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CHAPTER 7 

FORCE ON A CURRENT IN A MAGNETIC FIELD 

 

 

7.1 Introduction 

 

In Chapter 6 we showed that when an electric current is situated in an external magnetic 

field it experiences a force at right angles to both the current and the field.  Indeed we 

used this to define both the magnitude and direction of the magnetic field.  The magnetic 

field is defined in magnitude and direction such that the force per unit length F' on the 

current is given by  

 

     .BIF' ××××=          1.7.1 

 

 

7.2  Force Between Two Current-carrying Wires 

 

 

 

 

 

 

 

 

 

In figure VII.1, we have two parallel currents, I1 and I2, each directed away from you (i.e. 

into the plane of the paper) and a distance r apart.  The current I1 produces a magnetic 

field at I2, directed downward as shown, and of magnitude ),2/(1 rIB πµ= where µ is the 

permeability of the medium in which the two wires are immersed.  Therefore, following 

equation 7.1.1, I2 experiences a force per unit length towards the left ).2/(' 21 rIIF πµ=   

You must also go through the same argument to show that the force per unit length on I1 

from the magnetic field produced by I2 is of the same magnitude but directed towards the 

right, thus satisfying Newton’s third law of motion. 

 

Thus the force of attraction per unit length between two parallel currents a distance r 

apart is 
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FIGURE VII.1 
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7.3   The Permeability of Free Space 

 

If each of the currents in the arrangement of Section 7.2 is one amp, and if the distance r 

between to two wires is one metre, and if the experiment is performed in a vacuum, so 

that µ  =  µ0, then the force per unit length between the two wires is µ0/(2π) newtons per 

metre.  But we have already (in Chapter 6) defined the amp in such a manner that this 

force is 2 × 10
−7

 N m
−1

.  Therefore it follows from our definition of the amp that the 

permeability of free space, by definition, has a value of exactly 

 

    ,AmT104 17

0

−−×π=µ         7.3.1 

 

or, as we shall learn to express it in a later chapter, 7104 −×π henrys per metre, H m
−1

. 

 
[It was mentioned briefly in Chapters 1 and 6 that there is a proposal , likely to become official in 2018, to 

re-define the coulomb (and hence the amp) in such a manner that the magnitude of the charge on a single 

electron is exactly 1.60217 % 10
−19 C.  If this proposal is passed (as is likely), µ0 will no longer have a 

defined value, but will have a measured value of approximately 12.5664 % 10
−7

 T m A
−1

.] 

 

 

7.4   Magnetic Moment 

 

If a compass needle, or indeed any bar magnet, is placed in an external magnetic field, it 

experiences a torque – the one exception being if the needle is placed exactly along the 

direction of the field.  The torque is greatest when the needle is oriented at right angles to 

the field. 

 

Definition.  The magnetic moment of a magnet is equal to the maximum torque it 

experiences when in unit magnetic field. 

 

As already noted this maximum torque is experienced when the magnet is at right angles 

to the magnetic field.   In SI units, "unit magnetic field" means, of course, one tesla, and 

the SI units of magnetic moment are N m T
−1

, or newton metres per tesla.  The reader 

should look up (or deduce) the dimension of magnetic field (teslas) and then show that 

the dimensions of magnetic moment are L
2
 T

−1
Q. 

 
It is noted here that many different definitions of and units for magnetic moment are to be found in the 

literature, not all of which are correct or even have the correct dimensions.  This will be discussed in a later 

chapter.  In the meantime the definition we have given above is standard in the Système International. 

 

 

7.5 Magnetic moment of a Plane, Current-carrying Coil 

 

A plane, current carrying coil also experiences a torque in an external magnetic field, and 

its behaviour in a magnetic field is quite similar to that of a bar magnet or a compass 

needle.  The torque is maximum when the normal to the coil is perpendicular to the 



 3 

magnetic field, and the magnetic moment is defined in exactly the same way, namely the 

maximum torque experienced in unit magnetic field. 

 

Let us examine the behaviour of a rectangular coil of sides a and b, which is free to rotate 

about the dashed line shown in figure VII.2. 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

In figure VII.3 I am looking down the axis represented by the dashed line in figure VII.2, 

and we see the coil sideways on.   A current I  is flowing around the coil in the directions 

indicated by the symbols ? and 1.  The normal to the coil makes an angle θ with respect 

to an external field B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the Biot-Savart law there is a force F on each of the b-length arms of 

magnitude bIB, or, if there are N turns in the coil, F = NbIB.  These two forces are 

opposite in direction and constitute a couple.  The perpendicular distance between the 

two forces is a sin θ, so the torque τ on the coil is NabIB sin θ, or τ = NAIB sin θ, where 

A is the area of the coil. This has its greatest value when  θ = 90
o
, and so the magnetic 
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moment of the coil is NIA.  This shows that, in SI units, magnetic moment can equally 

well be expressed in units of A m
2
, or ampere metre squared, which is dimensionally 

entirely equivalent to N m T
−1

.  Thus we have 

 

    τ θ= p Bm sin ,         7.5.1 

 

where, for a plane current-carrying coil, the magnetic moment is 

 

    p NIAm = .          7.5.2 

 

This can conveniently be written in vector form: 

 

    ττττ = ×p Bm ,           7.5.3 

 

where, for a plane current-carrying coil, 

 

    p Am = NI .          7.5.4 

 

Here A is a vector normal to the plane of the coil, with the current flowing clockwise 

around it.  The vector ττττ is directed into the plane of the paper in figure VII.3 

 

The formula NIA for the magnetic moment of a plane current-carrying coil is not 

restricted to rectangular coils, but holds equally for plane coils of any shape; for (see 

figure VII.4) any curve can be described in terms of an infinite number of infinitesimally 

small vertical and horizontal segments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   We understand that a magnet, or anything that has a magnetic moment, experiences no 

net force in a uniform magnetic field, although it does experience a torque.  Furthermore, 

FIGURE VII.4 
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as in the case of an electric dipole in an electric field, a magnetic dipole situated in an 

inhomogeneous magnetic field does experience a net force.  If the magnetic moment and 

the gradient of the magnetic field are in the same direction, the net force on the dipole is  

 

dx

dB
pm . 

 

[ N m T
−1

 times  T m
−1

  equals N.] 

See Section 3.5 for further details relating to a dipole in an inhomogeneous field. 

 

   An important historical experiment that readers may come across, using the force on a 

magnetic dipole in an inhomogeneous magnetic field, is the 1922 experiment of Stern and 

Gerlach, demonstrating the spatial quantization of the magnetic moment associated with 

electron spin. 

 

7.6 Period of Oscillation of a Magnet or a Coil in an External Magnetic Field 

 

 

P
I

p B
= 2π

m

.         7.6.1 

 

For a derivation of this, see the derivation in  Section 3.3 for the period of oscillation of an 

electric dipole in an electric field.   Also, verify that the dimensions of the right hand side 

of equation 7.6.1 are T.  In this equation, what does the symbol I stand for? 

 

 

7.7 Potential Energy of a Magnet or a Coil in a Magnetic Field 

 

E = − •constant p Bm .        7.7.1 

 

For a derivation of this, see the derivation in Section 3.4 for the potential energy of an 

electric dipole in an electric field.   Also, verify that the dimensions of the right hand side 

of equation 7.7.1 are ML
2
T

−2
  (energy). 

 

 

7.8 Moving-coil Ammeter 
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The current is led into the coil of N turns through a spiral spring of torsion constant c.  

The coil is between two poles of a specially-shaped magnet, and there is an iron cylinder 

inside the coil.  This ensures that the magnetic field is everywhere parallel to the plane of 

the coil; that is, at right angles to its magnetic moment vector.  This ensures that the 

deflection of the coil increases linearly with current, for there is no sin θ factor.  When a 

current flows through the coil, the torque on it is NABI, and this in counteracted by the 

torque cθ of the holding springs.  Thus the current and deflection are related by 

 

     NABI c= θ .     7.8.1 

 

7.9 Magnetogyric Ratio 

 

The magnetic moment and the angular momentum are both important properties of 

subatomic particles.  Each of them, however, depends on the angular speed of rotation of 

the particle.  The ratio of magnetic moment to angular momentum, on the other hand, is 

independent of the speed of rotation, and tells us something about how the mass and 

charge are distributed within the particle. Also, it can be measured with higher precision 

than either the magnetic moment or the angular momentum separately.  This ratio is 

called the magnetogyric ratio (or, perversely and illogically, by some, the "gyromagnetic 

ratio").  You should be able to show that the dimensions of the magnetogyric ratio are 

QM
−1

, and therefore the SI unit is C kg
−1

.  I doubt, however, if many particle physicists 

use such simple units.  They probably express magnetic moment in Bohr magnetons or 

nuclear magnetons and angular momentum in units of Planck's constant divided by 2π − 

but that is not our problem. 

 

Let us calculate the magnetogyric ratio of a point charge and point mass moving in a 

circular orbit – rather like the electron moving around the proton in the simplest model of 

a hydrogen atom.  We'll suppose that the angular speed in the orbit is ω and the radius of 

the orbit is a.  The angular momentum is easy – it is just ma
2
ω.  The frequency with 

which the particle (whose charge is Q) passes a given point in its orbit is ω/(2π), so the 

current is Qω/(2π).  The area of the orbit is πa
2
 and so the magnetic moment of the 

orbiting particle is 1
2

2Q aω .  The magnetogyric ratio is therefore Q/(2m). 

 

The magnetogyric ratio will be the same as this in any spinning body in which the 

distributions of mass density and charge density inside the body are the same.  Consider, 

however, the magnetogyric ratio of a charged, spinning metal sphere.  The mass is 

distributed uniformly throughout the sphere, but the charge all resides on the surface.  We 

may then expect the magnetogyric ratio to be rather larger than Q/(2m). 

 

The angular momentum is easy.  It is just 2
5

2ma ω.  Now for the magnetic moment.  Refer 

to figure VII.6. 
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The area of the elemental zone shown is 2πa
2
 sin θ dθ.    The area of the entire sphere is 

4 2
πa ,  so the charge on the elemental zone is 1

2
Q dsin .θ θ   The zone is spinning, as is the 

entire sphere, at an angular speed ω, so the current is 

 

   1
2

2
4

Q d
Q d

sin /( )
sin .θ θ ω π

ω θ θ

π
× =        7.9.1 

 

 The area enclosed by the elemental zone is π θa2 2sin .  The magnetic moment dpm of the 

zone is the current times the area enclosed, which is  

     

    dp Q a dm = 1
4

2 3ω θ θsin .       7.9.2 

 

The magnetic moment of the entire sphere is found by integrating this from  θ = 0 to π, 

whence 

    p Q am = 1
3

2ω .        7.9.3 

 

The ratio of the magnetic moment to the angular momentum is therefore 5Q/(6m). 

 

Those who are familiar with gyroscopic motion will know that if a spinning body of 

angular momentum L is subject to a torque ττττ, the angular momentum vector will not be 

constant in direction and indeed the rate of change of angular momentum will be equal to 

τ.  τ.  τ.  τ.  Figure VII.7 is a reminder of the motion of a top in regular precession (that is, with no 

nutation).  
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A study of Chapter 4 Section 4.10 of Classical Mechanics will be needed for a more 

detailed understanding of the motion of a top.  The top is subject to a torque of magnitude 

mgl sinθ .  The torque can be represented by a vector ττττ directed into the plane of the 

paper.  As drawn, the angular momentum vector L makes an angle θ with the 

gravitational field g, and it precesses about the vertical with an angular velocity ΩΩΩΩ, the 

three vectors ττττ, L  and ΩΩΩΩ being related by ττττ = L %%%% ΩΩΩΩ.  The magnitude of the angular 

momentum vector is therefore τ/(L sin θ).  But τ = mgl sin θ, so that the precessional 

frequency is mgl/L, independent of θ.   Likewise a charged spinning body with a 

magnetic moment of pm is a magnetic field B experiences a torque ττττ = pm %%%% B, which is 

of magnitude pmB sin θ, and consequently its angular momentum vector precesses around 

B at an angular speed  
p

L
Bm , independent of θ. (Verify that this has dimensions T

−1
.) The 

coefficient of B here is the magnetogyric ratio.  The precessional speed can be measured 

very precisely, and hence the magnetogyric ratio can be measured correspondingly 

precisely.  This phenomenon of "Larmor precession" is the basis of many interesting 

instruments and disciplines, such as the proton precession magnetometer, nuclear 

magnetic resonance spectroscopy and nuclear magnetic resonance imaging used in 

medicine.  Because anything including the word "nuclear" is a politically incorrect 

phrase, the word "nuclear” is usually dropped, and nuclear magnetic resonance imaging 
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is usually called just "magnetic resonance imaging", or MRI, which doesn't quite make 

sense, but at least is politically correct. 

    
  

 

 


