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CHAPTER 1
DEFINITIONS OF AND RELATIONSBETWEEN QUANTITIES
USED IN RADIATION THEORY

1.1 Introduction

An underganding of any discipline mugt incdude a familiaity with and underganding of the
words used within that discipline, and the theory of radiaion is no exception. The theory of
radiaion includes such words as radiant flux, intendty, irradiance, radiance, exitance, source
function and severd others, and it is necessary to understand the meanings of these quantities
and the reations between them.  The meanings of most of the more commonly encountered
quantities and the symbols recommended to represent them have been agreed upon and
dandardized by a number of bodies including the Internationd Union of Pure and Applied
Physcs, the Internatiord Commisson on Radiaion Units and Measurement, the American
llluminating Engineering Society, the Royd Society of London and the Internationa Standards
Organization. It is rather unfortunate that many astronomers gppear not to follow these
conventions, and frequent usages of words such as "flux" and "intengty”, and the symbols and
units used for them, are found in adronomica literature that differ subgantialy from usage thet
is standard in most other disciplines within the physica sciences.

In this chapter | use the standard terms, but | point out when necessary where astronomica usage
sometimes differs.  In paticular | shdl discuss the astronomica usage of the words "intengty”
and "flux" (which differs from standard usage) in sections 1.12 and 1.14 . Standard usage also
cdls for S units, dthough the older CGS units are Hill to be found in astronomicd writings.
Except when deding with dectricd units, this usudly gives rise to little difficulty to anyone who
is aware that 1 watt = 10" erg s*. Where dectricd units are concerned, the situation is much less
ample

1.2 Radiant Flux or Radiant Power, F or P.
Thisis smply the rate a which energy is radiated from a source, in watts.

It is particulaly unfortunate that, even with this most fundamenta of concepts, astronomical
usage is often different. When describing the radiant power of dars, it is cusomary for
astronomers to use the word luminosity, and the symbol L. In sandard usage, the symbol L is
generdly usad for the quantity known as radiance, while in astronomica custom, the word "flux"
hes yet a different meaning. Paticle physicigs use the word “luminogty” in yet another quite
different sense.

The radiant power ("luminosity”) of the Sunis3.85° 10°° W.



1.3 Variation with Frequency or Wavelength

The radiant flux per unit frequency interval can bedenotedby F W HZ?, or per unit
wavdengthintervd by F; W mt. The relations between them are

n? n

n2
FI = —F F :_Fl 131
C

It is useful to use a subscript N or | to denote "per unit frequency or waveength interva”, but
parentheses, for example a(n ) or a(l ), to denote the vaue of a quantity at a given frequency or
wavelength.  In some contexts, where great clarity and precison of meaning are needed, it may

not be overkill to use both, the symboll (n), for example for the radiant intendty per unit
frequency interva at frequency n.

We ddl be defining a number of quantities such as flux, intensty, radiance, etc., and
edablishing relations between them. In many cases, we shdl omit any subscripts, and assume
that we are discussing the relevant quantities integrated over dl wavelengths. Nevertheess, very
often the severd reaions between the various quantities will be equdly vdid if the quantities
are subscripted withn or | .

The same gpplies to quantities tha ae weghted according to waveength-dependent
indrumenta sengtivities and filters to define a luminous flux, which is weghted according to the
photopic wavelength sengtivity of a defined dandard human eye. The unit of luminous flux is
the lumen. The number of lumens in a watt of monochroméatic radiation depends on the
wavdength (it is zero outdde the range of sengtivity of the eyel), and for heterochromatic
radiation the converson between lumens and waetts requires some careful computation. The
number of lumens generated by a lightbulb per wett of power input is cdled the luminous
effidency of the lightbulb. This may seem at first to be a topic of very remote interes, if any, to
adronomers, but those who would observe the faintet and mogt distant gdaxies may well at
some time in their careers have occason to discuss the luminous efficiencies of lighting fixtures
in the congtant struggle againg light pollution of the skies.

The topic of lumens versus watts is a complex and speciaist one, and we do not discuss it further
here, except for one brief remark. When deding with vishble radiation weighted according to the
waveength sengtivity of the eye, indead of the terms radiant flux, radiant intengty, irradiance
and radiance, the corresponding terms that are used become luminous flux (expressed in lumens
rather than wats), luminous intengty, illuminance and luminance. Further discusson of these
topics can be found in section 1.10 and 1.12.

1.4 Radiant Intensity, |

Not al bodies radiate isotropicaly, and a word is needed to describe how much energy is
radiated in different directions. One can imagine, for example, that a rapidly-rotating star might
be nonsphericd in shape, and will not radiate isotropicdly. The intensity of a source towards a
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particular direction specified by spherica coordinates (@ , f ) is the radiant flux radiated per unit
wlid angle in tha direction. It is expressed in W g%, and the standard symbol is I. In
adronomica custom, the word "intensty” and the symbol | are commonly used to describe a
very different concept, to which we shal return later.

When deding with visible radiation, we use the phrase luminous intendty rather than radiant
intendty, and the unit is a lumen per deradian, or a candda At one time, the standard of
luminous intendty was taken to be that of a candle of defined desgn, though the present-day
candela (which is one of the fundamentd units of the SI sysem of units) has a different and more
precise definition, to be described in section 1.12. The canddla and the old standard candle are of
roughly the same luminous intengty.

1.5 "Per unit"

We have s0 far on three occasons used the phrase "per unit”, as in flux per unit frequency
interva, per unit wavdength interva, and per unit solid angle. It may not be out of place to
reflect briefly on the meaning of "per unit”.

The word density in physics is usudly defined as "mass per unit volume' and is expressed in
kilograms per cubic metre.  But do we redly mean the mass contained within a volume of a
cubic metre? A cubic metre is, after dl, a rather large volume, and the density of a substance
may wdl vay greatly from point to point within that volume. Dengty, in the language of
thermodynamics, is an intensive quantity, and it is defined at a point. Wha we redly mean is
the following. If the mass within a volume dV is dm, the average density in that volumeis

dm/dV. Thedendty at apoint is Limd—m’ i.e.d—m-

dve o dV/ av

Perhaps the short phrase "per unit mass' does not describe this concept with precison, but it is
difficult to find an equaly short phrase that does so, and the somewhat loose usage does not
usudly lead to serious misunderstanding.

Likewise, F| is described as the flux "per unit wavdength interval”, expressed in W m'. But
does it redly mean the flux radiated in the absurdly large wavedength intervd of a metre? Let

dF betheflux radiated in awavelengthintervel dl . Then F, = Lim—;i.e.—-

Intengity isflux "per unit solid solid angle”, expressed in watts per Seradian. Again ageradian
isavey largeangle. What is actudly meant isthefollowing. If dF istheflux radiated into an
eementd solid angledw (which, in spherica coordinates, issin q dq df ) then the average
intengty over the solid angledw isdF /dw. Theintengty in a particular direction (q,f ) is
Limd—F- Tha is, _dF
aw

dw® 0 gdw



1.6 Relation between Flux and Intensity.
For an isotropic radiator,
F =4pl. 1.6.1

For an anisotropic radiator

F = ¢ldw, 1.6.2
the integral to be taken over an entire sphere. Expressed in spherica coordinates, thisis

F= 6"§|(q,f)s'n qdqdf . 16.3

If the intengty is axidly symmetric (i.e. does not depend on the azimuthd coordinate f )
equation 1.6.3 becomes

F = 2p©pl (a)sin qdq. 1.6.4

These relations apply equaly to subscripted flux and intendity and to luminous  flux and
luminous intengty.
Example:
Suppose that the intengty of alight bulb varies with direction as
()= 0.5 (0)(1+cosq) 165
(Note the use of parenthesesto mean "at angleq".)

Draw this (preferably accurately by computer - it is a cardioid), and see whether it is reasonable
for alight bulb. Note dso that, if you put @ =0inequation 1.6.5, you get I(q ) = 1(0).

Show that the tota radiant flux isrelated to the forward intensity by
F = 2pl(0) 1.6.6
and dso that the flux radiated between g =0and q = p/2 is

F =2pl(0) 1.6.7
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1.7 Absolute Magnitude

The subject of magnitude scaes in astronomy is an extensve one, which is not pursued a length
here. It may be useful, however, to see how magnitude is rdaed to flux and intengty. In the
dandard usage of the word flux, in the sense that we have usad it hitherto in this chapter, flux is
related to absolute magnitude or to intendity, according to

My - M; = 25log(F 1/F ») 1.7.1

or Mz - Mg 25log (11/12) 1.7.2

That is, the difference in magnitudes of two starsis rdaed to the logarithm of theratio of their
radiant fluxes or intengties.

If we dect to define the zero point of the magnitude scale by assgning the magnitude zero to a
dar of a gecified vdue of its radiant flux in watts or intengty in watts per eradian, equations
1.7.1and 1.7.2 can be written

M

Mo - 25log F 1.7.3
or to itsintengty by

M

Mo' - 25log | 174

If by F and | we are refaring to flux and intengty integrated over dl wavdengths, the
absolute magnitudes in equations 1.7.1 to 174 ae refered to as absolute bolometric
magnitudes.  Practicd difficulties dictate that the setting of the zero points of the various
magnitude scdes are not quite as draghtforward as abitrarily assgning numerica vaues to the
constants Mp and Mg' and | do not pursue the subject further here, other than to point out that Mo
and My' must be related by

Mo'=Mo - 25log4p =My - 2.748. 175

1.8 Normal Flux Density F

The rate of passage of energy per unit area norma to the direction of energy flow is the normd
flux density, expressed in W m2.

If a point source of radiation is radiating isotropicadly, the radiant flux being F, the normd flux
dengity at adistancer will be F  divided by the area of a sphere of radiusr. That is

F=F /(4pr? 1.8.1
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If the source of radiation is not isotropic (or even if it is) we can express the normd flux dendty
in some direction at distancer in terms of the intengty in thet direction:

F=1/r? 1.8.2
Tha is, the normd flux dengty from a point source fdls off inversdy with the square of the
distance.
1.9 Apparent magnitude
Although it is not the purpose of this chapter to discuss astronomical magnitude scdes in detall,
it should be evident that, just as intendty is relaed to absolute magnitude (both being intringc
properties of a sar, independent of the distance of an observer), so normd flux dendty is rdaed
to gpparent magnitude, and they both depend on the distance of observer from gar. The
relaionshipis

my- my = 25log (F1/F2) 191
We could in principle set the zero point of the scae by writing

m= mp - 25logF 1.9.2
and assgning a numericd vaue to mp, so that there would then be a one-to-one correspondence
between norma flux density in W m? and apparent magnitude. If we are deding with norma

flux dengty integrated over dl waveengths, the corresponding magnitude is cdled the apparent
bolometric magnitude.

1.10 Irradiance E

SuPpose that some surface is being irradiated from a point source of radiation of intengty | W
g a a digance r. The normd flux dengty ("normd" meaning normd to the direction of
propagation), as we have seen, is | / r%. If the surface being irradiated is inclined so thet its
normd is indined a an angle q to the line joining it to the point source of radiation, the rate at
which radiant energy isfalling on unit area of the surface will bel cosq / r?.

In any case, the rate a which radiant energy is fdling upon unit area of a surface & cdled the
irradiance of that surface. It is denoted by the symbol E, and the units are W m?. In the smple
geometry that we have described, the relation between the intensty of the source and the
irradiance of the surface is

E = (lcosq)/r? 1.10.1
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If we are deding with visble radiation, the number of lumens fdling per unit area on a plane
aurface is called the illuminance, and is expressed in lumens per square metre, or lux. Recdl that
a lumen is the S unit of luminous flux, and the @ndda is the unit of luminous intengty, and that
an isotropic point source of light radiating with a luminous intensity of | cd (that is, | Im s
emits a total luminous flux of 4 Im. The rdation between the illuminance of a surface and the
luminous intengty of a source of light is the same as the rdation between irradiance and radiant
intengty, namdy, equation 1.10.1, or, if the surface is being illuminated normdly, eguation
182. If the luminous intendty of a source of light in some direction is one candda, the
irradiance of a point on a surface that is closest to the source is 1 Im m? if the distance is one
metre, 1 Im cm? if the distance is one cm, and 1 Im ft2 if the distance is one foot. A lumen per
square metre is a lux, and a lumen per square cm is a phot. A lumen per square foot is often
(usudly!) given the extraordinary name of a "foot-candl€’.  This is a modt illogicd misuse of
language, and is mentioned here only because the term is ill in frequent use in non scientific
crdes. Lumen, candda and lux are, respectively, the S units of luminous flux, luminous
intengty and illuminance.  Phot and "foot-candle’ are non-Sl units of illuminance. The exact
definition of the candda will be given in section 1.12; the lumen and lux are derived from the
candda Those who ae curious about other srange-sounding units encountered in the
quantitative measurement of the visble portion of radiation will dso find the definition of "dilb"
in section 1.12.

Problem

A tableis being illuminated by alight bulb fixed a adisance h verticdly abovethetable. The
fixture is such that the socket is above the bulb, and the luminous intengity of the bulb varies as

I(g)=241(0)(1+cosq) 1.10.2

where g isthe angle from the downward vertica from the bulb. Show thet the illuminance a a
point on the table at a distance r from the sub-bulb point is

1(0) g(1+ r2) +10

E(r) =
0= Sy ¢

1.10.3

wherer' = r/h, and draw agraph of thisfor r' = 0 to r' = 2. For whet vdue of r' does the
irradiance fal to haf of the sub-bulb irradiance?



Problem

If the table in the above problem isa circular table of radius a, show that the flux thet it
interceptsis
€3a° + 2h? - 2h(a® +h?)* U

F = pl(0)8 1.10.4
pI( )g 2(al +h?) i

Whatisthisifa=0andif a® ¥ ? Isthiswhat youwould expect? (Compare equation 1.6.7.)

1.11 Exitance M
The exitance of an extended surface is the rate & which it is radiaing energy (in dl directions)
per unit area. The usud symbol is M and the units are W m?. It is an intrinsic property of the
radiating surface and is not dependent on the position of an observer.
Most readers will be aware that some property of a black body is equal to sT*. Technicdly it is
the exitance (integrated over al wavelengths, with no subscript on the M) that is equa to sT*, so
that, in our notation, the Stefan-Boltzmann law would be written

M=sT? 1.11.1
wheres hasthevaue5.7 ~ 108 W m? K™,

Likewise the familiar Planck equation for a black body:

2phc?

M| :l_S(ehC/k—T_l) 1.11.2

gives the exitance per unit wavelength interval.
The word "emittance” is an older word for what is now called exitance.

The emissivity of aradiating surface is the ratio of its exitance a a given wavelength and
temperature to the exitance of ablack body at that wavelength and temperature.



1.12 RadiancelL

The concept of exitance does nothing to describe a dtuation in which the brightness of an
extended radiating (or reflecting) surface gppears to vary with the direction from which it is
viewed. For example, the centre of the solar disc is brighter than the limb (which is viewed a an
oblique angle), paticularly at shorter wavelengths, and the Moon is much brighter a full phase
than at first or last quarter.

There are two concepts we can use to describe the directiona properties of an extended radiating
aurface. | shdl cdl them radiance L, and "surface brightness' B. | firgt define them, and then |
determine the reationship between them. Please keep in mind the meaning of "per unit", or, as it
iswritten in the next sentence, "from unit".

The radiance L of an extended source is the irradiance of an observer from unit solid angle of the
extended source. It is an intringc property of the source and is independent of the distance of
any observer. This is because, while irradiance of an observer fdls off inversdy as the square of
the distance, the area included in unit solid angle increases as the square of the digtance of the
obsarver.  While the radiance does not depend on the distance of the observer, it may wel
depend on the direction (q, f ) from which the observer views the surface.

The surface brightness B of an extended source is the intengty (i.e. flux emitted into unit solid
angle) from unit projected area of the source. "Projected’ here means projected on a plane that is
normd to the line joining the observer to a point on the surface. The solid angle referred to here
is subtended a a point on the surface. Like radiance, surface brightness is a property intringc to
the source and is independent of the distance (but not the direction) to the observer.

These concepts may become clearer as | try to explain the reationship between them. This |
shdl do by supposing that the surface brightness of a point on the surface is B in some direction;
and | shdl cdculate the irradiance of an observer in that direction from unit solid angle around
the point.

In figure 1.1 | draw an dlementd area and the vector dA representing that area.  In some direction
making an angle with the normd to dA, the area projected on a plane a right angles to that
direction is dA cos g . We suppose the surface brightness to be B, and, since surface brightness
is defined to be intendty per unit projected area, the intendty in the direction of interest is BdA
cos q . The irradiance of an observer at a distance r from the dementd areais dE = dI/fr? = BdA
cos q /r%. But dA cos q /r? is the solid angle dw subtended by the elemental area at the observer.
Therefore, by definition, dE/dw is L, the radiance. Thus L = B. We see, then, that radiance L
and surface brightness B are one and the same thing. Henceforth we can use the one term
radiance and the one symbal L for ether, and either definition will suffice to define radiance.
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dA

di=BdAcosq 9
«— dl
dE = r_2
_ LdA(Z:osq _ L
r

dw

FIGURE |.1
In the figure the surface brightness a some point on asurface in adirection that makes an
angleq withthenormd isB. Theintengty radiated in that direction by an dement of
areadA isdl = BdAcosg. Theirradiance of asurface at adistancer away isdE = dl/r?
=BdAcosq/r?. ButdAcosq/r? = dw, the solid angle subtended by dA. But the
radiance L of apoint on the right hand surface isthe irradiance of the point in the |eft
hand surface from unit solid angle of the former.  ThusL = B, and we see that the two
definitions, namely surface brightness and radiance, are equivaent, and will henceforth
be cdled just radiance.

Radio adronomers usudly use the tem "surface brightness’. In the literature of gsdlar
amospheres, however, the term used for radiance is often "specific intendty” or even just
"intengty” and the symbol used is I. This is clearly a quite different usage of the word intengty
and the symbol | tha we have used hitherto. The use of the adjective "specific' does little to
help, dnce in most contexts in phydcs, the adjective "specific’ is understood to mean "per unit
maess'. It is obvioudy of great importance, in both reading and writing on the subject of selar
atmospheres, to be very clear asto the meaning intended by such terms as "intengty”.

The radiance per unit frequency interval of a black body is often given the symbol B,, and the
radiance per unit wavedength intervd is given the symbol B. We shdl see later that these are
related to the blackbody exitance functions (see equation 1.11.2 for M,) by M, =pB, and
M, =pB, . Likewise the integrated (over al wavelengths) radiance of a black body is
sometimes written in the form B = aT *. Here a=s/p, s being the Stefan-Boltzmann congtant
used in equation 1.11.1. (But see also section 1.17.)

Summay so fa: The concepts "radiance' and "surface brightness', for which we darted by
usng separate symbols, L and B, ae identica, and the single name radiance and the single
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symbol L auffice, as dso will ether definition. The symbol B can now be reserved specificdly
for the radiance of a black body.

Although perhaps not of immediate interest to astronomers other than those concerned with light
pollution, | now discuss the corresponding terms used when dedling with visble light. Instead of
the terms radiant flux, radiant intengty, irradiance and radiance, the terms used are luminous
flux, luminous intendty, illuminance and luminance. (This is the origin of the symbol L used for
luminance and for radiance) Luminous flux is expressed in lumens. Luminous intendty is
expressed in lumens per deradian or candela.  Illuminance is expressed in lumens per square
metre, or lux. Luminance is expressed in Im m? s%, or lux s, or cd mi? or nit. The standard of
luminous intengty was a one time the intengty of light from a candle of gspecified desgn
burning a a specified rate. It has long been replaced by the candela, whose intensity is indeed
roughly that of the former sandard candle. The candda, when firg introduced, was intended to
be a unit of luminous intengty, equad approximately in magnitude to that of the former "sandard
candle’, but making no reference to an actud red candle it was defined such that the luminance
of a black body at the temperature of melting platinum (2042 K) was exactly 600,000 cd m?.
Since 1979 we have gone one dep further, recognizing that obtaining and measuring the
radiation from a black body a the temperature of mdting platinum is a matter of some practica
difficulty, and the current definition of the candda makes no mention of platinum or of a black
body, and the candela is defined in such a manner that if a source of monochromatic radiation of
frequency 54 ~ 10 Hz has a radiant intensity of 1/683 W st in that direction, then the
luminous intendty is one candda  The reader may wdl ask what if the source in not
monochromatic, or what if it is monochromatic but of a different frequency?  Although it is not
the intention here to treat this topic thoroughly, the answer, roughly, is that scientigts involved in
the fidd have prepared a table of a standard "photopic’ rdative sendtivity of a "standard”
photopic human eye, normdized to unity a its maximum sengtivity a 54 °~ 10 Hz (about 555
nm). For the converson between watts and lumens for monochromatic light of waveength other
than 555 nm, one mugt multiply the converson a 555 nm by the tabular vaue of the sengtivity
a the wavdength in quegtion. To cdculate the luminance of a heterochromatic source, it is
necessay to integrate over dl wavelengths the product of the radiance per unit wavelength
interva times the tabular vaue of the photopic sengitivity curve.

We have mentioned the word "photopic’. The retina of the eye has two types of receptor cdlls,
known, presumably from their shape, as "rods' and "cones'. At high levels of illuminance, the
cones predominate, but a low levels, the cones are quite insendtive, and the rods predominate.

The sengtivity curve of the cones is caled the "photopic’ sengtivity, and that of the rods (which
pesks & a shorter wavelengths than the cones) is the "scotopic” sengtivity. It is the standard
photopic curve that defines the conversion between radiance and luminance.

| make one last remark on this topic. Namely , together with the metre, kilogram, second, kelvin,
ampere and mole, the candela is one of the fundamental base units of the Systéme Internationa
des Unités. The lumen, lux and nit are aso S units, but the phot is not. The S unit of
luminance is the nit, athough in practice this word is rardy heard (lux s or cd m? serve). The
non-Sl unit known asthe stilb is aluminance of one candela per square centimetre.
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1.13 Lambertian Surface.

A lambertian radiaing surface [Johann Heinrich Lambert 1728 - 1777] is one whose intensity
vaies withangle according to Lambert's Law;

1(q)=1(0)cosq. 1.13.1

1(0)
4 1(0)

FIGURE |.2

Condder a samdl dement dA of a lambertian radiaing surface, such that the intengty radiated by
this dement in the normd direction is 1(0), and the normd radiance is therefore | (q )/dA. The
radiance a angle q istheintendty divided by the projected area:

I (0)cosq _ | (0)

1.13.2
dAcosq dA

Thus the radiance of a lambertian radiating surface is independent of the angle from which it is
viewed. Lambertian surfaces radiate isotropicadly. The radiance of a black body is lambertian.
The Sun exhibits limb-darkening; the Sun is not a black body, nor isit lambertian.

For a reflecting surface to be lambertian, it is required that the radiance be independent not only
of the angle from which it is viewed, but dso of the angle from which it is irradiated (or
illuminated). In discussing the properties of reflecting surfaces, one often distinguishes between
two extreme cases. At the one hand is the perfectly diffusng lambertian surface; blotting paper is
sometimes cited as a near lambertian example. The other extreme is the perfectly reflecting
surface, or specular reflection (Latin speculum, a mirror), in which the angle of reflection equas
the angle of incidence. It might be noted that expensve textbooks are often printed on
soecularly reflecting paper and are difficult to read, whereas inexpensve textbooks are often
printed on paper that is approximately lambertian and are consequently easy to read.

The full description of the reflecting properties of a surface requires a bidirectiond reflectance
digribution function, which is a function of the direction (g i, f ; ) of the incident light and the
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direction of the reflected (scattered) @ , f 1) light. Also included in the theory are the severd
abedoes (norma, geometric and Bond). These concepts are of great importance in the study of
planetary physics, but are not pursued further here. Some further details may be found, for
example, in Lester, P. L., McCdl, M. L. and Tatum, J. B., J. Roy. Astron. Soc. Can ., 73, 233
(1979).

1.14 Relations between Flux, Intensity, Exitance, Irradiance.

In this section | am going to ask, and answer, three questions.

I. (Seefigurel.3)

FIGURE 1.3

A point source of light has an intengty that varieswith direction as1(q , f ). What isthe radiant
flux radiated into the hemisphereq < p /2? Thisiseasy; we aready answered it for a
complete sphere in equation 1.6.3. For a hemisphere, the answer is

2P

F = 2?1 (q,f )sin qdadf . 1141
Q Q
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ii. At a cetan point on an extended plane radiating surface, the radiance is L(q ,f ). What is
the emergent exitance M & that point?

I(qf) = L(qf)cosqdA

FIGURE | .4

dA

Congder an dementa area dA (see figure 1.4). The intengty 1( q, f ) radiated in the direction

(g ,f ) isthe radiance times the projected area cos q d A. Therefore the radiant power or flux
radiated by the dement into the hemisphereis

dF = sz élzL(q,f)cosqsin qdadf dA, 1.14.2
and therefore the exitanceis
2p (/2 .
M=qQ Q L(q,f )cosqsin qdodf . 1.14.3

li. A point Oisat the centre of the base of a hollow radiating hemisphere whose radiancein
thedirection(q,f )isL(q ,f). What istheirradiance a that point O ? (Seefigurel.5.)

dA=a”sn qdqdf

FIGURE 1.5
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Consider an elementd area a® sn q dg df on the inside of the hemisphere a a point where the
radianceisL(q, f ) (figurel.5). Theintensty radiated towards O isthe radiance timesthe area:

di(qg,f) = L(q,f)a’€n qdqdf 1.14.4
Theirradiance at O from this dlementa areaiis (see equation (1.10.1)

dE = C]"(chosqi(q,f)cosqs'n qdqdf, 1.14.5
a
and so theirradiance at O from the entire hemisphere is
2P pI2 .
E = Q Q L(q,f)cosqsn qdqdf. 1.14.6

The same would gpply for any shape of inverted bowl - or even an infinite plane radiating
surface (seefigure1.6.)

L(af)

b/E = eguation 1.14.6

FIGUREI .6

115 A=pB.

There are severd occasons in radiation theory in which one quantity is equd to p times another,
the two quantities being related by an equation of the fom A = p B. | can think of three, and
they are dl related to the three questions asked and answered in section 1.14.

If the sourcein question i of section 1.14 is an element of alambertian surface, then | (g , T ) is
given by equation 1.13.1, and in that case equation 1.14.1 becomes

F =pl(0) 1.15.1
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If the dement d A in quedtion ii is lambertian, L is independent of q and f , and equation 1.14.3
becomes

M= pL 1.15.2
This, then is the very important relation between the exitance and the radiance of a lambertian
aurface. It is easy to remember which way round it is if you think of the units in which M and L
are expressed and think of p asa solid angle.

If the hemisphere of question iii is uniformly lambertian (for example, if the ky isuniformly
dull and cloudy) then L is the same everywhere in the sky, and theirradiance is

E=pL 1.15.3

1.16 Radiation Densityu

Thisis merely the radiation energy density per unit volume, expressed in J >, and usudly given
the symbal u.

1.17 Radiation Density and Irradiance

an qdq df

O
FIGURE|.7

Figure 1.7 shows a hemisphere filled with radiation, the energy densty being u J m3. The
motion of the photons is presumed to be isotropic, and al are moving a speed c. The centre of
the base of the hemisphere, O, is being irradiated - i.e. bombarded with photons coming from al
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directions. How is the irradiance E a O related to the energy dendty? How much energy per
unit areaisariving a O per unit time? | shdl show that the answer is

E = uc/4. 1.17.1
Photons are arriving at O from dl directions, but only afraction

an qdqdf
4p

1.17.2

are coming from directions within the emental solid angle between q and q + dg and f and
f +df.

If there are n photons per unit volume, the rate & which photons (moving a speed c) are passing
through an dementd area A a O from directions within the dementa solid angle sng dqgdf s

sn qdqdf |

ncdAcosq. 1.17.3
4p

(This is because the dementa area presents a projected area dA cosq to the photons ariving
from that particular direction.)

The rate a which photons arrive per unit area (divide by dA) from the entire hemisphere above
(integrate) is

2p p/2 :

f
3 c\)ncsm q ;:osqdqd 1174
0 O p

Therate at which energy arrives per unit areafrom the hemisphere above is

2p p/2 :
3 Gucsn gcosqdqdf — 1175
0 O 4p

which was to be demonstrated (Quod Erat Demonstrandum)

A more careful argument should convince the reader that it does not matter if dl the photons do
not cary the same energy. Just divide the population of photons into groups having different
energies.  The totd energy is the sum of the energies of dl the photons, whether these are equa
or not.

| mentioned in section 1.12 that Stefan's law is sometimes written L = aT*, wherea is Stefan's
constant divided by p . It isaso sometimeswritten u = a T* , and in thiscase a = 4s /c.
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1.18 Radiation Pressure P

Photons carry momentum h/I - and hence exert pressure. Pressure is rate of change of
momentum (i.e. force) per unit area.

The pressure P exerted by radiation (in N mi?, or Pa) is rdaed to the energy density u of
radiation (in Jm°) by

P=2u 1.18.1

P=u 1.18.2

P=u/3 1.18.3
or P=ul6 1.184
depending on the circumstances!

Fird, we may imagine a pardld beam of photons that have come a long way from ther origind
source.  For example, they might be photons that have arived a a comet from the Sun, and they
are about to push materid out from the comet to form the tal of the comet. Each of themis
travelling with speed c. We suppose that there are n of them per unit volume, and therefore the
number of them per unit area arriving per unit time is nc. Each of them carries momentum h/l .
[As in section 1.17 they need not dl cary the same momentum.  The tota momentum is the
sum of each.] The rate of arivd of momentum per unit areais nhc/l = nhn . But hn is the
energy of each photon, so the rate of arivd of momentum per unit area is equa to the energy
densty. (Veify that these are dimensondly smilar) If dl the photons dick (i.e if they ae
absorbed), the rate of change of momentum per unit area (i.e. the pressure) is just equa to the
energy densty (equation 1.18.2); but if they are reflected dadicdly, the rate of change of
momentum per unit areais twice the energy density (equation 1.18.1).

If the radiation is isotropic, the dtuation is different. The radigtion may be approximatey
isotropic deep in the amosphere of a dar, though | fancy not completely isotropic, because there
is sure to be a temperature gradient in the atmosphere. | suppose for the radiation to be truly
isotropic, you'd have to go to the very centre of the dar.

Well gart from equation 1.17.4, which gives the rate a& which photons arive a a point per unit
aea ("a apoint per unit ared'? This makes sense only if you bear in mind the meaning of "per
unit'!) If the energy of each photon is E, the momentum of each is E £. (This is the rdation,
from gpecid rdativity, between the energy and momentum of a paticle of zero rest mass)
However, it is the norma component of the momentum which contributes to the pressure, and
the norma component of each photon is (E cos g)/c. The rate & which this norma component of
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momentum arrives per unit area is found by multiplying the integrand in equation 1.17.4 by this
Bearing in mind that nE isthe energy dendity u, we obtain

U 2n.p

4_pQ les'n qcos’ qdqdf . 1.18.5

The pressure on the surface is the rate & which the norma component of this momentum is
changing. If the photons ftick, thisis

U 2n.p

4_pQ lesin qcos’qdgdf = u/6. 1.18.6

But if they bounce, it istwicethis, or u/3.



