
CHAPTER 9 

OSCILLATOR STRENGTHS AND RELATED TOPICS 

 

 

9.1 Introduction.  Radiance and Equivalent Width. 

 

  If we look at a hot, glowing gas, we can imagine that we could measure its radiance in 
W m-2 sr-1.  If we disperse the light with a spectrograph, we may see that it is made up of 
numerous discrete emission lines.  These lines are not infinitesimally narrow, but have a 
finite width and a measurable profile.  At any particular wavelength within the 
wavelength interval covered by the line, let us suppose that the radiance per unit 
wavelength interval is Iλ  W m-2 sr-1 m-1.  Here, we are using the symbol I for radiance, 
which is customary in astronomy, rather than the symbol L, which we used in chapter 1.  
We insist, however, on the correct use of the word "radiance", rather than the often too-
loosely used "intensity".  We might imagine that we could measure Iλ by comparing the 
radiance per unit wavelength interval in the spectrum of the gas with the radiance per unit 
wavelength interval of a black body at a known temperature (or of any other body whose 
emissivity is known), observed under the same conditions with the same spectrograph. 
 
   The radiance I of the whole line is given by .λ= ∫ λdII     In principle, the integration 

limits are 0 and ∞, although in practice for most lines the integration need be performed 
only within a few tenths of a nanometre from the line centre. 
 
   The radiance of an emission line depends, among other things, upon the number of 
atoms per unit    area in the line of sight (the "column density") in the initial (i.e. upper) 
level of the line. 
 
   You will have noticed that I wrote "depends upon", rather than "is proportional to".  We 
may imagine that the number of atoms per unit area in the line of sight could be doubled 
either by doubling the density (number of atoms per unit volume), or by doubling the 
depth of the layer of gas.  If doubling the column density results in a doubling of the 
radiance of the line, or, expressed otherwise, if the radiance of a line is linearly 
proportional to the column density, the line is said to be optically thin.  Very often a line 
is not optically thin, and the radiance is not proportional to the number of atoms per unit 
area in the upper level.  We shall return to this topic in the chapter on the curve of 
growth.    In the meantime, in this chapter, unless stated otherwise, we shall be concerned 
entirely with optically thin sources, in which case ,2N∝I  where N  is the column 
density and the subscript denotes the upper level.   We shall also suppose that the gas is 
homogenous and of a single, uniform temperature and pressure throughout. 
 
   In the matter of notation, I am using: 
 
       n = number of atoms per unit volume 
 
      N  = column density 



 
       N = number of atoms 
 
Thus in a volume V,  N = nV, and in a layer of thickness t,  N  =  nt. 
 
   Most lines in stellar spectra are absorption lines seen against a brighter continuum.  In 
an analogous laboratory situation, we may imagine a uniform layer of gas seen against a 
continuum.  We'll suppose that the radiance per unit wavelength interval of the 
background continuum source is Iλ(c).  We shall establish further notation by referring to 
figure IX.1, which represents an absorption line against a continuum.   The radiance per 
unit wavelength interval is plotted against wavelength horizontally. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Iλ(λ) is the radiance per unit wavelength interval at some wavelength within the line 
profile, and Iλ(λ0) is the radiance per unit wavelength interval at the line centre. 
 
 
   The equivalent width W (die Äquivalentbreite) of an absorption line is the width of the 
adjacent continuum that has the same area as is taken up by the absorption line.  
Expressed as a defining equation, this means:        

 

                                                [ ] .)()c()c( λλ−∫= λλλ dIIWI    9.1.1 
 
Again in principle the integration limits are 0 to ∞, although in practice a few tenths of a 
nanometre will suffice.  Equivalent width is expressed in nm (or in Å).  It must be 
stressed that equivalent width is a measure of the strength of an absorption line, and is in 

Iλ λ( )  

Iλ(c) 

Iλ λ( )0  

W 



no way related to the actual width (or full width at half minimum) of the line.   In figure 
IX.1, the width W of the continuum has the same area as the absorption line. 
 
   In principle, the equivalent width could also be expressed in frequency units (Hz), via a 
defining equation: 
 
    [ ] .)()c()c()( νν−∫= ννν

ν
dIIIW    9.1.2 

 
This is sometimes seen in theoretical discussions, but in practice equivalent width is 
usually expressed in wavelength units.  The two are related by 
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Unless otherwise specified, I shall omit the superscript (λ), and W  will normally mean 
equivalent width expressed in wavelength units, as in equation 9.1.1. 
 
                                                         --------------------------------- 
 
Problem.  A layer of cool gas lies above an extended source of continuous radiation, and 
an absorption line formed in the gas layer has an equivalent width W.  If the temperature 
of the extended continuous source is now increased so that its spectral radiance at the 
wavelength of the line is doubled, what will now be the equivalent width of the line? 
 
                                                         --------------------------------- 
 
 The equivalent width of an absorption line depends, among other things, upon the 
number of atoms per unit area in the line of sight (the "column density") in the initial (i.e. 
lower) level of the line.   If the gas is optically thin, W ∝   N1,  where the subscript 
indicates the lower level of the line.   
 
If the absorption coefficient at wavelength λ is α(λ) and has the same value throughout 
the gas, and it the thickness of the gas layer is t,  Iλ(λ) and Iλ(c) are related by 
 
    I I tλ λλ α λ( ) ( ) exp ( ) .= −c     9.1.4 
 
Thus equation 9.1.1 can be written 
 
    ( )[ ] ,)(exp1 λλα−−∫= dtW     9.1.5 
 
and this equation is sometimes cited as the definition of the equivalent width.  The 
definition, however, is equation 9.1.1.   Equation 9.1.4 can be used to calculate it, but 
only if α(λ) is uniform throughout the gas.  In the optically thin limit, the first term in the 
Maclaurin expansion of ( )t)(exp1 λα−−  is α(λ)t, so that, for an optically thin 
homogeneous gas, 



 
    .)( λλα∫= dtW      9.1.6 
 
The reader should verify, as ever, the dimensional correctness of all of the foregoing 
equations. 
 
    
   We have seen that the radiance of an emission line or the equivalent width of an 
absorption line depends, among other things, on the column density of atoms in the initial 
state.  In fact, in a homogeneous optically thin gas, the radiance or equivalent width is 
linearly proportional to the product of two things.  One is the column density of atoms in 
the initial state.  The other is an intrinsic property of the atom, or rather of the two atomic 
levels involved in the formation of the line, which determines how much energy a single 

atom emits or absorbs.  There are three quantities commonly used to describe this 
property,  namely oscillator strength, Einstein coefficient and line strength. 

 

   All three of these quantities are related by simple equations, but oscillator strength is 
particularly appropriate when discussing absorption lines, Einstein coefficient is 
particularly appropriate when discussing emission lines, while line strength is a quantum 
mechanical quantity particularly useful in theoretical work.  Because of this very 
technical usage of the term line strength, the term should not be used merely to describe 
how "intense" a particular line appears to be. 
    
 
9.2 Oscillator Strength. (die Oszillatorenstärke) 
 

   The concept of oscillator strength arises from a classical electromagnetic model of the 
absorption of radiation by an atom.  While a detailed understanding of each step in the 
derivation requires an understanding and recall of some results from classical mechanics 
and electromagnetic theory, it is not at all difficult to understand qualitatively the 
meaning of oscillator strength and at least the general gist of the argument that follows.   
 
   An atom consists of a nucleus surrounded by electrons - but not all of the electrons are 
equally strongly bound.  We are going to think of an atom as having, for the purposes of 
this model, just two parts of interest, namely an outer loosely bound electron, and the rest 
of the atom.  If this system is set into vibration, we'll suppose that it has a natural 
frequency ω0, but that the oscillations are damped.  An oscillating dipole does, of course, 
radiate electromagnetic waves.  That is to say, it loses energy.  That is to say, the 
oscillations are damped.  If the atom is placed in an oscillating electric field (i.e. if you 
shine a light on the atom) given by ,cosˆ tE ω  the electron will experience a force per unit 

mass .cos
ˆ

t
m

Ee
ω   The equation of motion is 
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This is the differential equation that describes forced, damped oscillations.   The solutions 
to this equation are well known, but I shall defer detailed consideration of it until the 
chapter on line profiles.  Suffice it to say, for our present purposes, that it is possible to 
determine, from analysis of this equation, how much energy is absorbed.  
 
  If a periodic force is applied to a mass attached to a fixed point by a spring, and the 
motion is damped, either by viscous forces (for example, if the mass were immersed in a 
fluid) or by internal stresses in the spring, not all of the work done by the periodic force 
goes into setting the mass in motion;  some of it is dissipated as heat.  In a way, we are 
imagining the atom to consist of an electron attached by some sort of force to the rest of 
the atom;  not all of the work done by the forcing electromagnetic wave goes into setting 
the electron in motion.   Some of the work is absorbed or degraded into a non-mechanical 
form.  Perhaps the energy is lost because the accelerating electron radiates away energy 
into space.  Or perhaps, if you believe in discrete energy levels, the atom is raised to a 
higher energy level.  It does not matter a great deal what you believe happens to the 
energy that is "lost" or "absorbed";  the essential point for the present is that equation 
9.2.1 allows us to calculate (and I do promise to do this in the chapter on line profiles) 
just how much energy is lost or absorbed, and hence, if the atom is irradiated by a 
continuum of    wavelengths, it enables us to calculate the equivalent width of the 
resulting spectrum line.   The result obtained is 
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W =  equivalent width in wavelength units. 
N   =   column density (number per unit area in the line of sight) of absorbing atoms. 
  
λ    =   wavelength of the line. 
ε0   =   permittivity of free space. 
e, m  =   charge and mass of the electron. 
c    =   speed of light. 
 
  The reader should, as ever, check that the above expression has the dimensions of 
length.  If every quantity on the right hand side is expressed in SI units, the calculated 
equivalent width will be in metres.  
 
  The reader may well object that s/he is not at all satisfied with the above argument.  An 
atom is not at all like that, it will be said.  Besides, equation 9.2.2 says that the equivalent 
width depends only on the wavelength, and that all lines of the same wavelength have the 
same equivalent width.  This is clearly nonsense.  Let us deal with these two objections in 
turn. 
 
    First:  Atoms are not at all like that.  For a start, an atom is an entity that can exist only 
in certain discrete energy levels, and the only atoms that will absorb radiation of a given 
frequency are those that are in the lower level of the two levels that are involved in a line.  
Thus N in equation 9.2.2 must be replaced by N1, the column density (number per unit 



area in the line of sight) of just those atoms that are in the lower level of the line involved.   
Thus equation 9.2.2 should be replaced by 
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   Second:  The equivalent width of a line obviously does not depend only on its 
wavelength.  Many lines of very nearly the same wavelength can have almost any 
equivalent width, and the equivalent width can vary greatly from line to line.  We 
therefore now come to the definition of oscillator strength: 
 
   The absorption oscillator strength f12 of a line is the ratio of its observed equivalent 

width to the equivalent width (wrongly) predicted on the basis of the classical oscillator 

model and given by equation 9.2.3. 

 

   Thus the expression for the equivalent width becomes 
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The oscillator strength for a given line must be determined either experimentally or 
theoretically before the column density of a particular atom in, for example, a stellar 
spectrum can be determined from the observed equivalent width of a line.  In principle, 
the oscillator strength of a line could be measured in the laboratory if one were able, for 
example, to measure the equivalent width of a line produced in an absorbing gas in front 
of a continuum source, and if one were able independently to determine N1.   Other 
experimental methods can be devised (see section 9.3 on Einstein coefficients), and 
theoretical methods are also available (see section 9.5 on line strengths). 
 
   It should be emphasized that equation 9.2.4 applies only to an optically thin layer of 
gas.  As far as I can see, there is no reason why equation 9.2.4 is restricted either to a 
homogeneous layer of gas of uniform temperature and pressure, or to a gas in 
thermodynamic equilibrium - but it does require the layer to be optically thin. 
 
 
     
     We shall now restrict ourselves to an optically thin layer that is in thermodynamic 

equilibrium and of uniform temperature throughout.  In that case, N1 is given by 
Boltzmann's equation (see equation 8.4.18):  
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Here N is the total number of atoms per unit area in all levels, ϖ1 is the statistical weight 
2J + 1 of the lower level, and u is the partition function.  Thus equations 9.2.4 and 9.2.5 
combined become 
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In the above equations I have used slightly different fonts for e, the electronic charge, and 
e, the base of natural logarithms. 
 
The quantity f12 is called the absorption oscillator strength.  An emission oscillator 

strength f21 can be defined by 
 
     ϖ ϖ1 12 2 21f f= ,    9.2.7 
 
and either side of this equation is usually given the symbol ϖf.   Indeed, it is more usual 
to tabulate the quantity ϖf  than f12   or  f21  alone.  I should also point out that the notation 
seen in the literature is very often gf rather than ϖf.  However, in chapter 7 I went to 
considerable trouble to distinguish between statistical weight, degeneracy and 
multiplicity, and I do not wish to change the notation here.  In any case, the value of ϖ (a 
form of the Greek letter pi) for an atomic energy level is 2J+1.  (We pointed out in 
chapter 7 why it is not usually necessary to include the further factor 2I + 1 for an atom 
with nonzero nuclear spin.)  Equation 9.2.6 is usually written  
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If we take the common logarithm of equation 9.2.8, we obtain 
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If everything is in SI units, this is 
 

  .loglog053.14log 12
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I'd be happy for the reader to check my arithmetic here, and let me know 
(jtatum@uvic.ca) if it's not right.  Here W and λ are to be expressed in metres and N in 
atoms per square metre.  V1 is the excitation potential of the lower level of the line in 
volts, and θ is 5039.7/T, where T is the excitation temperature in kelvin.   Thus, if we 

measure the equivalent widths of several lines from an optically thin gas, and plot 







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



λϖ 2
log

f

W
 versus the excitation potential of the lower level of each line, we should get a 

straight line whose slope will give us the excitation temperature, and, provided that we 

know the partition function, the intercept will give us the column density of the neutral 

atoms (in all levels) or of a particular ionization state. 

 
Often it will happen that some points on the graph fall nowhere near the regression line. 
This could be because of a wildly-erroneous oscillator strength, or because of a line 
misidentification.  Sometimes, especially for the resonance lines (the strongest lines 
arising from the lowest level or term) a line lies well below the regression line;  this may 
be because these lines are not optically thin.  Indeed, equation 9.2.10 applies only for 
optically thin lines. 
 
Equation 9.2.10 shows how we can make use of Boltzmann’s equation and plot a 
straight-line graph whose slope and intercept will give us the excitation temperature and 
the column density of the atoms.  We can go further and make use of Saha’s equation.  If 

we plot  
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 versus the lower excitation potential for atomic lines and do the 

same thing separately for ionic lines, we should obtain two straight lines of the same 
slope (provided that the gas is in thermodynamic equilibrium so that the excitation 
temperatures of atom and ion are the same).   From the difference between the intercepts 
of the two lines we can get the electron density.   Here’s how it works.   
 
If we set up equation 9.2.9 or equation 9.2.10 for the atomic lines and for the ionic lines, 

we see that the difference between the intercepts will be equal to 
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ion, N is column density and n is particles per unit volume.  Then from equation 8.6.7 
we see that 
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Here θ is 5039.7/T, where T is the ionization temperature and, in assuming that this is the 
same as the excitation temperatures obtained from the slopes of the lines, we are 
assuming thermodynamic equilibrium.  V is the ionization potential of the atom.  Thus we 
can obtain the electron density ne – except for one small detail.  ∆V is the lowering of the 
excitation potential, which itself depends on ne.  We can first assume it is zero and hence 
get a first approximation for ne; then iterate to get a better  V in the same manner that we 
did in solving Problem 4 of section 8.6. 



 
 
 So far we have discussed the equivalent width of a line.  A line, however, is the sum of 
several Zeeman components, with (in the absence of an external magnetic field) identical 
wavelengths.  It is possible to define an oscillator strength of a Zeeman component.  Is 
the oscillator strength of a line equal to the sum of the oscillator strengths of its 
components?  The answer is no.  Provided the line and all of its components are optically 
thin, the equivalent width of a line is equal to the sum of the equivalent widths of its 
components.  Thus equation 9.2.8 shows that the ϖf  value of a line is equal to the sum of 
the ϖf values of its components.  A further point to make is that, for a component, the 
statistical weight of each state of the component is unity.  (A review from chapter 7 of the 
meanings of line, level, component, state, etc., might be in order here.)  Thus, for a 
component there is no distinction between absorption and emission oscillator strength, 
and one can use the isolated symbol f with no subscripts, and the unqualified phrase 
"oscillator strength" (without a "absorption" or "emission" prefix) when discussing a 
component.  One can accurately say that the ϖf value of a line is equal to the sum of the f 
values of its components.   In other words, ϖf(line)  = Σf(components), so that one could 
say that the oscillator strength of a line is the average of the oscillator strength of its 
components.  Of course, this doesn't tell you, given the ϖf value of a line, what the f-
values of the individual components are.  We defer discussion of that to a later section of 
this chapter.   
 
   The phrase "f-value" is often used instead of "oscillator strength".  I was rather forced 
into that in the previous paragraph, when I needed to talk about ϖf values versus f-values.  
However, in general, I would discourage the use of the phrase "f-value" and would 
encourage instead the phrase "oscillator strength".  After all, we never talk about the "e-
value" of the electron or the "M-value" of the Sun.  I suppose "weighted oscillator 
strength" could be used for ϖf.   
   
 
 
9.3 Einstein A Coefficient 

 

  Although either oscillator strength or Einstein  A coefficient could be used to describe 
either an emission line or an absorption line, oscillator strength is more appropriate when 
talking about absorption lines, and Einstein A coefficient is more appropriate when 
talking about emission lines.   
 
  We think of an atom as an entity that can exist in any of a number of discrete energy 
levels.  Only the lowest of these is stable; the higher levels are unstable with lifetimes of 
the order of nanoseconds.  When an atom falls from an excited level to a lower level, it 
emits a quantum of electromagnetic radiation of frequency ν given by  
 
                                                  h Eν = ∆ ,      9.3.1 
 



where ∆E E E= −2 1,  E2 and E1 respectively being the energies of the upper (initial ) and 
lower (final) levels.  The number of downward transitions per unit time is supposed to be 
merely proportional to the number of atoms, N2, at a given time in the upper level.  The 
number of downward transitions per unit time is 22 since, NN &&−  in calculus means the 
rate at which N2 is increasing.   Thus 
 
    .2212 NAN =− &      9.3.2 
 
The proportionality constant A21 is the Einstein coefficient for spontaneous emission for 
the transition from E2 to E1.  It is equivalent to what, in the study of radioactivity, would 
be called the decay constant, usually given the symbol λ.  It has dimensions T-1 and SI 
units s-1.  Typically for electric dipole transitions, it is of order 108 s-1.   As in 
radioactivity, integration of the above equation shows that if, at time zero, the number of 
atoms in the upper level is N2(0), the number remaining after time t will be 
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Likewise, as will be familiar from the study of radioactivity (or of first-order chemical 
reactions, if you are a chemist), the mean lifetime in the upper level is 1/A21 and the half-
life in the upper level is (ln 2)/A21.  This does presume, however, that there is only one 
lower level below E2.  We return to this point in a moment, when we consider the 
situation when there is a choice of more than one lower level to which to decay from E2. 
 
Since there are A21N2 downward transitions per units time from E2 to E1, and each 
transition is followed by emission of an energy quantum hν, the rate of emission of 
energy from these N2 atoms, i.e. the radiant power or radiant flux (see chapter 1) is 
 
    Φ = N A hv2 21   watts.    9.3.4 
   
(For absolute clarity, we could append the subscript 21 to the frequency ν in order to 
make clear that the frequency is the frequency appropriate to the transition between the 
two energy levels; but a surfeit of subscripts might be too distracting to the point of 
actually making it less clear.)   Provided the radiation is emitted isotropically, the 
intensity is 
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The emission coefficient  (intensity per unit volume) is 
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If we are looking at a layer, or slice, or slab, of gas, the radiance is 
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Here, I have been obliged to use I and L correctly for intensity and radiance, rather than 
follow the unorthodox astronomical custom of using I for radiance and calling it 
"intensity".  I hope that, by giving the SI units, I have made it clear, though the reader 
may want to refer again to the definitions of the various quantities described in chapter 1.  
I am using the symbols described in section 9.1 of the present chapter for N, n and N.  I 
should also point out that equations 9.3.4-7 require the gas to be optically thin. 
 

Equation 9.3.2 and 3 assume that the atom, starting from level 2, can decay to only one 
lower level.  This may sometimes be the case, or, even if it is not, transitions to one 
particular lower level are far more likely than decay to any or all of the others.  But in 
general, there will be a choice (with different branching ratios) of several lower levels.  
The correct form for the decay constant under those circumstances is λ = ∑A21 ,  the sum 
to be taken over all the levels below E2 to which the atom can decay, and the mean 
lifetime in level 2 is 1 21/ .A∑   Nowadays it is possible to excite a particular energy level 
selectively and follow electronically on a nanosecond timescale the rate at which the light 
intensity falls off with time.   This tells us the lifetime (and hence the sum of the relevant 
Einstein coefficients) in a given level, with great precision without having to measure 
absolute intensities or the number of emitting atoms.  This is a great advantage, because 
the measurement of absolute intensities and determination of the number of emitting 
atoms are both matters of great experimental difficulty, and are among the greatest 
sources of error in laboratory determinations of oscillator strengths.  The method does not 
by itself, however, give the Einstein coefficients of individual lines, but only the sum of 
the Einstein coefficients of several possible downward transitions.    Measurements of (or 
theoretical calculations of) relative oscillator strengths or branching ratios (which do not 
require absolute intensity measurements or determinations of the number of emitting or 
absorbing atoms), combined with lifetime measurements, however, can result in 
relatively reliable absolute oscillator strengths or Einstein coefficients.   
 
We shall deal in section 9.4 with the relation between oscillator strength and Einstein 
coefficient. 
 
If the optically thin layer of gas described by equation 9.3.7 is in thermodynamic 
equilibrium, then N2 is given by Boltzmann's equation, so that equation 9.3.7 becomes 
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The common logarithm of this is 
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If everything is in SI units, this becomes 
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Thus a graph of  
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  versus the upper excitation potential V2 will yield (for 

optically thin lines) the temperature and the column density of atoms from the slope and 
intercept.  I leave it to the reader to work out the procedure for determining the electron 
density in a manner similar to how we did this for absorption lines in developing equation 
9.2.11. 
 
 
The radiance of a line is, of course, the sum of the radiances of its Zeeman components, 
and, since the radiance is proportional to ϖ2A21, one can say, following a similar 
argument to that given in the penultimate paragraph of section 9.2, that the Einstein 
coefficient of a line is equal to the average of the Einstein coefficients of its components. 
 
At this stage, you may be asking yourself if there is a relation between oscillator strength 
and Einstein coefficient.  There is indeed, but I crave your patience a little longer, and I 
promise to address this in section 9.4. 
 
 
 
   “Transition Probability”  (die Übergangswahrscheinlichkeit.)   The expression “transition 
probability” is often used for the Einstein A coefficient, and it is even sometimes defined 
as “the probability per second that an atom will make a spontaneous downward transition 
from level 2 to level 1”.  Both are clearly wrong. 
 
  In probability theory (especially in the theory of Markov chains) one sometimes has to 
consider a system that can exist in any of several states (as indeed an atom can) and the 
system, starting from one state, can make a transition to any of a number of other possible 
states.  The probability of making a particular transition is called, not unnaturally, the 
transition probability.  The transition probability so defined is a dimensionless number in 
the range zero to one inclusive.  The sum of the transition probabilities to all possible 
final states is, of course unity.  “Branching ratio” is another term often used to describe 
this concept, although perhaps “branching fraction” might be better.  In any case, the 
reader must be aware that in many papers on spectroscopy, the phrase “transition 
probability” is used when what is intended is the Einstein A coefficient.   
 
The reader will have no difficulty in showing (from equation 9.3.3) that the probability 
that an atom, initially in level 2, will make a spontaneous downward transition to level 1 
in time t, is tA

e 211 − , and that the probability that it will have made this transition in a 



second is .1 21A
e

−−   With A21 being typically of order 108 s-1, this probability is, 
unsurprisingly, rather close to one! 
 
  
9.4 Einstein B Coefficient 

 

   In section 9.2 on oscillator strengths, we first defined what we meant by absorption 
oscillator strength f12.   We then showed that the equivalent width of a line is proportional 
to ϖ1f12.  We followed this by defining an emission oscillator strength f21 by the equation 
ϖ2f21 =  ϖ1f12.  Thereafter we defined a weighted oscillator strength ϖf to be used more or 
less as a single symbol equal to either ϖ2f21 or ϖ1f12.   Can we do a similar sort of thing 
with Einstein coefficient?  That is, we have defined A21, the Einstein coefficient for 
spontaneous emission (i.e. downward transition) without any difficulty, and we have 
shown that the intensity or radiance of an emission line is proportional to ϖ2A21.   Can we 
somehow define an Einstein absorption coefficient A12?  But this would hardly make any 
sense, because atoms do not make spontaneous upward transitions!  An upward transition 
requires either absorption of a photon or collision with another atom. 
 
For absorption lines (upwards transitions) we can define an Einstein B coefficient such 
that the rate of  upward transitions from level 1 to level 2  is proportional to the product 
of two things, namely the number of atoms N1 currently in the initial (lower) level and the 
amount of radiation that is available to excite these upward transitions.  The 
proportionality constant is the Einstein coefficient for the transition, B12.  There is a real 
difficulty in that by “amount of radiation” different authors mean different things.  It 
could mean, for example, any of the four things: 
 
 uλ   the energy density per unit wavelength interval at the wavelength of the line, 
expressed in J m-3 m-1; 
 uν  the energy density per unit frequency interval at the frequency of the line, 
expressed in J m-3 Hz-1; 
 
 Lλ  radiance (unorthodoxly called “specific intensity” or even merely “intensity” 
and given the symbol I by many astronomers) per unit wavelength interval at the 
wavelength of the line, expressed in W m-2 sr-1 m-1; 
 
 Lν radiance per unit frequency interval at the frequency of the line, expressed in 
W m-2 sr-1 Hz-1. 
 
Thus there are at least four possible definitions of the Einstein B coefficient and it is 
rarely clear which definition is intended by a given author.  It is essential in all one’s 
writings to make this clear and always, in numerical work, to state the units.  If we use 
the symbols dcba BBBB 12121212 ,,,  for these four possible definitions of the Einstein B 
coefficient, the SI units and dimensions for each are  
  
 aB12  :    s-1 (J m-3 m-1)-1           M−1 L2 T 



 
 bB12  : s-1 (J m-3 Hz-1)-1  M−1 L 
 

 
cB12  :     s-1(W m-2 sr-1 m-1)-1  M−1 L T2 

 

 
dB12  :     s-1(W m-2 sr-1 Hz-1)-1.  M−1 T 

 
You can, of course, find equivalent ways of expressing these units (for example, you 
could express bB12  in metres per kilogram if you thought that that was helpful!), but the 
ones given make crystal clear the meanings of the coefficients. 
 
The relations between them are (omitting the subscripts 12): 
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For the derivation of these, you will need to refer to equations 1.3.1,  1.15.3 and 1.17.12, 
 
From this point henceforth, unless stated otherwise, I shall use the first definition without 
a superscript, so that the Einstein coefficient, when written B12, will be understood to 
mean .12

aB  Thus the rate of radiation-induced upward transitions from level 1 to level 2 
will be taken to be B12 times N1 times uλ. 
 
  Induced downward transitions.   
 
  The Einstein B12 coefficient and the oscillator strength f12 (which are closely related to 
each other in a manner that will be shown later this section) are concerned with the forced 
upward transition of an atom from a level 1 to a higher level 2 by radiation of a 
wavelength that corresponds to the energy difference between the two levels.  The 



Einstein A21 coefficient is concerned with the spontaneous downward decay of an atom 
from a level 2 to a lower level 1. 
 
There is another process.  Light of the wavelength that corresponds to the energy 
difference between levels 2 and 1 may induce a downward transition from an atom, 
initially in level 2, to the lower level 1. When it does so, the light is not absorbed; rather, 
the atom emits another photon of that wavelength.  Of course the light that is irradiating 
the atoms induces upward transitions from level 1 to level 2, as well as inducing 
downward transitions from level 2 to level 1, and since, for any finite positive 
temperature, there are more atoms in level 1 than in level 2, there is a net absorption of 
light.  (The astute leader will note that there may be more atoms in level 2 than in level 1 
if it has a larger statistical weight, and that the previous statement should refer to states 
rather than levels.)   If, however, the atoms are not in thermodynamic equilibrium and 
there are more atoms in the higher levels than in the lower (the atom is “top heavy”, 
corresponding to a negative excitation temperature), there will be Light Amplification by 

Stimulated Emission of Radiation (LASER).  In this section, however, we shall assume a 
Boltzmann distribution of atoms among their energy levels and a finite positive excitation 
temperature.  The number of induced downward transitions per unit time from level 2 to 
level 1 is given by B21N2uλ.  Here B21 is the Einstein coefficient for induced downward 
transition. 
 
Let m denote a particular atomic level.  Let n denote any level lower than m and let  'n  
denote any level higher than m.  Let Nm be the number of atoms in level m at some time.  
The rate at which Nm decreases with time as a result of these processes is 
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This equation describes only the rate at which mN  is depleted by the three radiative 
processes.  It does not describe the rate of replenishment of level m by transitions from 
other levels, nor with its depletion or replenishment by collisional processes.  Equation 
9.4.5 when integrated results in 
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(Compare equation 9.3.3, which dealt with a two-level atom in the absence of stimulating 
radiation.) 
 
The reciprocal of Γm is the mean lifetime of the atom in level m. 
 



Consider now just two levels – a level 2 and a level below it, 1.  The rate of spontaneous 
and induced downward transitions from m to n is equal to the rate of forced upward 
transitions from n to m: 
 
   λλ =+ uNBuNBNA 112221221 .     9.4.8 
 
I have omitted the subscripts 21 to λ, since there in only one wavelength involved, 
namely the wavelength corresponding to the energy difference between the levels 2 and1. 
Let us assume that the gas and the radiation field are in thermodynamic equilibrium.  In 
that case the level populations are governed by Boltzmann’s equation (equation 8.4.19), 
so that equation 9.4.8 becomes 
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where I have made use of ./12 λ=− hcEE       9.4.11 
 
Now, still assuming that the gas and photons are in thermodynamic equilibrium, the 
radiation distribution is governed by Planck’s equation (equations 2.6.4, 2.6.5, 2.6.9; see 
also equation 2.4.1): 
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On comparing equations 9.4.10 and 9.4.12, we obtain 
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A reminder here may be appropriate that the B here is Ba

 as defined near the beginning of 
this section.  Also, in principle there would be no objection to defining an Bϖ  such that 

212121 BBB ϖ=ϖ=ϖ , just as was done for oscillator strength, although I have never seen 
this done. 
 
  Einstein B12 coefficient and Equivalent width. 
 



  Imagine a continuous radiant source of radiance per unit wavelength interval Lλ, and in 
front of it an optically thin layer of gas containing N1 atoms per unit area in the line of 
sight in level 1.  The number of upward transitions per unit area per unit time to level 2 is 

12112 λLB
c
N , and each of these absorbs an amount hc/λ12 of energy.  The rate of absorption 

of energy per unit area per unit solid angle is therefore .
4
1

12
112 12 λπ

λ

hc
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c ×× N  This, 

by definition of equivalent width (in wavelength units), is equal to 
12λWL . 

 

Therefore   .
4 121

1212

112 a
c

B
hhcB

W N
N

λπλ
==     9.4.14  

 
 
If we compare this with equation 9.2.4 we obtain the following relation between aB12  and 
f12: 
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It also follows from equations 9.4.13 and 9.4.15 that 
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I shall summarize the various relations between oscillator strength, Einstein coefficient 
and line strength in section 9.9. 
 
 
9.5   Line Strength 

 

The term line strength, although often loosely used to indicate how prominent or 
otherwise a spectrum line is, has acquired in theoretical spectroscopy a rather definite 
specialist meaning, which is discussed in this section. 
 
In discussing the intensities of emission lines, the Einstein A is an appropriate parameter 
to use, whereas in discussing the equivalent widths of absorption lines the appropriate 
parameter is oscillator strength f.  Either of these can be determined experimentally in the 
laboratory.   The Einstein coefficient and the oscillator strength are related (I summarize 
the relations in section 9.9) and either could in principle be used whether discussing an 
emission or an absorption line. 
 
In theoretical studies one generally uses yet another parameter, called the line strength. 

 



The theoretical calculation of line strengths is a specialized study requiring considerable 
experience in quantum mechanics, and is not treated in any detail here.  Instead I give just 
a short qualitative description, which I hope will be sufficient for the reader to understand 
the meaning of the term line strength without actually being able to calculate it.  Absolute 
line strengths can be calculated in terms of explicit algebraic formulas (albeit rather long 
ones) for hydrogen-like atoms.  For all others, approximate numerical methods are used, 
and it is often a matter of debate whether theoretically calculated line strengths are more 
or less preferable to experimentally determined oscillator strengths, Einstein coefficients 
or lifetimes.  As a general rule, the more complex the atom, unsurprisingly the more 
difficult (and less reliable?) are the theoretical calculations, whereas for light atoms 
theoretical line strengths may be preferable to experimental oscillator strengths. 
 
Energy levels of atoms are found from the eigenvalues of the time-independent wave 
equation. For the interaction of electromagnetic radiation with an atom, however, 
solutions of the time-dependent equation are required.  The effect of the electromagnetic 
radiation is to impose a time-dependent perturbation on the wavefunctions.  In the 
formation of permitted lines, the electromagnetic wave interacts with the electric dipole 

moment of the atom.  This is a vector quantity given by iie r∑ , where ri is the position 

vector of the ith electron in the atom. The expectation value of this quantity over the 
initial (i)and final (f) states of a transition is 
     
    τψψ∫ dif µµµµ* ,      9.5.1 

 
or, as it is usually written 
    
      nLSJMMJSLn µµµµ''''' .     9.5.2 

 
Here, for permitted lines, µµµµ is the electric dipole moment operator.  For forbidden lines it 
is replaced with either the magnetic dipole moment operator or the electric quadrupole 

moment operator, or, in principle, moments of even higher order.  In any case, the above 
quantity is called the transition moment.  In the case of electric dipole (permitted) lines, 
its SI unit is C m, although it is more commonly expressed in units of a0e (“atomic unit”) 
or, in older literature, cgs esu, or, in some chemical literature, debye. 
 
1 debye = 10-18 cgs esu  =   0.3935 atomic units  =  3.336 × 10-30 C m 
 
1 atomic unit = 8.478 ×10-30 C m. 
  
The square of the transition moment is called the line strength. Oscillator strengths and 
Einstein coefficients of Zeeman components (i.e. of transitions between states) are 
proportional to their line strengths, or to the squares of their transition moments.   The 
symbol generally used for line strength is S.  Line strengths are additive.  That is to say 
the strength of a line is equal to the sum of the strengths of its Zeeman components.  In 
this respect it differs from oscillator strength or Einstein coefficient, in which the 
oscillator strength or Einstein coefficient of a line is equal to the average oscillator 



strength of Einstein coefficient of its components.  Furthermore, line strength is 
symmetric with respect to emission and absorption, and there is no need for distinction 
between S12 and S21.   Intensities of emission lines are proportional to their line strengths 
S or to their weighted Einstein coefficients ϖ2A21.  Equivalent widths of absorption lines 
are proportional to their line strengths or to their weighted oscillator strengths ϖ1f12.  

  

I dwell no more on this subject in this section other than to state, without derivation, the 
relations between Einstein coefficient and line strength.  The formulas below, in which ε0 
and µ0 are the “rationalized” permittivity and permeability of free space, are valid for any 
coherent set of units; in particular they are suitable for SI units.  
 
 
For electric dipole radiation: 
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For electric quadrupole radiation: 
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For magnetic dipole radiation:   
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The subscripts E1, E2, M1 to the symbol S indicate whether the line strength is for 
electric dipole, electric quadrupole or magnetic dipole radiation.  Although I have not 
derived these equations, you should check to see that they are dimensionally correct.  The 
dimensional analysis will have to use the four dimensions of electromagnetic theory, and 
you must note that the SI units for line strength are C2 m2,  C2 m4 and A2 m4 for electric 
dipole, electric quadrupole and magnetic dipole radiation respectively.  Please let me 
know (jtatum@uvic.ca) if you find any discrepancies.  In equation 9.5.5, µ0 is the 
permeability of free space. 
 
  By making use of equation 9.4.16, we also find, for electric dipole radiation, that 
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9.6    LS-coupling 

 

The expression 9.5.2 gives the transition moment for a component, and its square is the 
strength of the component.  For the strength of a line, one merely adds the strengths of 
the components.  In general it is very hard to calculate the transition moment accurately 
in absolute units. 
 
In LS-coupling, the strength of a line can be written as the product of three factors: 
 
    S  =  S(M)S(L)σ2.     9.6.1 
 
Here σ2 is the strength of the transition array, and is given by 
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Here l is the larger of the two azimuthal quantum numbers involved in the transition.  Ri 

and Rf are the radial parts of the initial and final wavefunctions (each of which has 
dimension L-3/2).  The reader should verify that the expression 9.6.2 has dimensions of the 
square of electric dipole moment.   In general σ2 (which is the only dimensioned term on 
the right hand side of equation 9.6.1) is difficult to calculate, and it determines the 
absolute scale of the line strengths.  Unless the strength of the transition array can be 
determined (in C2 m2 or equivalently in atomic units of a0

2
e

2), absolute values of line 
strengths will remain unknown.  However, for LS-coupling, there exist explicit algebraic 
expressions for S(M), the relative strengths of the multiplets within the array, and for 
S(L), the relative strengths of the lines within a multiplet.  In this section I give the 
explicit formulas for the relative strengths of the lines within a multiplet. 
 
In LS-coupling there are two types of multiplet – those in which L changes by 1, and 
those in which L does not change.  I deal first with multiplets in which L changes by 1.  
In the following formulas, L is the larger of the two orbital angular momentum quantum 
numbers involved.   For multiplets connecting two LS-coupled terms, S is the same in 
each term.  The selection rule for J is ∆J  = 0, ±1.  The lines in which J changes in the 
same way as L  (i.e. if L increases by 1, J also increases by 1) are the strongest lines in the 
multiplet, and are called the main lines or the principal lines.  The lines in which J does 
not change are weaker (“satellite” lines), and the lines in which the change in J is in the 
opposite sense to the change in L are the weakest (“second satellites”).  Some of the 
following formulas include the factor (−1)2.  This is included so that the transition 
moment (the square root of the line strength) can be recovered if need be.   
 
                                             Multiplet  L to L − 1. 

 
Main lines, J to J − 1: 
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First satellites (weaker lines),  no change in J: 
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Second satellites (weakest lines),  J to J + 1:       
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Example:  The multiplet 3P  −  3D.  Here, we have S  =  1, and L = 2. 
 
There are six lines.  In what follows I list them, together with the J value to be substituted 
in the formulas, and the value of S(L). 
 
 3P0 − 3D1 Main          J =  1  S(L)  =   1/9         =   0.11111 
 
 3P1 − 3D2 Main         J =  2       S(L)  =   1/4         =   0.25000   
 

3P1 − 3D1 First satellite  J =  1  S(L)  =   1/12       =   0.08333 
 
 3P2 − 3D3 Main   J =  3  S(L)  =   7/15       =   0.46667 
 

3P2 − 3D2      First satellite  J =  2  S(L)  =   1/12       =   0.08333 
 

3P2 − 3D1 Second satellite J =  1   S(L)  =   1/180     =   0.00556 
 

 

The transitions and the positions and intensities of the lines are illustrated in figure IX.2.   
It was mentioned in Chapter 7 that one of the tests for LS-coupling was Hund’s interval 
rule, which governs the spacings of the levels within a term, and hence the wavelength 
spacings of the lines within a multiplet.  Another test is that the relative intensities of the 
lines within a multiplet follow the line strength formulas for LS-coupling.  The 
characteristic spacings and intensities form a “fingerprint” by which LS-coupling can be 
recognized.   It is seen in the present case (3P  −  3D) that there are three main lines, the 
strongest of which has two satellites, and the second strongest has one satellite.  
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The second type of multiplet is the symmetric multiplet, in which there is no change in L 

− for example,  3P − 3P.  The strongest lines (main lines) are those in which there is no 
change in J. 
 
The formulas for the relative line strengths within a symmetric multiplet are: 
 
Main lines, no change in J: 
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Satellite lines, J changes by  ±1; in the following formula, J is the larger of the two J-

values: 
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Example:   3D − 3D: 
 
 
 3D1 − 3D1     Main      J = 1   S(L)  =  0.150000 
  3D2 − 3D2      Main  J = 2    S(L)  =  0.231481 
 3D3 − 3D3

       Main  J = 3    S(L)  =  0.414815 
 
 3D2 − 3D3     Satellite              J = 3   S(L)  =  0.051852 
 3D1 − 3D2     Satellite              J = 2   S(L)  =  0.050000 
 

3D3 − 3D2     Satellite              J = 3   S(L)  =  0.051852 
 3D2 − 3D1       Satellite              J = 2    S(L)  =  0.050000  
    
        

I leave it to the reader to draw a figure analogous to figure IX.2 for a symmetric 
multiplet. Remember that the spacings of the levels within a term are given by equation 
7.17.1, and you can use different coupling coefficients for the two terms.  It should be 
easier for you to draw the levels and the transitions with pencil and ruler than for me to 
struggle to draw it with a computer. 
  
 



Tabulations of these formulae are available in several places.  Today, however, it is often 
quicker to calculate them with either a computer or hand calculator than to find one of the 
tabulations and   figure out how to read it.  (Interesting thought:  It is quicker to draw an 
energy level diagram with pencil and paper than with a computer, but it is quicker to 
calculate line strengths by computer than to look them up in tables.) 
 
The relative strengths of hyperfine components within a line can be calculated with the 
same formulae by substituting JIF for LSJ, since JI-coupling is usual. 
 
 
9.7 Atomic hydrogen 

 

  What is meant by the oscillator strength of Hα?  This question may well be asked, 
recalling that Hα technically is not a single line, but consists of three transition arrays, 
three multiplets, seven lines, and I don’t think we ever worked out quite how many 
Zeeman and hyperfine components. 
 
   The hydrogen atom is a two-body system, and for such a system the wavefunction and 
its eigenvalues (energy levels) can be worked out explicitly in algebraic terms.  The same 
is true of the transition moments and hence the strengths of each Zeeman and hyperfine 
component.  The strength of the entire “line” of Hα is then merely the sum of the 
strengths of all the Zeeman and hyperfine components of which it is composed.  Then the 
weighted oscillator strength of Hα is merely calculated from equation 9.5.6.   As for the 
question: What is ϖ? – the question need not arise, since all one is likely to need is the 
product ϖf.   However if this has been worked out by adding the strengths of all the 
Zeeman and hyperfine components, it would be 4n

2, which, for the lower level of Hα, is 
8. 
 
For the record, here are the weighted oscillator strengths, ϖf, for the first four “lines” of 
the Lyman and Balmer series for H. 
 
    Lyman  Balmer 
 
   α   0.555               3.139 

   β   0.105    0.588 

   γ   0.0387   0.220 

   δ   0.0186   0.103 

 
   
 
9.8 Zeeman components 

 

  In this section I give S(C), the relative strengths of Zeeman components within a line. 
 
  I consider first lines for which J changes by 1, and then lines for which J does not 
change.  



 
    Lines connecting J  to J − 1. 
 
Components connecting M  to M − 1: 
 
   ( )( )<> ++= MJMJ)C(S      9.8.1 
 
 
Components connecting M to M+1: 
 
   ( )( ).)C( >< −−= MJMJS      9.8.2 
 
 
Components in which M does not change: 
 
   ).)((4)C( MJMJ −+=S      9.8.3 
 
In these equations J is the larger of the two J-values involved in the line; >M and <M  
are, respectively, the larger and the smaller of the two M-values involved in the 
component.  Note that these formulas are not normalized to a sum of unity.  In order to do 
so, the strength of each component should be divided by the sum of the strengths of all 
the components – i.e. by the strength of the line. 
     
Example.  Consider the Zeeman pattern of figure VII.1.  The strength factors for each of 
the nine components, reading from left to right in the figure, will be found to be 
 

0   2   6        12   16   12         6   2   0 
 
Normalized to unity, these are 
 

0.0000   0.0357   0.1071           0.2143   0.2857    0.2143        0.1071   0.0357   0.0000 
 
As described in section 7.27 in connection with figure VII.1, the components within each 
group of three are unresolved, so the relative strengths of the three groups are  7
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Consider also the Zeeman pattern of figure VII.2.   The strength factors for each of the 
six components, reading from left to right in the figure, will be found to be 
 

2   6   8   8   6   2, 
 
or, normalized to unity, 
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Lines for which J does not change. 

 
Components for which M changes by ±1 
  
     ( )( ).)C( >< −+= MJMJS     9.8.4 
 
Components for which M does not change:  

  
    .4)C( 2M=S       9.8.5 
 
Example.  For a line J − J   =  2 − 2, the relative strengths of the components are 
   M′         M″     S(C) 
 
   -2 -2 16 
   -2 -1   4 
   -1 -2   4 
   -1 -1   4 
   -1   0   6 
     0 -1   6 
     0   0   0 
     0          1          6 
     1          0          6 
         1   1          4 
     1          2          4 
                2          1          4 
                                      2          2         16 
 
      
9.9 Summary of Relations Between f, A and S. 

 

In this section I use ϖf to mean either ϖ1f12 or ϖ2f21, since these are equal;  likewise I use 
ϖB to mean either ϖ1B12 or ϖ2B21.  The Einstein A coefficient is used exclusively in 
connection with emission spectroscopy.  The B coefficient is defined here in terms of 
radiation energy density per unit wavelength interval;  that is, it is the Ba of section 9.4.  
The relations between the possible definitions of B are given in equations 9.4.1-4. 
 
The following relations for electric dipole radiation may be useful.  In these, ε0 is the 
“rationalized” definition of free space permittivity, and the formulas are suitable for use 
with SI units. 
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For electric quadrupole radiation: 
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For magnetic dipole radiation: 
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in which µ0 is the free space permeability.        
 


