.2 �xpixThis task for �xing bad pixels is found in the PROTO package. It corrects bad pixel regionsby interpolation using an input bad pixel �le de�ning the regions to be �xed. Interpolation isperformed across the smallest dimension of the region speci�ed. Like ccdproc, �xpix overwritesthe input images, but unlike ccdproc it does not include an option to save copies of the originals.Thus, it is safer to �rst try any new operation on a test image. The name of the image, or alist of images, to be �xed and the bad pixel table must be speci�ed in the images and badpixels5

parameters respectively. The format for this bad pixel table is the �rst and last columns of thebad region followed by the �rst and last lines of the bad region, i.e., \xbegin xend ybegin yend"separated by spaces not commas. See Appendix C for information on tasks which may be usedto obtain coordinates for the bad pixel regions.cl> type �xlistobj0003obj0004obj0005obj0006obj0007obj0008cl> type badpix189 189 258 258851 851 274 274329 329 304 580480 562 378 378493 511 610 636cl> �xpix @�xlist badpixIn this example, a list of �les is input to the task and processed. The badpix �le in the example�rst de�nes two individual bad pixels, then a bad column, a bad line, and then a larger rect-angular region. If the bad region borders the edge of the image then the interpolation is byreplication of the �rst good pixel in the direction of interpolation otherwise linear interpolationbetween the bordering lines or columns is used. NOTE: There is currently no way to convert abad pixel image (see Appendix D) to a �xpix format input list.3.1.3 imarithImage arithmetic can be done with imarith in the IMAGES package. The best applicationof this task for �xing bad regions is to apply a \mask" to a data image by summation ormultiplication (see beginning of Section 3 for de�nition of a mask). If one �rst creates a binarymask with values of \0" in all bad regions and \1" in all good regions, image multiplication canbe used to set all \bad" pixels to 0 in a set of images. Optionally, a mask could be created inwhich the bad regions are set to a very large positive or negative value and the good regionsset to \0". When this mask is added or subtracted from a data image, the good pixels will beuna�ected while the bad ones will be given large negative or positive values. Such operationsdo not \�x" bad pixels in the sense that they make the images look nicer, but instead theycan be used to
ag the bad pixels (which may have had reasonable looking data values) forother tasks. For instance, when images are to be combined using a task such as imcombine,bad regions may �rst be set to clearly unreasonable values which will then be ignored by thecombining task's threshold options (combine and imcombine can also use pixel list masks toreject pixels directly, making an imarith step unneccessary|see Section 3.2.3). In this way,images may be combined even when their bad regions are in di�erent places. Tasks for creatingmasks are discussed in Appendix D.The syntax for imarith is quite intuitive|it looks just like an arithmetic expression, butwithout the equals sign:� 6

cl> imarith obj0005 * mask mobj0005This example multiplies the object by the mask and renames the output image.cl> imarith obj0005 + mask obj0005The mask image is added to the object and the task operates in place by using the same namefor the output image.cl> imarith @ilist - mask @olistThe last example uses input and output lists of images and subtracts the mask from each imagein the input list. These �les may be identical to perform the arithmetic on the images in placeor di�erent to rename the output images. See the help page for this task for more information.3.2 Fixing Cosmic RaysCosmic rays are random events which can occur at any place on an image. They are notcorrected by
at �elding so other methods are used to clean these from an image. Normally acosmic ray is seen as one very hot (high valued) pixel in an image though sometimes they doa�ect several adjacent pixels leaving a streak on the image. Due to their unique characteristicshowever, statistics may often be used to clean an image of these blemishes with cosmicrays. Ifmultiple images were taken of an object, then combining these with some threshold limits willalso remove cosmic rays. The last two sections here describe combining registered (i.e. properlyaligned) images using imsum, imcombine, and combine.3.2.1 cosmicraysThe cosmicrays task is found in the NOAO.IMRED.CCDRED package. This task searches forand corrects cosmic rays using selection criteria given by the parameters threshold and
uxratio.The threshold value determines the statistics used to identify deviant pixels; it should be setto 5 or more times the standard deviation in the background regions. The
uxratio parameteris used to choose which pixels should be corrected; they will be replaced with the mean ofthe 4 neighboring pixels. This parameter is the ratio (in percentage units) of the
ux of theneighboring pixels, excluding the brightest neighbor, to that of the target pixel (after backgroundsubtraction). Thus, a value of 5 implies that the target pixel's value must exceed the mean ofits neighbors by a factor of 20 to be deleted. Setting this parameter too high can delete gooddata so values between 2-6 are suggested. A bad pixel �le may also be generated by specifyingan output �le name in the badpix parameter. This �le may then be used to create a mask imageusing badpiximage (see Appendix D). The tvmark task may be useful for identifying thepoints which were corrected.The following example �rst looks at the statistics of a region of sky in an image, using roughcoordinates of a region free of objects, cosmetic defects, and cosmic rays. (See Appendix C forinformation on how the coordinates of such a region can be found with the display device andthe cursor). The threshold is set to 5 times the sky background's standard deviation as given bythe imstatistics task. Note that the verbose parameter in ccdred must be set to yes to getthe output line shown below, though the information can also be found in the log�le and in theheader of the output image. 7

Figure 1: An example of an interactive plot in cosmicrays.cl> imstat obj0008[107:164,152:227]# IMAGE NPIX MEAN STDDEV MIN MAXobj0008[107:164,152:227] 4408 805.8 29.96 702.9 909.3cl> cosmicrays obj0008 cobj0008 threshold=150
uxratio=3obj0008 - Examine parameters interactively? (no|yes|NO|YES) (yes): CRcobj0008: Sep 2 9:40 Threshold=150.0, fluxratio= 3.00, removed=33Running this task interactively produces a plot of the pixels satisfying the condition set by thethreshold parameter. The plot shows the
ux versus the
ux ratio in relation to the backgroundsky. The value of the
uxratio parameter divides the plot between bad points to be replaced,represented by the diagonal crosses, and good points represented by the pluses. This value maybe changed by setting the cursor at a new dividing point and typing a t. Crosses are changedto good points using u and pluses are deleted using d. The interactive portion of the task isexited by pressing q, at which time the corrections are made. In Figure 1, we see that there areseveral points in the lower right corner with large
uxes and small
ux ratios. These representvery strong and extremely sharp features, and all of these are almost certainly cosmic rays.Thus, in this case, the
uxratio should be moved up so that all the points in this corner areincluded. Near (104; 6:0) we see four more points which are likely to be cosmic rays, but whicharen't quite as sharp. We could elect to delete these points by hand (by pressing d on each one)instead of moving the
uxratio up (crosses are always deleted and pluses are always ignored,even if they are on the wrong sides of the line). Most of the points at the top of the plot areprobably stars and should not be corrected. The other points represent weak but sharp features,and these may be due to weaker cosmic rays or simply pixels which made it above the thresholddue to statistical noise. Thus, if a lot of weak sharp points are appearing, it probably meansthe threshold value is set too low. Note that it is possible for a feature to have a negative
uxand/or
ux ratio, but that these points will not be visible unless the graph is re-windowed (e.g.by pressing w a). 8

Another interactive way of using this task is with a \training" option, invoked by settingtrain=yes. Cosmicrays will assume the user has already displayed the image in the displaywindow (ximtool, saoimage, or imtool). An image cursor can then be used to mark features ascosmic rays with c or stars with s. The task uses this information to set
uxratio just highenough to include all the items labeled as cosmic rays. One may switch to the graphics plot bypressing g and back to the image display with q. A q from the image display is used to exitfrom the interactive portion of the task. To help decide if a point is a cosmic ray or a star,one may press s in graphics mode to show surface plots (from four di�erent angles) of the pointnearest the cursor. In addition, pressing space in graphics mode will give the pixel coordinatesof a particular point (these options are also available when not using the training option). Moreinformation can be found in the help page for this task.3.2.2 imsumImsum is found in the IMAGES package, and it not only sums images but can average ormedian them as well. The options for pixel rejection are not as extensive as those availablein combine or imcombine, however, being limited only to rejection by rank order. This isdone by setting the high and low reject parameters to reject those numbers of pixel values ateach position in the image, not to exceed the number of input images. Setting these to valuesless than 1 rejects that percentage of high or low pixels. The task does not check the valuesagainst any statistical threshold, but merely throws out the requested number of pixels at eachposition. This means it will eliminate perfectly good points and pixel rejection should only beused with a large number of images to preserve statistics, though this task is much slower thanthe other available choices for such an operation. When only a few images are being combined,and pixel rejection is needed, it is probably better to apply a statistical rejection algorithm usingcombine or imcombine.New values of certain header parameters may be computed for the combined output imageby specifying them with the hparams parameter. For example, one would usually want to sumthe exposure times in the image headers when the images are being summed. A new title forthe output image must be speci�ed, as this task will not overwrite existing images.cl> imsum obj008,obj009,obj010,obj011 sumout high rej=1The �rst example adds 4 images (addition is the default operation for this task), throwing awaythe highest valued pixel at each point.cl> imsum obj008,obj009,obj010,obj011 sumout hparams=\exptime"This example adds the images with no pixel rejection (by default when parameters are not given)and also computes a new exposure time for the output image by summing the input values.cl> imsum @comblist aveout option=average high rej=2In the last example, an input list of images is used and the task outputs the average, rejectingthe two highest pixel values per position.By default, imsum will perform the calculations in the highest precision datatype of theinput images. Thus, if several short integer images are being combined the output values canwrap around. This can be avoided by setting calctype=real.9

This task is quite outdated and has been largely replaced by combine and imcombine.Imsum may still be used, however, for simple operations in which only a few images are beingcombined and statistical pixel rejection algorithms are not needed. See the help page for thistask for more information about its parameters.3.2.3 combine and imcombineThe combine task is found in the NOAO.IMRED.CCDRED package, and imcombine is foundin the IMAGES package. These tasks perform the same operations though the parameter listsare not identical. This is mainly due to the context in which they are used|combine is setup to do automatic reductions employing a translation �le to check header parameters. Butthe most important parameters for combining images are identical in the two tasks. There aremany possible combinations of parameters so several examples will be detailed. We begin withan explanation of the available pixel rejection algorithms|minmax, ccdclip, crreject, sigclip,avsigclip, and pclip. This option may be turned o� by setting reject to \none".The minmax option works much like the high and low rejection in imsum. The number oflow and high pixel values to reject is governed by the parameters nlow and nhigh which is turnedinto a fraction depending on the number of input images. This will reject the speci�ed numberof highest and lowest values at each pixel position so it is best to use this option only with alarge number of images.Better options for removing cosmic rays would be the ccdclip and crreject algorithms whichuse the readout noise and gain of the CCD to locate highly deviant values, based on the computedsigma value. The �rst of these deletes high and low values while the second rejects only highvalues. The lsigma and hsigma determine the deviation criteria for rejection. These optionsdo not require a large number of input images, though they do require knowledge of the noisestatistics of the detector.The next rejection options are sigclip and avsigclip, which compute the median or average ateach pixel and the standard deviation about this value. Pixels that deviate from the median oraverage by more than lsigma or hsigma times the standard deviation are rejected in an iterativeprocess until no more deviant values are found. Sigclip works best with a large number of inputimages (> 10), while avsigclip can work with as few as three images. This is due to the di�erentways in which the two algorithms calculate the standard deviation. Sigclip simply computes thestandard deviation based only on data from each pixel position. When using avsigclip, on theother hand, the standard deviation about the mean or median is assumed to be proportional tothe square root of the mean or median at each point, allowing all data in a line to be used todetermine the standard deviation as a function of the mean or median.The last option is the pclip algorithm. It is similar to the sigma clipping options, however, thewidth of the distribution is characterized by the di�erence in the median value and a speci�edpercentile pixel value. The percentile pixel is speci�ed by the pclip parameter in the task. Thepixel values are ranked from low to high at a given position in a set of images. The median isthen the middle value for an odd number of inputs or the average of the two middle values foran even number. If pclip is a positive or negative integer value, then the percentile pixel is thatnumber of input values above or below the median value respectively. If pclip is a positive ornegative value between -1 and 1 then the percentage of the pixels above or below the medianvalue is used, i.e., for pclip = -0.5, with 9 input values, there would be 4 pixel values belowthe median; 50% of 4 pixels is 2, which is the third pixel value in the rank. The di�erencebetween the median and the percentile value is multiplied by the lsigma and hsigma parameters10

which set the lower and upper rejection thresholds. This algorithm is good at removing verysmall excursions, such as low level wings of stars when several disregistered images are beingcombined to produce a sky
at. Each of the rejection options have associated parameters whichare explained in more detail in Appendix A.Threshold rejection is governed by the lthreshold and hthreshold parameters, which specifythe lowest and highest good data values for pixels in each image. These thresholds are appliedbefore all other rejection and combining operations. Threshold rejection is not performed whenboth parameters are set to \INDEF".Pixel masks may be applied to each image, before the threshold or rejection processes takeplace. The mask �les must be of the \pixel list" �le type, which IRAF designates with a \.pl"extension (see beginning of Section 3 for the de�nitions of masks and pixel list �les). Pixelmasks are applied by setting the masktype and maskvalue parameters to specify the type ofmask being used. For instance, if the mask is such that good pixels are marked with 0 and badpixels marked with 1 (this logic is often used, as it makes for the most compact pixel list mask�les), the appropriate values would be masktype=goodvalue and maskvalue=0 (or, equivalently,masktype=badvalue, maskvalue=1). The mask �le name must be speci�ed in the header of itsassociated image under the BPM keyword, which may be added to the header using hedit. Ifno mask is associated with an image, it will be treated as if it had a mask will all values beingzero. Thus, if combining a large number of images, only a few of which need masks, it is best tode�ne 0 as the good value to avoid having entire good images rejected. Tasks useful for creatingpixel mask �les are described in Appendix D. Whether or not masks are being used for the inputimages, an output pixel list �le, a map of the number of pixels rejected at each position, can beproduced by setting the pl�le parameter to a �le name. This �le name is added to the outputimage header under the keyword BPM.For cases in which the input images do not have their objects at exactly the same pixelpositions, there is an option for o�setting images which does not require registration and savesa lot of processing time. The o�set table is given one object per line with the x and y shiftsseparated by a space. These shifts may be speci�ed in relation to one of the images or to somearbitrary common point. The reference image shift would be \0.0 0.0" and negative valuesare allowed. This option should be used only when the images have large overlapping regions.The use of imcombine for mosaicing is explained in more detail in another document (seeAppendix F).Average and median are the choices for the combine parameter. This is the last operationperformed on the input images, after o�setting, masking, thresholding, and rejection. In somecases, the number of pixel values going into the average or median may be lower than the nkeepparameter, resulting in the inclusion of those rejected pixel values with the lowest residualscalculated by the rejection algorithm. For example, if 2 of 9 pixels are deleted using the hthresholdparameter and 4 of the remaining 7 are thrown away by the rejection option used, then 3 pixelsare checked against nkeep. If nkeep is set to 4, then the pixel value with the lowest residual fromthe rejection routine will be added back in to be combined. Pixels rejected by the thresholdingare not a�ected by the nkeep parameter. Each of these examples uses the default combineparameter value of average.cl> combine obj0002,obj0003,obj0004,obj0005 out reject=none nhthreshold=28000This example uses the hthreshold to through out pixels above the given value for the four inputimages. All the other examples below use the input list of 9 images called clist.11

cl> type clistobj0003obj0004obj0005obj0006obj0007obj0008obj0009obj0010obj0011cl> imcombine @clist comb reject=minmax nlow=0 nhigh=2The minmax option is used to reject the highest 2 values at each pixel position.cl> combine @clist comb reject=crreject rdnoise=3.6 gain=5.8This example is using the cosmic ray rejection which requires the noise characteristics of thedetector, the gain and rdnoise. The default rejection thresholds of 3.0 sigma are used.cl> imcombine @clist comb reject=avsigclip nkeep=5 lsigma=2.5 hsigma=2.5The last example uses the average sigma clipping algorithm and allows rejection of no more than4 pixels at each position. If the noise parameters for the CCD are well-known then crrejectmay be used. If the noise parameters are not well-known and only a few images were taken,then avsigclip should be used. More information about this task is found in the help page.3.2.4 linecleanThe task lineclean is found in the IMAGES package. The task �ts a function to an image oneline at a time and locates highly deviant pixels which are replaced by the �t. The shape of thefunction may be highly variable in the image however, and parameters resulting in a good �t toone line may delete good data from another line. This task should be used with great cautionfor this reason, and the task may be run interactively to examine the �t for many image lines.There is a choice of four function types for the �t:� Legendre - polynomial of the speci�ed order.� Chebyshev - polynomial of the speci�ed order.� Spline1 - linear spline with number of pieces set by order.� Spline3 - cubic spline with number of pieces set by order.(Remember that a function's order in IRAF refers to the number of degrees of freedom, notthe value of the highest exponent. Order=2, for the polynomial �ts thus gives a straight line,not a parabola.) The low reject and high reject parameters set the rejection levels in units ofthe residual sigma. These values must be chosen carefully, and can be determined by estimatingthe level of the highest good value in the image compared with the average sky level.cl> lineclean obj0003 cl0003 function=chebyshev order=4 low=3 high=312

This example uses a 4th order chebyshev function and sets the rejection level to 3 sigma aboveand below the function �t. It will prompt for a line to begin the �tting, and the user may typein the line number of interest and change the parameters accordingly. Some of the interactivecommands are:� f - Recalculates the �t.� r - Redraws the graph.� ? - Shows the help menu, exited using q.� :function (new function) - Changes the function type for the �t.� :order # - Changes the order or number of spline pieces.� :niterate # - Changes the number of rejection iterations.The interactive �tting is exited using q which then prompts for the next line to be �t. Whenthe parameters have been set properly, hitting a CR without a number will then �t the entireimage line by line, using the last set of �tting parameters, and output the cleaned image. Seethe help page for this task for more information.3.3 Fixing Images by HandThis section describes several tasks used interactively or non-interactively to �x bad pixels andcosmic rays. In the non-interactive cases, the bad regions are input one at a time or in lists.The �rst two sections describe tasks which are non-interactive. The last section describes thetask imedit which may be used either interactively or non-interactively. See Appendix C formore information on obtaining pixel positions.3.3.1 imreplaceThe imreplace task is found in the PROTO package. It simply replaces the pixel value of agiven region speci�ed by an image section and/or a range in current values. The replacementvalue must be speci�ed and an imaginary part for a complex number may be incorporated.The range to be replaced is given with the lower and upper parameters, which may be set to\INDEF" to set no lower or upper bound. The replacement will be performed over the entireimage if an image section is not speci�ed.cl> imreplace obj0003 1.0 lower=32000.0 upper=INDEFcl> imreplace obj0003 1.0 lower=INDEF upper=-10.0This example replaces all pixels in the image with values below -10.0 and above 32000.0 (thesaturation level, for example) with the value 1.0.cl> imstat obj0003[1:50,1:50]# IMAGE NPIX MEAN STDDEV MIN MAXobj0003[1:50,1:50] 2500 39.22 2.424 32. 92.cl> imreplace obj0003[1:145,50:90] 39.22 lower=32000.0 upper=INDEFcl> imreplace obj0003[1:145,50:90] 39.22 lower=INDEF upper=0.013

Here the mean in the background of the image is calculated and used as the replacement value.An image section is speci�ed for replacement of values below 0.0 and above the saturation level.This task is also useful for creating mask images; see Appendix D for more information.3.3.2 epixThe epix task is found in the PROTO package in IRAF. This task can be used to edit a singlepixel at a time, for cases in which an image has only a few cosmic rays to be removed. Proceduresto determine pixel coordinates are explained in Appendix C. The parameter edit image must beset to yes in order to replace the speci�ed pixel with the new value. The following examplesreplace the speci�ed pixel with the value 0.0:cl> epix obj0004 345 267 0.0cl> epix obj0004 678 465 0.0cl> epix obj0004 723 682 0.0Image statistics (imstatistics) may �rst be used on a section of the image to determine thereplacement value. Or, if new value is not speci�ed on the command line, the task will computethe mean of the surrounding 8 pixels before prompting for the replacement value:cl> epix obj0004 463 142462 463 464141 76.5472 74.9697 83.7819142 74.201 3741.14 55.4181143 34.7398 93.9899 85.8516median 76.54721, mean 72.43739, sigma 18.93725, sample 8 pixelsnew value for pixel (0.): 72.4374See the help page for more information on this task.3.3.3 imeditThe imedit task is found in the IMAGES.TV package. This task can be used to edit varioustypes of regions of an image or to obtain statistics. Images may be edited interactively or non-interactively using a list of positions and commands. The images must be two dimensional.There are a number of replacement algorithms from interpolation, to replacement by a constantvalue, to replacing one region in a given aperture by another. An input list of images witha corresponding output list may be used, or one may simply edit one image at a time. If nooutput list is speci�ed, then the modi�ed images are saved under their old name. A square orcircular aperture may be used and the radius set for the size of the region to be edited. The fourparameters bu�er, width, xorder, and yorder are used in the background replacement algorithm.If replacement by a constant is to be used, then the parameter value must be speci�ed. Thecursor parameter gives the name of a �le to control non-interactive editing. It can contain eitherpositions and editing keystrokes (a list appears at the end of this section), or bad regions in the�xpix format:cl> type badpix103 105 206 265387 387 658 750 14

568 568 480 480cl> imedit @inlist @outlist cursor=badpix �xpix=yes display=noIn the example above, the display option is set to no for non-interactive use of imedit andinput and output lists are given for the images. The pixels are �xed by interpolation across thesmallest dimension of the region speci�ed as in the task �xpix.The cursor �le can instead give positions and the editing keys that would be used in inter-active mode. The format for each line is �rst the x and y positions of the cursor, then a WCScoordinate (not used in this application, but some integer value in this �eld is required), followedby the editing keystroke. Those commands that require two cursor positions will also requiretwo lines in the �le.cl> type pixlist240 368 101 b284 134 101 a292 147 101 a380 456 101 l380 512 101 lcl> imedit obj0003 edobj0003 cursor=pixlist display-In this example, three regions are modi�ed non-interactively using the editing commands whichterminate each line. First is replacement of an aperture by the background b, then replacementof a rectangular region by the background a, and �nally interpolation across a line l. If noediting command is given on a line, the task will perform the operation given by the defaultparameter.To run the task interactively, use:cl> imedit obj0003 edobj0003 display+ autodisplay+ radius=6The autodisplay option shows the image after each modi�cation. The following commands maybe used in interactive mode:� + - Increase radius by one.� - - Decrease radius by one.� a - Background values replace a rectangular region marked by opposite corners.� b - Background values replace the aperture de�ned by aperture and radius.� c - Interpolation across the columns marked.� d - Constant value replaces a rectangular region marked by opposite corners� e - Constant value replaces the aperture de�ned by aperture and radius.� f - Interpolation across the smallest dimension replaces the region marked by oppositecorners.� g - Plots a surface graph.� i - Starts over without saving changes for the current image.15

� l - Interpolation across the lines marked.� m - Replaces one aperture region with another aperture region.� n - Adds the values of one aperture region to another region.� p - Prints the pixel values and statistics for a box centered on cursor.� q - Quits interactive mode and saves the modi�ed image.� s - Surface plot at the position of the cursor.� t - Toggles between search for the maximum (positive) or minimum (negative) valuedpixels in the search radius.� u - Undo the last modi�cation to the image. This is a toggle switch.� space bar - Statistics for the region around the cursor.� ? - The help page is shown for the interactive commands, use a `q' to get back to interactivemode.The task parameters may be edited while in interactive mode using the : commands, for example:radius 4. The + and - can be used to change the radius interactively. Interactive mode isexited using a q. These commands are all explained in more detail in the help page for this task.4 Fixing Spectral DataSpectral data should be
at-�elded in a similar fashion as direct imaging, except for �ber data forwhich the
at-�elding is done after extraction. This processing may take care of the bad regions,though cosmic rays may still be a problem. Using optimal extraction algorithms with apallmay remove most cosmic rays and perhaps bad pixels. Once spectra are extracted, however,combining spectra with scombine may take care of any residual cosmic rays and bad pixels, incases for which multiple spectra were taken of an object. For individual spectra, there is alsothe option of removing bad pixels by hand using splot. These tasks are described in the nextthree sections.4.1 apallThe apall task is found in NOAO.TWODSPEC.APEXTRACT and all the spectral packagesin NOAO.IMRED, including KPNOSLIT, SPECRED, ECHELLE and others. Extraction of1D spectra from 2D spectral images can be performed using optimal extraction techniques todistinguish between emission lines and cosmic rays. The cosmic rays are then rejected from thesummation of the extraction window. Also, background or sky subtraction parameters may beset to reject cosmic rays in the background computation.Apall has all the parameters required to de�ne the extraction process for any kind of 2Dspectral image. The boolean parameters at the beginning of the parameter list turn on and o�the operations to be performed on the input images. A bright standard star may be traced andused as the reference for fainter program objects. The task will interactively extract spectra orrun in batch on an input list of objects. The task could be used once interactively to de�ne16

apertures, and again non-interactively for the actual extractions, or a reference spectrum maybe speci�ed for a fully non-interactive extraction.Background sky lines may be removed by setting the background parameter to �t . This mustbe set to none, however, for comparison lamp extractions. The parameters beginning with b areused to govern the background subtraction, with the most commonly changed parameters beingb sample, b naverage, and b niterate. B sample de�nes the the background aperture relative tothe center of the object aperture, and b naverage gives the number of pixels to be averaged ormedianed to produce data for a background �tting function (a constant by default). If b naverageis positive, that number of pixels will be averaged; if negative, that number (in absolute value)will be medianed. Thus, if the background aperture is set to include 12 points on either side ofthe pro�le, a value of -3 will median the pixels in groups of three and produce 8 data values forthe background �tting function. By default, these values would be averaged to determine thebackground value for that line or column perpendicular to the dispersion direction. A value ofb naverage=-3 will take care of single-pixel cosmic ray events; for CCDs with larger cosmic raypro�les, the magnitude can be increased to median more pixels. In addition, statistical rejectionof the data points used in the background �tting function can be performed by setting b niterateto the desired number of rejection iterations (0 by default). If this is done for the example above,the 8 data points (each a median of 3 pixels) would each be compared to their average, andany deviating by 3 sigma (default) would be rejected. This process would then repeat until norejections occur or the number of requested rejection iterations is reached.In addition to removing cosmic rays in the sky background, pixel cleaning can be performedon the object pro�le itself. The weights parameter should be set to variance and clean set toyes. This algorithm, described by Keith Horne (PASP, 1986, 98, 609), uses the noise statisticsof the CCD to detect deviant pixels in the pro�le. The parameters saturation, readnoise, gain,lsigma, and usigma are also used. Saturation may be set to the saturation limit of the CCDminus the DC-o�set in ADUs, or it may be set to just above the largest real data value, allowingit to act as a threshold. If the readnoise and gain are not available, they may be calculated withthe �ndgain task (in the NPROTO package) which uses pairs of raw biases and
ats. The sigmaparameters set the high and low rejection levels for deviant pixel values.cl> apall spec0020 reference=spec0013 interactive- trace- recenter+ nresize+ weights=variance clean+ readnoise=5. gain=1.8This example non-interactively extracts a program object using a well de�ned star as the tracereference. The center of the object pro�le is automatically found and resized assuming itsposition on the slit was close to that of the reference star. The output spectrum will be calledspec0020.0001 for onedspec format or spec0020.ms for multispec format. At each line or columnperpendicular to the dispersion, the pro�le will be compared to an averaged pro�le and deviantpixels will be replaced by the �t. One must be careful to avoid rejecting good data, which canhappen if the noise and rejection parameters are not properly set. One may rerun the task withclean=no and compare the output to make sure only bad data is being a�ected. Alternately,the task may be run with the extras parameter set to yes, which tells the task to also extractthe raw spectrum (what would be output if simple pro�le summation was used with no cleaningor weighting), the subtracted sky spectrum, and the variance spectrum. These are extracted tothe third dimension of the output image, and can be inspected with splot (will prompt for theband number). Help on the cleaning algorithms may be found in the help pages for this task,apsum, appro�les, and apvariance. Detailed instructions for extraction using this technique17

are given in the manual \A User's Guide to Reducing Slit Spectra with IRAF", by Phil Massey,Frank Valdes, and Jeannette Barnes (see Appendix F).4.2 scombineThe task scombine is found in NOAO.ONEDSPEC and many of the spectral packages inIMRED such as KPNOSLIT, SPECRED, ECHELLE, and others. Combining spectra is doneusing pixels at common dispersion coordinates rather than physical or logical pixel coordinates.For spectra with di�erent wavelength coverage and/or wavelength dispersions, interpolation isused to set the wavelength sampling. The �rst spectrum in an input list of spectra is usedto de�ne the dispersion sampling for the output spectrum if the �rst parameter is set to yes.The starting and ending wavelength, dispersion, and number of pixels (w1, w2, dw, and nwrespectively) may be speci�ed explicitly as well, in which case �rst should be set to no. Theresulting image inherits the header parameters from the �rst input image.Speci�c apertures may be speci�ed for multispec format spectra. All the apertures arecombined by setting this parameter to a blank value. The group parameter de�nes the type ofoperation to be performed.� all - Combines all the input spectra into one output spectrum.� images - Combines multispec format echelle spectra into one 1D output spectrum perinput echelle spectrum.� apertures - Combines the same aperture from all the input multispec format images intoone output multispec format spectrum.The spectra are combined using average,median, or sum, speci�ed by the combine parameter.The rejection options and their governing parameters are the same as those for the combineand imcombine tasks, see Section 3.2.3 and Appendix A for more information about theseoptions.Onedspec format spectra may be combined using the following:cl> imheader obj*.imhobj0050.0001.imh[2001][real]: m31 1obj0051.0001.imh[2001][real]: m31 2obj0052.0001.imh[2001][real]: m31 3cl> scombine obj005*.0001.imh comb group=all combine=average nreject=minmaxThe 3 spectra are averaged throwing away high and low pixel values determined by the nlow,nhigh, and nkeep parameters, and the output is written to the image comb. In this example,nlow and nhigh are at their default values of 1, so that the operation is the same as a median(since there are only three input images). This is sometimes desired, but it does throw awaygood pixels as well as bad ones, and an avsigclip algorithm might alternately be used to rejectbad pixels while keeping as many good ones as possible. Echelle spectra in multispec formatmay be combined into one long spectrum using the following:cl> imheader @inlistobj0001.ec.imh[256,9][real]: m31 118

obj0002.ec.imh[256,9][real]: m31 2cl> type @outlistobj001.1d.imhobj002.1d.imhcl> scombine @inlist @outlist apertures=\" group=imagesIn this case, inlist is a list of the two images used in the example. The outlist contains the samenumber of entries but using di�erent names to be used for the output spectrum. Any regionswithout overlapping pixel values will be set to the value speci�ed by the blank parameter. Formultispec format spectra where the aperture in one image corresponds to the same aperture inseveral others, use the apertures option for group:cl> imheader @inlistobj0100.ms.imh[2001,93][real]: m31 1obj0101.ms.imh[2001,93][real]: m31 2obj0102.ms.imh[2001,93][real]: m31 3cl> scombine @inlist comb.ms apertures=1-5,13,18,38,45,52 group=aperturesHere only apertures 1 through 5, 13, 18, 38, 45, and 52 are being combined from each inputimage. The output image comb.ms.imh is written in multispec format containing only thoseapertures which have been combined. The input here is in the form of a list, but the output isonly one image.When wishing to combine several apertures of one multispec format image into one spectrum,use the following:cl> scombine obj0100.ms comb.ms apertures=1-5,13,18,38,45,52 group=allCheck the help page for this task for more information and examples.4.3 splotThe task splot can be found in all the spectral packages in NOAO.IMRED, including ONED-SPEC, KPNOSLIT, SPECRED, and ECHELLE as well as others. Removing bad sky linesubtractions or cosmic rays not detected by the cleaning extraction may be done using interac-tive mode with the j or x command. Several spectra of the same star may be graphed in orderto �nd those bad sky lines or cosmic rays.The input images may be done individually or an input list may be speci�ed. Successiveimages are plotted following each q cursor command. Two dimensional images request the lineor band to be graphed.cl> splot obj0006.0001A spectrum may be overdrawn by another spectrum by typing an o followed by a g or a #.Type in the name of the next spectrum to be graphed for the �rst option or the number of theorder in the multispec format image. The last image plotted is the active one, so the last oneoverplotted should be the one with the bad pixels to be �xed. These are found by comparingthe spectra plotted in this fashion. Regions may be enlarged using the Z command. The Pcommand may be used to pan out from the zoomed region. Typing 0 will undo any zooms orpans, and r will redraw the last spectrum called via the g or # command. A 2D spectrum inechelle or multispec format may be input as follows:19

cl> splot obj0006.ms options=\auto,xydraw"Image line/aperture to plot (0:) (1): 5This will bring up the 5th order in an extracted 2D echelle spectrum, or the 5th object in a2D multispec format spectrum. The options speci�ed set the task to replot the graph aftercertain changes are made (auto|this default option does not force a replot when editing, butfor several other options such as smoothing with a boxcar �t), and set the mode of use for thex interactive command (xydraw). The xydraw option sets the x command such that a straightline is drawn between the two positions marked with the cursor position, using both x and ycoordinates. Without this set, the x command interpolates between the current pixel y valuesof the two marked positions. Any of the following commands may be used in interactive mode:� g - Plot another spectrum.� i - Write current spectrum as new image.� j - Set the value of the current pixel to the y cursor position.� o - Overplot next requested line/band (#) or spectrum (g).� q - Quits interactive mode and saves the modi�ed image.� x - Interpolates or draws straight lines between positions marked.� ? - The help page is shown for the interactive commands, use a q to get back to interactivemode.� Z - Zoom in on a region.� 0 - Pan back from a zoom, preserving overplots.� # - Plots a di�erent line in multi-aperture spectra or 2D images.� :xydraw [yes/no] - De�nes the mode of use for the x command.There are many more options which may be used interactively however, here we have describedonly those which pertain to the operation required. These options are all explained in moredetail in the help page for this task.A Some Important ParametersA.1 Rejection Option Associated Parameters (combine, imcombine, & scom-bine)The rejection options are discussed in detail in Section 3.2.3. Each of the rejection algorithmsrequire that other parameters be de�ned. Table 1 lists the reject options with a complete list ofassociated task parameters. 20

Table 1Parameters Used by the Reject Optionssigclipminmax ccdclip crreject avsigclip pclipnlow mclip mclip mclip pclipnhigh nkeep nkeep nkeep nkeeprdnoise rdnoise lsigma lsigmagain gain hsigma hsigmasnoise snoise sigscalelsigma hsigmahsigma sigscalesigscaleThese parameters are common to all the following tasks: combine, imcombine, and scom-bine. A brief description of each follows:� nlow Number of low pixel values to reject.� nhigh Number of high pixel values to reject.� nkeep Minimum number of pixels to keep (positive) or the maximum number of pixels toreject (negative).� mclip Use the median value as the estimate of the true intensity when set to \yes" oth-erwise use the average.� lsigma The lower threshold for sigma rejection of pixel values.� hsigma The upper threshold for sigma rejection of pixel values.� rdnoise The value of the readout noise in electrons for the detector used.� gain The value of the gain in electrons per analog to digital unit (ADU) used for theobservations.� snoise The sensitivity noise expressed as a fraction.� sigscale Determines if Poisson corrections are necessary for unscaled images.� pclip Selects the percentile pixel or fraction of pixels to be used with lsigma and hsigmato determine the sigma clipping thresholds.B Technical Issues and ProblemsThere are many ways of manipulating images in IRAF and therefore problems may arise. Herewe try to highlight some things to keep in mind while editing images.� Pixel values in images should not be set to a value of \INDEF". IRAF does not work wellwith unde�ned pixel values. 21

� Fixing pixels in the background around regions where photometry is to be performed isnot a good idea. Since the photometry routines have rejection options, it is best not to �xthese unless statistical tests are also performed.� Images should be registered before being masked. The interpolation routines will softenthe edges of regions which have been set to very high or very low values with a mask.� Images which have stars with small PSFs should not be corrected using the task cosmi-crays. The stars will be confused with cosmic rays and be deleted from the image. Thetask crrej found in the STSDAS add-on package should be used instead.� The lineclean task should be used with caution when �tting 2D images. A good �t toone line may result in the deletion of good data points in another line.� One should never assume that IRAF will automatically know the di�erence between goodand bad data. The rejection algorithms will simply apply whatever statistical model youask; it is the user's responsibility to determine the parameters appropriate for their data.C Getting Bad Pixel and Cosmic Ray PositionsThere are several ways of obtaining coordinate positions of bad pixel regions in an image. If thecoordinates of the display window are trustworthy, then simply displaying an image and movingthe cursor to the lower left and upper right corners of the bad regions will give the coordinates.Coordinates from the imtool device in SunView are brought up in the lower right corner bypressing the F6 key within the window. The coordinate box is activated in the ximtool windowby releasing on Coords box in the options menu or choosing the Coords Box in the controlpanel options in the lower right side of the panel. SAOimage displays the coordinates at theupper right. The coordinates may not always be exact but the edge of a bad region may bedetermined to within a pixel.Using the display device, the task rimcursor could also be to determine image coordinates.Unlike the sophisticated centering algorithms used by other tasks, rimcursor simply reads theposition of the image cursor, without calculating the center. The position is good to only .5pixels in x and y. This is a good method for getting quick positions. The positions are output tothe terminal but they can also be redirected to a �le. An output �le will look like the following:cl> type rimcoord379.5 66.5 101 n040347.5 188.5 101 n040224.5 130.5 101 n040385.5 254.5 101 n040405. 273.75 101 n040217.75 439. 101 n040This �le may have to be edited for use as input to other tasks. The output formats for thecoordinates may also be changed by setting wxformat and wyformat. See the help page for thistask for more information about these parameters. To run rimcursor the image must �rst bedisplayed in the display window: 22

cl> display obj0003 1cl> rimcursor obj0003orcl> rimcursor obj0003 > coords1The cursor will move to the display window ready for interactive commands when rimcursoris executed. Move the cursor to the position of an object and hit any key. To exit this taskonce coordinates have been obtained for all the regions, type ^ d or ^ z where the ^ characterstands for the \control" key|press both at the same time. The default coordinate systemis logical or pixel units, however this may be changed to obtain coordinates in another WCS(world coordinate system) by setting the parameter called wcs to some other coordinate systemvalue. Note that there is currently a bug in IRAF's cursor readout that can cause the valuesto sometimes be o� by one pixel. This only happens in image dimensions which are of anodd number of pixels, so this problem can be avoided by displaying image sections with evennumbers of pixels in each dimension. Alternately, one may use coordinates determined fromgraphics plots, which are una�ected by this problem.Another very useful task for �nding coordinates is imexamine, found in the IMAGES.TVpackage. It can be used in interactive mode with the image display and graphics options. Theoperation of �nding the object centers is governed by two parameter sets for this task, the imex-amine parameters themselves and the rimexam pset2 parameters. The standard imexamineparameters set up the environment for executing the task, while the rimexam parameters spec-ify the options for the use of the r and a commands used to measure centers. Line plots l andcolumn plots c, with speci�cations set by the limexam and cimexam psets, may also be usedto �nd and identify the edges of bad regions. Output by default goes to the terminal screen sothe keeplog parameter in imexamine should be set to yes and the log�le name speci�ed if youwant to save the output in a �le. This logging facility can be turned on and o� interactively.Subsequent executions of this task will reopen the log�le and append to the named �le.The centering parameter is found in the rimexam pset and must be set to yes. The cursorposition is used as the initial point for computing the center moments of the marginal distri-butions in x and y. The marginal distributions are obtained from a square aperture with edgedimensions of twice the aperture radius parameter. Only pixel values above the mean are usedin the computation and another iteration is done if the central moments are in a di�erent pixelthan that used for extracting the marginal distributions. This may be used for cosmic rays butmay not work well on bad pixel regions.The cursor commands which are most important are:� a - centers and performs circular aperture photometry for a star.� c - plot the column under the cursor.� g - move to the graphics cursor from the image display.� i - move to the image cursor from the graphics window.� l - plot the line under the cursor.� m - pixel statistics in cursor region.2Psets are parameter sets within parameter sets. Psets provide a way to group a long list of parameters intosmaller, more manageable parameter lists that can then be shared by several tasks in a package.23

� r - the a key plus plotting the radial pro�le of the star.� s - show a surface plot of region centered on the cursor.� w - toggle writing to the output �le.� x - print coordinates� z - print a table of pixel values for region near cursor.� C - position of the cursor in the graphics window.� Z - zoom in the graphics window.� 0 - unzoom in the graphics window.� ? - print help menu.� q - quit the task.In interactive mode, any of these commands may be used. Running the task causes a circularcursor to appear in the display window. Use of the c command will plot the column at theposition of the cursor. Typing g will move the interactive cursor to the graphics window. Nowusing the C command will give the position of the cursor in the graphics window. Interactivemode is exited using q.In some instances, the user may need to �nd pixel coordinates without the use of an imagedisplay device. This can be done using implot, though �nding bad regions may be di�cult ifyou don't already have some idea of where to look. This task will allow the inspection of lineand column plots similar to those obtainable with imexamine. The most useful options are:� c - plot the column corresponding to the cursor position.� e - expand plot by marking corners of viewport.� j - move down in image (step number of lines of columns).� k - move up in image (step number of lines of columns).� l - plot the line corresponding to the cursor position.� C - show coordinates of cursor.� space bar - show coordinates of cursor, plus graph value at cursor x.� ? - print help menu for task.� :c # - plot column number #.� :l # - plot line number #.� :x x1 x2 - change range of x-axis in current plot.� :x - restore displaying of full x-axis range.� :step # - reset step parameter to new #.24

� q - quit the task.Running cosmicrays and specifying a badpix �le will create a list of the cosmic-ray positionsin the image being �xed. This output list may then be used with badpiximage to create a badpixel mask. It would not be good at �nding cosmic rays which produce streaks and it would notidentify bad pixel regions, however.D Useful Tasks for Making MasksThe following tasks may be used to create mask �les to be used with imarith or imcombine.Values for the mask may be set to 0.0 and 1.0 or to very large positive or negative values to setbad regions to highly deviant values. The task mkpattern may be used to create a mask orcreate an image to be edited further. The task imreplace is described in Section 3.3.1, however,it is also useful in creating masks. Badpiximage works with the table formatted for use withthe �xpix task. Files of a special type called \pixel list �les" may be created using a simpleimcopy of an image and specifying an output image name with a \.pl" extension.D.1 mkpatternThe mkpattern task is found in the NOAO.ARTDATA package. This task creates an imageof a size determined from the input dimensions speci�ed by ndims, ncols and nrows. Higherdimension images may also be created. If the input image already exists, the requested patternmay be substituted for, added to, or multiplied by a given image section. The various patternoptions are:� constant - Set the image values to a constant value speci�ed by v1.� grid - A grid starting with the �rst pixel and going in steps of the pattern size with valuev2. A minimum grid size of 2 is enforced.� checker - A checkerboard with squares of the pattern size alternating between values v1and v2 starting with v1.� coordinates - Each pixel is numbered sequentially starting with 1 with the column di-mension varying fastest.� slope - A sloped plane starting with value v1 for the �rst pixel and value v2 for the lastpixel in one or two dimensions.� square - A checkerboard pattern in which the size of the squares begins with the patternsize and grow as the square of the coordinate.The pattern size is speci�ed by the parameter size. The values for the pattern are alsospeci�ed in v1 and v2. Sections of an image may also be edited by specifying a region to beedited. Certain header parameters may be set also such as title and pixtype.cl> mkpattern blank ncols=800 nlines=800This example creates a blank image of the given size. This image could then be edited withepix, imreplace, imedit, or mkpattern itself to create a bad pixel mask image.25

cl> mkpattern check pattern=checker option=add v1=0 v2=1.0 size=70This example adds a checkerboard pattern, with 70 pixel wide squares with 0.0 and 1.0 being thealternating values, to an existing image, or creates a 512x512 checkerboard image if the inputimage does not already exist. Mkpattern may also be used to modify a pattern in a section ofan existing image:cl> mkpattern obj0005[245:360,300:400] pattern=constant option=replacePixels in the region speci�ed will be replaced by the constant value in the v1 parameter. Checkthe help page for this task for more information.D.2 imreplaceThe imreplace task is found in the PROTO package. This simply replaces the pixel values of agiven region, speci�ed by an image section, and/or a range in current values. The replacementvalue must be speci�ed and an imaginary part for a complex number may be incorporated. Allvalues between the values speci�ed in lower and upper will be replaced if the whole image isde�ned. If for example an image has peak counts in the objects at 10000 ADU, but cosmic rayswhich peak at 24000 ADU, a replacement of cosmic rays can be done using:cl> imreplace obj0005 1.0 lower=11000.0 upper=30000This will set all pixels in the image with current values between 11000 and 30000 to a value of1.0. However, this wouldn't handle any weaker cosmic ray features.To create a pixel list �le mask, one may begin with a blank �le, all of whose pixels are 0.0,and edit bad pixel regions explicitly:cl> mkpattern mask.pl ncols=800 nlines=800cl> imreplace mask.pl[356:450,689:693] 1.0 lower=INDEF upper=INDEFNotice that the tasks can create and edit pixel list �les as well as images. Of course, if we haddesired an image we would have left o� the explicit \.pl" extensions. Making a detailed badpixel mask will take time to create, but once it is ready it may be applied to all the imagestaken with that CCD, since bad regions do not usually jump around. Creating a mask usingthe badpix �le format used by the task �xpix is described in the next section.D.3 badpiximageThe task badpiximage is found in the IMRED.CCDRED package. The bad pixel list used forthe task �xpix may be input to create a mask image to be applied to the program images. Theformat for this table is the �rst and last columns of the bad region followed by the �rst andlast lines of the bad region, i.e., \xbegin xend ybegin yend" separated by spaces not commas.There are several formats for the output mask. A standard IRAF image may be created for usewith the various image arithmetic tasks. A mask image in a pixel list format �le having a \.pl"extension is another option. If the image parameter is a name with the \.pl" extension, thenthe output is a pixel list, and an IRAF image is created if the \.pl" extension is not speci�ed.cl> badpiximage badpix obj0003 obj3mask.pl goodvalue=0 badvalue=1cl> hedit obj0003 BPM \obj3mask.pl" add+ verify+26

A pixel list format �le is created setting the good values in the image mask to 0 and the badregions speci�ed in the badpix �le to 1. The pixel mask image name is added to the header ofthe corresponding image to be applied when using tasks such as combine and imcombine (seeSection 3.2.3).cl> badpiximage badpix obj0003 obj3mask goodvalue=0.0 badvalue=30000An image is created with good pixel values set to 0 and bad pixel values set to 30000. Thisimage may then be added to an image to set the bad regions to very large numbers using theimarith task (see Section 3.1.3).D.4 imcopyThe imcopy task is found in the IMAGES package. It can be used to copy a section of oneimage into another image:cl> imcopy obj0005[194:207,452:489] obj0006[194:207,452:489]Imcopy may also be used for converting bad pixel images into pixel list �les:cl> imcopy obj3mask obj3mask.plcl> hedit obj0003 BPM \obj3mask.pl" add+ verify+The name of the pixel list �le is added to the header using the hedit task. The bad pixel list isused when running tasks such as combine and imcombine (see Section 3.2.3).D.5 imexprThe task imexpr is found in the IMAGES package available only in the 2.10.3 or later releasesof IRAF. This task allows for more complex image arithmetic calculations than those possiblewith imarith. Masks may be created with this task and applied to the images. The manyarguments of the operation are speci�ed in the operands a thru z. The expression is declaredin terms of these operands. The operands may take three forms, an image name, an imageheader, and numeric constants. These are used in the expression along with any of the possibleoperators and functions.The functions are too numerous to list here, however descriptions are found in the help pagefor this task. It is possible to replicate sections of an image, swap the right and left sides ofan image, add several images and/or a constant, create new images, and make pixel list masks.The two parameters intype and outtype control the datatype for the input and output images.If the expression is to be evaluated in
oating point precision, then the intype should be set toreal.For bad regions in an image below the values 200 adu and cosmic rays above the value of20000 adu, a mask image is created using the following:cl> imexpr \a > 200 && a < 20000" mask a=obj0005The bad regions will be set to 0 while the good regions are set to 1 in the output image. Themask may instead be created as a pixel list �le by adding the \.pl" extension.27

E Adding Noise to an Image: mknoiseThe mknoise task is found in the NOAO.ARTDATA package. It will make or add noise andcosmic rays to a 1 or 2D image. The gain and readnoise may be speci�ed for computing Poissonnoise. The noise is added on top of the background de�ned. Positions of cosmic rays may bespeci�ed in a �le or a number (ncosrays) are scattered randomly throughout the image. The listmust include the positions and intensities of the cosmic rays to be produced.cl> type crlist20.5 40.6 1000103.8 179.4 3000230.0 15.8 300647.2 480.2 400690.4 275.9 1000cl> mknoise obj0004 out=obj4cr cos=crlistThis example adds the cosmic rays listed in the �le to the image and creates a new image.cl> mknoise obj0006 back=350 rdnoise=8.5 gain=3.4 poisson+ ncos=30This example adds Poisson noise to the speci�ed background level and 30 cosmic rays to theimage and then overwrites the image. Tasks such as cosmicrays may be used on the outputimage to test the limits of the search algorithms.F Other Useful DocumentationHelp pages are available for all the tasks mentioned in this document. More information on topicscovered in this manual may be found in the following documentation, accessed by anonymousftp to iraf.noao.edu, or 140.252.1.1:� Cleaning Images of Bad Pixels and Cosmic Rays Using IRAF, by Lisa Wells andDavid Bell, September 1994 (this manual). (iraf/docs/clean.ps.Z)� A Beginner's Guide to Using IRAF, by Jeannette Barnes, August 1993.(pub/beguide.ps.Z)� A User's Guide to CCD Reductions with IRAF, by Philip Massey, June 1992.(iraf/docs/ccduser2.ps.Z)� Rectifying and Registering Images Using IRAF, by Lisa Wells, January 1994.(iraf/docs/reg.ps.Z)� Mosaicing Images Using IRAF, (in progress).(iraf/docs/mosaic.ps.Z)� A User's Guide to Reducing Slit Spectra with IRAF, by Phil Massey, Frank Valdes,and Jeannette Barnes, April 1992. (iraf/docs/spect.ps.Z)28

