Optical and Infrared Detectors

Tim Hardy

Outline

- Introduction
- History
- Charge Coupled Devices (CCDs)
 Break
- CMOS imagers
- Hybrid CMOS imagers
- Other

Introduction

- Who am I?
- Why are detectors important?
- What is a detector?
- What information can we get?
- What causes imprecision?

History

History

con try treto it no which zine *+ marto * la prosi appe Tura . an.

History

Daguerreotype of the Moon taken by John William Draper in 1845. **Source:** New York University Archives

Electronic detectors

• PMT (photoelectric effect)

Hamamatsu R6350 to R6358 series data sheet

Electronic detectors

Vidicon tube (Zucchino and Lowrance 1971)

Electronic detectors

Silicon photodiode vidicon target (McCord & Westphal, 1972)

CCDs

Willard Boyle and George Smith at Bell Labs

Boyle & Smith, IEEE Spectrum, 1971

Boyle & Smith, IEEE Spectrum, 1971

CCD sensitivity

Ian S. McLean, Electronic Imaging in Astronomy

CCD operation

- Charge detection
- Charge collection
- Charge transfer
- Charge measurement
- Signal processing

Backside illumination

Burke et al, Lincoln Laboratory Journal, 2007

Charge collection

Blooming

Downing, 2009

Downing, 2009

Fringing

b)

a)

70um Bulk

c)

Downing, 2009

Cosmic rays

20 minute dark exposure with Hamamatsu fully-depleted CCD

Radiation damaged CCD showing CTE problems

Charge measurement

Burke et al, Lincoln Laboratory Journal, 2007

 $V_{out} = A(q/C_s)$ A = gain of transistor q = charge C_s = capacitance of sense node

Electron-multiplying (EMCCD)

Large mosaics

HyperSuprimeCam 116 CCDs 60cm focal plane

LSST 201 CCDs 64cm focal plane 3.2 GPixels

Large format CCDs

Semiconductor Technology Associates 10kx10k pixels 125mm wafer

Orthogonal transfer CCD

Burke et al, Lincoln Laboratory Journal, 2007

CMOS imagers

Anatomy of the Active Pixel Sensor Photodiode

Inter-Pixel Capacitance (IPC)

Finger et al. 2005

Correlated double sampling

signal = S_2 - $S_1 = (T_{int} - t_s) \cdot F$ F = flux (e/s) $T_{int} = \text{total integration time}$ $t_s = \text{sample time}$ $t_s = \frac{pixels}{outputs \times pixel rate}$

noise =
$$\sqrt{2\sigma^2}$$

 σ = read noise (e)

Fowler sampling

signal = $S_2 - S_1 = (T_{int} - nt_s) \cdot F$ F = flux (e/s) n = number of samples (4)

Up-The-Ramp sampling

signal = FF = flux (e/s)

noise =
$$\sqrt{\frac{12N}{N^2 - 1}} \cdot \frac{\sigma^2}{T_{int}^2}$$

 σ = read noise (e)
N = number of samples (13)

Cosmic rays/saturation

Hybrid CMOS

ReadOut Integrated Circuit (ROIC) Multiplexer (mux)

Dark Current

Electrons per pixel per sec

18 micron square pixel

Sub-pixel scale defects

SAPHIRA IR APD

