
7 Tidal heating

Note: Previous “Maths Notes” have highlighted maths skills of use in the course and assignments.
This particular section will not form part of any assessment as the required maths goes beyond
the level expected in the course. However, it is still presented as it is of value in appreciating the
mathematical background behind the concept of tidal heating.

The tidal force refers to the difference in gravitational force experienced by the near and far sides
of a satellite orbiting a parent body. We will consider the changing tidal force experienced by Io as
it orbits Jupiter to estimate the amount of tidal energy available to heat Io’s interior.

The gravitational force between two massive bodies (MJ and MIo) separated by a distance r is

F = −GMJMIo

r2

where G is the gravitational constant.

Let’s say that Io has a radius RIo. One method of computing the tidal force is just to compute the
difference between the near and far side gravitational force, e.g. Ftidal = F (r − RIo) − F (r + RIo).
Instead we will start with the formal definition of tidal force as the gradient of the gravitational
force, e.g.

Ftidal =
dF

dr
=

2GMJMIo

r3
.

The total force experienced across Io is equal to the tidal force (force per unit distance) multiplied
by the diameter of Io (distance), i.e. Ftotal = Ftidal × 2RIo.

In the case of Io, it is the change in the tidal force experienced as Io proceeds about its slightly
eccentric orbit that results in the stretching and contraction of its interior. We can compute this
force by calculating the difference in the tidal force experienced at perijove (closest to Jupiter) and
apojove (furthest from Jupiter), i.e.

∆F = [Ftidal(rperi) − Ftidal(rapo)] × 2 RIo = 9 × 1020N

This difference in force results in the movement (stretching and contraction) of Io’s interior structure.
The work done (energy expended) by this movement of rock layers is W = F × d, where d is the
distance by which the rock layer moves. Measurements of the surface distortion of Io via satellite
radar altimeter mapping indicate that the surface rises and falls by up to 100m during one-half
orbit. Only the surface layers will move by this amount. Interior layers within Io will move by a
smaller amount and we assume that, on average, the enrire mass of Io is moved through 50m. The
average power (rate of energy expended) is equal to the work done on the rock during one-half orbit
divided by half of the orbital period (tIo), i.e.

P̄ =
∆F × d

0.5 × tIo

=
9 × 1020N × 50m

0.5 × 146880s
= 6 × 1017W.



We can compare this value to the total power radiated by Io. Io radiates as a blackbody, i.e.
the total power output depends upon the surface temperature and the surface area, and infrared
observations of Io determine the surface temperature. Io’s total heat output is approximately
1×1014W. Therefore, under 1% of the tidal energy is converted to heat in Io’s interior – most of the
energy is spent moving the rock. A more detailed calculation (mainly a more detailed treatment of
Io’s interior) would certainly refine this answer. However, the above analysis is useful to obtain an
order of magnitude understanding of the tidal heating of Io.


