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CHAPTER 5  

General Quadratic Equation, Part I  

Translation and Rotation of Axes 

0Δ3   Central quadrics 

 

 

5.1   Introduction 

 

   In writing this chapter, I have assumed that the reader has read the Preamble to these 

notes and that, before s/he reads another word of this chapter, s/he has available computer 

programs that will instantly evaluate 33   determinants and 44  determinants, and 

solve quadratic equations.   Without this, this chapter will be impossibly tedious to work 

through.  With it, it should be relatively easy. 

 

    The general quadratic equation in three variables is 

 

.0222222222  dwzyvuxhxygzxfyzczbyax  5.1.1 

 

It represents a quadric surface such as an ellipsoid or a paraboloid, or perhaps a pair of 

planes, or possibly something else. If we know the values of the coefficients, can we tell 

which type of surface it represents? 

 

   We shall shortly learn that, in order to answer this question, we shall have to evaluate 

the following two determinants.  Indeed, on seeing an equation of the form of 5.1.1, 

evaluating these determinants is the very first thing we must do.  We should not hesitate 

for a moment, wondering what to do. 

 

              

cfg

fbh

gha

3       5.1.2 

 

 

dwvu

wcfg

vfbh

ugha

4       5.1.3 

 

I shall be using the notation that a  is the cofactor of a in 3, and â  is the cofactor of a in 

4.  With this notation, it will be noted that 3
ˆ d . 

 

Here are a few examples:        
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cg

fh
h

cf

fb
a      

dwu

wcg

vfh

h

dwv

wcf

vfb

a  ˆˆ    3
ˆ d      5.1.4  

 

  This chapter will be exclusively concerned with examples in which 03  .  Examples 

in which 03   will be discussed in subsequent chapters.  We shall learn that if  

03   and 04   equation 5.1.1 represents an ellipsoid or a hyperboloid.  If, 

however, 03   and 04  , it represents a cone. 

 

  We shall first ask ourselves, is it possible to translate, without rotation, the coordinate 

axes such that, when referred to the new axes, equation 5.1.1 takes the form 

 

?0222222  dhxygzxfyzczbyax                          5.1.5 

 

That is to say, the coefficients of zyx ,,   are zero.  Note that, if in equation 5.1.5 we 

change the signs of zyx ,, , the equation is unaltered.  That is to say, the surface 

represented by equation 5.1.5 has a centre of symmetry at the origin of coordinates.   It is 

unaltered by reflection through the origin of coordinates.  That is to say, equation 5.1.5 

will usually represent an ellipsoid, a hyperboloid (of one or two sheets) or a cone (elliptic 

or hyperbolic). I say “usually”.  Note, however, that the equation contains no terms of 

odd degree. This means that if all the coefficients are positive (or all negative) and if d = 

0, equation 5.1.5 can be satisfied only by the single point (0, 0, 0). It does not represent a 

paraboloid or a pair of planes. If all the coefficents as well as d are positive, there is no 

point (x, y, z) that satisifes the equation. 
 

   If we succeed, by translation, in obtaining an equation of the form of equation 5.1.5, we 

shall then try to rotate (without translation) the axes of coordinates so that the coefficients 

of the mixed quadratic terms become zero, and the equation now becomes of the form 

 

0222  dczbyax      5.1.6 

 

and we are now on familiar ground.  This is a central quadric in which the centre of 

symmetry is at the origin of coordinates, and the coordinate axes coincide with the 

symmetry axes of the surface. 

 

 

5.2  Translation of Coordinate Axes 

 

   In this section I am going to refer the surface to a new set of axes,  xyz (that’s 

Bookman Old Style italic  font on my computer), whose origin is at 

000 ,, zzyyxx  ,  so that .,, 000 zyx  zzyyxx  
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  If we make these substitutions in equation 5.1.1, we find that, referred to the new 

coordinate system, the equation to the surface becomes 

 

.0222222222  dwzyvuxhxygzxfyzczbyax          5.2.1 

 

where the coefficients  a, b,  c,  f,  g,  h  are the same as the old coefficients a,  b,  c,  f,  

g,  h, but: 

 

ugzhyax  000u      5.2.2 

vfzbyhx  000v      5.2.3 

wczfygx  000w      5.2.4 

.222222 000000000
2
0

2
0

2
0 dwzyvuxyhxxgzzfycybyax d   5.2.5 

 

  Some algebraic manipulation of the equations will show that the new value of the 

constant term can also be written as 

 

,
3

4




d                 5.2.6 

 

which may or may not be helpful. 

 

   Now our aim is to see if we can find some 000 ,, zyx  such that the new coefficients of 

x, y, z are zero.  If we can do this, we shall have found a central quadric, because, with no 

terms in odd powers of x, y or z,  the equation is invariant upon changing the signs of x,  y 

and z.  All (!) we have to do is to solve the equations 

 

          0000  ugzhyax ,               5.2.7 

                    0000  vzfybhx ,               5.2.8 

 and                                    0000  wczfygx .               5.2.9 

 

The algebra is straightforward, if slightly tedious, and we arrive at 

 

Bottom

)()(
0

hwvgfufcugwbvch
x


                  5.2.10 

 

            
Bottom

)((
0

fuhwvggvahucwaf
y




)
,      5.2.11 

 

Bottom

)()(
0

gvfuhwhbwvfabgu
z


                                   5.2.12 

 

where                        2222Bottom chbgaffghabc   .                         5.2.13 
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f we refer back to Section 5.1 for the notation used for determinants and cofactors, we see 

that equations 5.2.10 - 5.2.12 can be written 

                                   

                               
d

w
z

d

v
y

d

u
x

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ
000                   5.2.14a,b,c 

 

provided that d̂  , which is also equal to 3 , is not zero.        

                                                          

Again, these abbreviated forms may or may not be helpful. 

 

   Thus we have shown that equation 5.1.1 represents a central quadric whose centre has 

coordinates given by equation 5.2.10 - 13   (or equations 5.2.14 ) provided that     

.03   If this determinant is zero, the surface is not a central quadric. 

 

      For example, consider the following equation: 

 

                       .045629543 222  zyxxyzxyzzyx                       5.2.15 

 

The first thing to do, without pausing for thought, is to evaluate the two determinants.  

We find that:   

 

The determinant is not zero, and equations 5.2.10 - 12  show us that the centre is at 

 

     1897.01207.06724.0
58
11

058
7

058
39

0  zyx    5.2.16 

 

Now that we know the coordinates of the centre, we can calculate d from equation 5.2.5 

or 5.2.6 (or from both, as a check). We find that 1638.4
116
483 d . Hence, 

referred to the centre as origin, the equation to the surface is 

 

09543
116
483222  xyzxyzzyx .                           5.2.17 

 

(This is similar to the original equation, except for the absence of the terms in x, y and z, 
and a different constant.) 

 

On multiplication by 116, to remove the fraction for convenience, it becomes. 

 

                  04831104580116464116348 222  xyzxyzzyx  .            5.2.28                

 

Our next task will be to rotate the coordinate axes to make them parallel to the symmetry 

axis of the surface.  By the time we have done this we shall know what type of surface it 

is (i.e. ellipsoid or hyperboloid or other central quadric). 
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5.3  Rotation of Coordinate Axes.  Ellipsoids and Hyperboloids 

 

      In the previous Section, we had succeeded, by means of a translation of the 

coordinate axes, without rotation, in reducing the equation  

 

0222222222  dwzyuxhxygzxfyzczbyax v   5.3.1 

 

to an equation of simpler form: 

 

                           0222222  dhxygzxfyzczbyax .                        5.3.2 

 

[If the new value of the constant, d, is zero, we have a problem.  See Section 5.4.] 

In this form, the origin of coordinates is at the centre of the quadric surface represented 

by the equation.   

 

   We are now going to try to refer the surface to another set of coordinate axes, rotated 

with respect the current set, so that the equation becomes of the form  

 

0222  dczbyax .    5.3.3 

 

If we can do this, we can determine what type of quadric surface it is, and can find any 

further properties of interest.  When we have found a general way of doing this, we shall 

look at three particular examples, namely 

 

0360015129157342179248 222  xyzxyzzyx 

09543
116
483222  xyzxyzzyx  

01051333942518 222  xyzxyzzyx  

 

All are central quadrics, as is shown by evaluating the determinant 3 (equation 5.1.2), 

which is not zero in any of them.  These will turn out to be (although we don’t know this 

yet) respectively an ellipsoid, a hyperboloid of one sheet, and a hyperboloid of two 

sheets.  The second example is the one we left at the end of Section 5.2. 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

       Let )cos,sinsin,cossin(  rzryrx  be a point P on the 

quadric surface represented by equation 5.3.2.   I have drawn this in figure V.1 in which I 

suppose that the quadric surface is an ellipsoid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then 

 

0)cossinsin2coscossin2sincossin2

cossinsincossin(

2

222222





dhgf

cbar

 

                                                                                                                                    5.3.4 

 

This enables us to calculate the length of r  in a given direction ).,(   

 

If we move the point P around on the surface until we find that r is maximum or a 

minimum or a saddle point, we shall have found an axis of the quadric surface. Thus what 

we have to do is to find where 


r
and 



r
are both zero.  This will give us two equations 

in  and , and hence we can calculate the direction cosines and the lengths of the axes of 

the quadric surface. 

 

FIGURE V.1 

x 

y 

r 
P (
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   If the quadric surface is a triaxial ellipsoid (as drawn) the reader will, I think, agree that 

s/he will be able to find three mutually orthogonal directions where 


r
and 



r
are both 

zero.  One of these will be a maximum, one will be a minimum, and one will be a saddle 

point.   

 

   I now ask the reader to replace, in his/her mind, the ellipsoid in figure V.1 with a 

hyperboloid of one sheet.  I think s/he will now agree that there will be only two mutually 

orthogonal such directions.  One will be a maximum and one will be a minimum.  And if 

we now replace the surface with a hyperboloid of two sheets, there will be only one such 

direction, and it will be a minimum. 

 

  One look at equation 5.3.4 will tell us that calculating the derivatives 


r
and 



r
 would 

be a quite irritable experience.  However, if we let 

 





cossinsin2coscossin2sincossin2

cossinsincossin

2

22222

hgf

cbaR
                 5.3.5 

 

 

then we just have to find the  and  where 


R
and 



R
are both zero, which, although 

not quite trivial, would be much less tedious than 


r
and 



r
 .  In preparation for the 

calculation of these derivatives, it may be convenient to re-write equation 5.3.5 in the 

forms 

  

  cgfchbaR  sin2θθsin
2 )cossin()2sinsincos( 22         5.3.6 

or 

   




22

22

cossin2sin2sin

sinsin)(

cbgf

hbaR





cossin

sin2cos
2

                                     5.3.7 

 
(Many other trigonometric identities are, of course, possible - I found these two to be particularly 

convenient for calculating the derivatives .) 

 

  On setting the partial derivatives to zero, we find that we have to solve the following 

two equations for the  and  of the principal axes of the surface. 

 

0cos2sin22tan]2sin2cos)()([),(
2
1

2
1  gfhbabacF    5.3.8 

 

0sin2cos2tan]2cos22sin)([),(  gfhabG                       5.3.9 
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   (Again, there are several ways of writing these.  I find the above versions convenient.) 

 

  In order not to interrupt the flow of thought, I assume at this point that we can solve 

these equations for and , by pressing a button or waving a wand, and I look at three 

particular examples. I’ll look at the actual mechanics of solving the equations in an 

Appendix to this Chapter.  I remark only that we are looking for solutions for in the 

range 0 to  and solutions for  in the range 0 to 2.  Having found  and  we can set up 

a new coordinate system xyz so that the equation to the surface, referred to the new 

coordinate system, has no terms in x,  y or z. 

 

Example 1 

 

 0360015129157342179248 222  xyzxyzzyx 5.3.10

   

That is,  360015212921572342179248  dhgfcba  

 

For this example, equations 5.3.8 and 5.3.9 become 

 

0cos129sin1572tan)2sin5.72cos5.345.128(),( F              5.3 11    

 

0sin129cos157tan]2cos152sin69[),( G                          5.3.12    

 

By waving a wand, or pressing a button, or reading the Appendix to this chapter, we find 

three pairs of oppositely-directed solutions in the range from 0 to , and  from 0 to 

2These are the directions of the three axes of the quadric surface.  Here they are, in 

radians and degrees, as follows, together with the corresponding direction cosines 

calculated from  cossinsin,cossin nml  



  rad                 rad                    l                 m                  n 

             deg                deg 

 
     1.142510    4.498167   -0.193386   -0.888885    0.415313 

    65.460989  257.725967 
     1.999083    1.356574    0.193386    0.888885   -0.415313 

   114.539011   77.725967 

 
     1.853778    5.935812    0.902873   -0.326889   -0.279220 

   106.213660  340.096987 

     1.287815    2.794220   -0.902873    0.326889    0.279220 

    73.786340  160.096987 

 

     0.524116    0.696295    0.383956    0.320977    0.865766 

    30.029662   39.894764 

     2.617476    3.837888   -0.383956   -0.320977   -0.865766 

   149.970338  219.894764 
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   Each lmn represents the direction ratios of one axis of the quadric surface.  For 

reference, I’ll use subscript notation for these direction ratios as follows 

 


































0.865766     0.320977    0.383956

0.279220-   0.326889-   0.902873

0.415313    0.888885-   0.193386-

333

222

111

nml

nml

nml

 

 

At this stage it is very necessary to verify that the matrix is orthonormal. (It is.) 

      

  We can now use any (or all) of equations 5.3.5, 5.3.6, 5.3.7 to calculate R for each 

),(  , and then equation 5.3.4 to calculate r2
 and r.  Real values of the latter are the 

lengths of the semi-axes of the quadric surface.  This is what I obtain: 

 

        R                      r 
2                      r 

 
143.954251881   25.007944906    5.000794427 

225.337497578   15.976036118    3.997003392 

399.708250541    9.006569154    3.001094659 

 

 We have three unequal real values of r, the semi axes of the quadric surface, which is, 

therefore, a triaxial  ellipsoid.      

  

   

The original equation (5.3.10) was  

 

0360015129157342179248 222  xyzxyzzyx 5.3.10

   
That is, it was of the form 

 

0222222  dhxygzxfyzczbyax 5.3.13 


We are now going to rotate the axes of the coordinate system so that they coincide with 

the symmetry axes of our quadric surface.  We shall do this by substituting 

 

znnn

ymmm

xlll

for

for

for

321

321

321

zyx

zyx

zyx







                                                  5.3.14 

 

  On making these substitutions into equation 5.3.10, we find that the equation to the 

ellipsoid referred to its own axes as the axes of the coordinate system is: 
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.0

)(2)(2)(2222(

)(2)(2)(2222(

)(2)(2)(2222(

)222(

)222(

)222(

212121212121212121

131313131313131313

323232323232323232

2
333333

2
3

2
3

2
3

2
222222

2
2

2
2

2
2

2
111111

2
1

2
1

2
1















d

lmmlhnllngmnnmfncnmbmlal

lmmlhnllngmnnmfncnmbmlal

lmmlhnllngmnnmfncnmbmlal

mhllgnnfmcnbmal

mhllgnnfmcnbmal

mhllgnnfmcnbmal

xy

zx

yz

z

y

x

             5.3.15 

 

   On substitution of the numerical values of the direction cosines and the constants 

abcfgh, (trivially easy if you are sitting in front of your computer; impossibly difficult if 

you are not) we find, to our ineffable relief, that the coefficients of yz, zx and xy are 

indeed all zero, and the equation to the ellipsoid becomes 



 36007083.3993375.2259543.143 222  zyx 5.3.16 

 

We have now succeeded in what we set out to do at the beginning of this Section 5.3.  I 

repeat here the opening sentences of this Chapter: 

 

 

 

 

      In this and the previous Section (5.2), we succeeded, by means of first a translation of 

the coordinate axes, and then a rotation, in reducing the equation  

 

0222222222  dwzyuxhxygzxfyzczbyax v    5.3.1 

 

first to the form 

 

                           0222222  dhxygzxfyzczbyax                           5.3.2 

 

and then to the form 

0222  dczbyax .     5.3.3 

 

 

We have done this.  But have we made any mistakes? 

 

When we made these transformations, all we did was to translate and rotate the 

coordinate axes sysgtems; we did not change the size of the ellipsoid in any way. 

Consequently we should expect that a  +  b  +  c  =  cba  cba  and we 

observe that this is indeed the case  all are equal to 769.  In technical terms, in rotating 

the axes of coordinates, we were making an orthogonal transformation, and it is a well 



 11 

known theory of matrices that the trace of a matrix (in this case the matrix (3) ) is 

invariant under an orthogonal transformation. 


On division of 5.3.16 by 3600 and rearrangement, this becomes 

 

                 1
)095001.3()003997.3()794000.5( 2

2

2

2

2

2


zyx

,                               5.3.17 

 

agreeing exactly with the figures we had earlier obtained for the semi-axes. 

 

   It may be argued that, as soon as we had, earlier, determined the lengths of the semi-

axes, we knew that this was going to be the equation of the surface referred to is own 

axes as coordinate axes, and there was no need to carry out any of the subsequent lengthy 

computations. This I vigorously deny.  The full calculations are necessary in order to 

check for mistakes.  At the time when we had first calculated the lengths of the semi-

axes, we had no idea at all whether we had made any mistakes in the calculations. By the 

time we had finished the full calculation and had obtained the same answer as earlier for 

the semi-axes, we are certain that we have made none. 

  

 

Example 2 

 

                      09543
116
483222  xyzxyzzyx   .    5.3.18 

 

That is,  
116
4835.45.25.0413  dhgfcba  

 

This is the example that we saw in Section 5.2.   For this example, the equations to be 

solved (equations 5.3.8 and 5.3.9) are                       

 

0cos5sin2tan)2sin5.42cos26(      5.3.19 

0sin5costan)2sin92cos2(       5.3.20 

 

The solutions I find are: 



  rad                 rad                   l                m                  n 

             deg                deg 

 

 
 

     0.997553    2.113461   -0.433868    0.719447    0.542360    

    57.155593  121.092406 

     2.144039    5.255054    0.433868   -0.719447   -0.542360 

   122.844407  301.092406 

 

 

     0.599152    5.587266    0.432806   -0.361538    0.825814    
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    34.328852  320.126768 

     2.542441    2.445673   -0.432806    0.361538   -0.825814 

   145.671148  140.126768 

 

 

     1.725939    0.643801    0.790214    0.593031   -0.154521    

    98.889008   36.887096 

     1.415654    3.785394   -0.790214   -0.593031    0.154521 

    81.110992  216.887096 

 

 

 

The matrix of the direction cosines checks for orthonormality, so all is well so far. 
 

  We can now use any (or all) of equations 5.3.5, 5.3.6, 5.3.7 to calculate R for each 

),(  , and then equation 5.3.4 to calculate r2
 and r.  Real values of the latter are the 

lengths of the semi-axes of the quadric surface.  This is what I obtain: 

 

 

         R                   r2                      r 
 -1.336832     2.624578       1.620055 

 -5.529137     0.634569       0.796599 

  6.865969    -0.511016       0.714854 i 
 

There are two unequal real values of r, and one imaginary value.  This tells us that we 

have an elliptical hyperboloid of one sheet.  

 

As in Example 1, we now substitute into the original equation 

 

zznynxn

yzmymxm

xzlylxl

for

for

for

321

321

321







 

 

On substitution of the numerical values of the direction cosines, we find, again to our 

immense relief, that the coefficients of yz, zx and xy are indeed all zero, and the equation 

to the hyperboloid (by this time we are certain that that is what it is) is 

 

0969865.6137529.5832336.1
116
483222  zyx                 5.3.21 

 

Is the trace unchanged?  That is, does cba  cba ? It does indeed. 

 

Equation 5.3.21 becomes on rearrangement 

 

1
)742778.0()793867.0()843764.1( 2

2

2

2

2

2


zyx

,                          5.3.22 

 

which is the equation to an elliptic hyperboloid of one sheet. 
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Example 3 

 

                      01051333942518 222  xyzxyzzyx   .                          5.3.23 

 

 

The equations to be solved (equations 5.3.8 and 5.3.9) are                       

 

0cos3sin392tan)2sin5.62cos5.35.25(     5.3.24 

0sin3cos39tan)2cos132sin7(       5.3.25 

 

The solutions I find are: 



  rad                 rad                    l                 m                 n 

             deg                deg 

 
     0.496381    1.288647    0.132597    0.457415    0.879312 

    28.440544   73.834025 

     2.645212    4.430239   -0.132597   -0.457415   -0.879312 

   151.559456  253.834025 

 
     1.814469    0.194746    0.952114    0.187801   -0.241269 

   103.961426   11.158140 

     1.327123    3.336339   -0.952114   -0.187801    0.241269 

    76.038574  191.158140 

 

 

     1.993919    1.877734   -0.275495    0.869196   -0.410610 

   114.243135  107.586232 

     1.147674    5.019327    0.275495   -0.869196    0.410610 

    65.756865  287.586232 

 

The matrix of the direction cosines is orthonormal. 

The values of R and r are as follows: 

 

        R                  r 2                r 
 
-14.370036    7.306871    2.703122 

 17.098004   -6.141068    2.478118 i 

 36.272032   -2.894792    1.701409 i 

 

There is just one real value of r.  This tells us that we have a hyperboloid of two sheets.  

 

As in Example 1, we now substitute into the original equation 
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zznynxn

yzmymxm

xzlylxl

for

for

for

321

321

321







                                      5.3.26 

    

We are again relieved to find that the new coefficients of yz, zx and xy are all zero, and 

the new equation becomes: 
 

.0105031272.36004098.17036370.14 222  zyx                    5.3.27 

 

The trace is preserved (it is 19). 
 

On division by 105 and rearrangement, this becomes 

 

.1
)409701.1()118478.2()122702.2( 2

2

2

2

2

2


zyx

 

 

This is an elliptic hyperboloid of two sheets.  The denominators agree exactly with our 

previous calculations of r. 

 

 

 

5.4  Cones.  General Homogeneous Quadratic Equation in Three Variables 

 

    Most of us are familiar with a circular cone, in which the cross-section is a circle.  

However, the cross-section need not be a circle, and it is easy to imagine a cone with an 

elliptical cross-section - or indeed a cross-section in the form of any closed curve.  

Slightly more difficult to imagine, or perhaps slightly less familiar, is a cone with a cross-

section of a curve that is not necessarily closed, such as a hyperbola.  We shall be dealing 

in this section with cones. 

                                      

 

   The general quadratic equation in three variables is an equation of the form 

 

.0222222222  dwzyuxhxygzxfyzczbyax v                      5.4.1 

 

It represents a quadric surface. 

 

  We showed in Section 5.2 how to translate the surface to another set of coordinate axes 

parallel to the original coordinate axes, so that the equation, referred to these new 

coordinate axes is of the form   

 

                    ,0222222  dhxygzxfyzczbyax                                  5.4.2 

 

provided that ,03   
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and we showed how the new coefficients were related to the old ones.  We pointed out 

that, since there are no terms in x, y, or z, reversing the signs of x, y and z does not 

change the equation, and that therefore equation 5.4.2 represents a surface that has a 

centre of symmetry at the origin of coordinates.   

 

By rotating the axis of coordinates, we were able to reduce the terms in yz, zx and xy to 

zero, and hence we were able to see easily what sort of quadric surface was represented.  

We tried three numerical examples, which we showed represented, respectively, a triaxial 

ellipsoid, an elliptical hyperboloid of one sheet, and an elliptical hyperboloid of two 

sheet. 

 

   In what follows in this section we suppose not only that ,03  but also that 0d , 

so that the equation is of the form of a general homogeneous quadratic equation in three 

variables: 

 

.0222222  hxygzxfyzczbyax                                 5.4.3 

 

This, like equation 5.4.2, represents a surface with a centre of symmetry at the origin of 

coordinates.  However, it is also seen that 0,0,0  zyx  satisfies equation 5.4.3.  

In other words the origin of coordinates is a point on the surface.  From this we see that 

equation 5.4.3 represents a cone. 

 

We recall from Section 5.1 that, if equation 5.1.2  

 

0222222222  dwzyuxhxygzxfyzczbyax v          5.1.2 

 

is to represent a central quadric, the determinant 3  (defined by) equation 5.1.3) must not 

be zero.  And if equation 5.4.2 is to represent a cone, d must be zero.  Recall also from 

equation 5.2.6 that .
3

4




d    Thus the general equation 5.1.2 represent a cone iff 

.0and0 34   

 

 

   Let us try two numerical examples: 

 

Example 4 

  

0238674 222  xyzxyzzyx    5.4.4 

 

,0

645.1

471

5.114

3 



   (it is 253.75) so we can safely deal with it in this section.   
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To try to visualize this, let us see what the cross-sections in the planes 

0,0,0  zyx  look like: 

 

x  =  0:    0687 22  zyzy      5.4.5 

y  =  0:          0436 22  xzxz     5.4.6 

z  =  0:    0724 22  yxyx     5.4.7 

 

We are, I hope, sitting in front of our computers and can instantly solve quadratic 

equations, to obtain: 

 

x  =  0:    0)6026.0)(9360.1(  yzyz    5.4.8 

y  =  0:    0)1039.1)(6039.0(  xzxz    5.4.9 

z  =  0:             0,0  yx      5.4 10 

 

I’ll let the reader sketch these. 

 

It will also help to visualize the surface if we look at the cross-sections in the planes  

1,1,1  zyx .  Well start with the plane z  =  1. 

 

z  = 1:                 0683724 22  yxyxyx    5.4.11 

 

We can determine what sort of curve this is by making use of the table on page 50 of  

orca.phys.uvic.ca/~tatum/celmechs/celm2.pdf.  This may take a minute or two, though I 

admit that I long ago programmed the table into my computer, so that I can tell instantly 

that this is an ellipse whose centre is at the point ).1,4816.0,3705.0(    So we now 

know that equation 5.4.4 represents an elliptical cone, whose vertex is at the origin of 

coordinates, and the direction cosines of its axis are ).765.0,496.0,411.0(   

 

Now let us look at the cross-sections in the planes x  =  1  and y =  1: 

 

x  = 1:         0432687 22  zyzyzy    5.4.12 

y  = 1:         0782734 22  zxzxzx    5.4.13 

 

Unsurprisingly, these are both hyperbolas.  The centre of 5.4.12 is at ),0,1(
3
2  and the 

centre of 5.4.13 is at ).,1,0(
4
1  

 

 

   Let us try another example: 

 

Example 5 

 

.046832 222  xyzxyzzyx         5.4.14          
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 ,0

143

432

322

3  (it is 33) so we can safely deal with it in this section.   

 

  To try to visualize this, let us see what the cross-sections in the planes 

0,0,0  zyx  look like: 

 

x  =  0:    083 22  zyzy      5.4.15 

y  =  0:             042 22  zxzx     5.4.16 

z  =  0:       0342 22  yxyx     5.4.17 

 

That is to say: 

 

x  =  0:                 0)7863.2)(1196.0(  zyzy .                                      5.4.18 

y  =  0:      0,0  zx       5.4 19 

z  =  0:       0)7208.1)(3874.0(  xyxy     5.4.20 

 

I’ll let the reader sketch these, and by this time it is clear that we are dealing with a cone 

whose vertex is at the origin of coordinates. 

 

To visualize further what the surface looks like, we’ll look at the cross-sections in the 

planes .1,1,1  zyx    These are 

 

 

x  =  1:          026483 22  zyzyzy   5.4.21 

y  =  1:      038462 22  zxzxzx   5.4.22 

z  =  1:      0186342 22  yxyxyx   5.4.23 

 

These are all hyperbolas.  Equation 5.4.14 represents a hyperbolic cone. 

 

 

APPENDIX 5A 

 

   Earlier in the chapter, we encountered, as equations 5.3.8 and 5.3.9. two simultaneous 

equations in  and Here I re-label them as  5A.1 and 5A.2:

                        

0cos2sin22tan]2sin2cos)()([),(
2
1

2
1  gfhbabacF  

5A.1 

 

0sin2cos2tan]2cos22sin)([),(  gfhabG                          5A.2 
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There are probably several approaches to solving such pairs of non-linear equations.  

I offer two methods here.  The equations, and their solutions below, may look fearsome – 

but programming their solutions is totally straightforward (no conditionals or other 

complications), and the actual numerical solution is apparently instantaneous.  

 

   For a numerical example we shall use the Example 1 above (equation 5.3.10), in which 

   

15212921572342179248  hgfcba  

  

 

First Method 

 

   It is easily possible to eliminate  between the two equations 5A.1 and 5A.2, thus 

obtaining a single equation in the single variable .   

  

  The two equations 5A.2 and 5A.1 respectively can be written 

 

  ),(
2cos22sin)(

sin2cos2
tan 




 A

hab

gf
                                       5A.3 

 

                          )(
2sin2cos)()(

cos2sin2
2tan

2
1

2
1





 B

hbabac

gf
           5A.4      

 

To make them look slightly simpler, introduce 

 

                             p  = c 
2
1 (a b),                     q  =  

2
1 (a b) ,                         5A.5a,b 

 

so that the equations become 

 

),(
2cos2sin

sincos
tan 




 A

hq

gf
        5A.6 

 

 

             )(
2sin2cos

cos2sin2
2tan 




 B

hqp

gf
.                                            5A.7 

 

and we then immediately have, as the -eliminant between these equations, 

 

                                         
21

2

A

A
B


  ,                                                                       5A.8 

 

and so the promised single equation to be solved for the single variable  is 
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                                    .02)( 2  BABA                                                 5A.9 

 

It is straightforward to find approximate solutions for this equation, merely by plotting a 

graph of versusAlthough  is a complicated funtion of , it is straightofroward 

to program, and on my computer the calculation for 361 values of from 0 to 360 

degrees was apparently instantaneous.






We see that there are solutions near to 

 

 40          78          160          220          258          340     degrees 

 

From equation 5A.3 or 5A.4  (or from both, as a check) we find that these correspond to 

 

     =    30        114            74          150            65         106degrees 

 

These give the directions (positive and negative) of three orthogonal axes.


 

  To refine the solutions to equation 5A.9, we use the Newton-Raphson process, which is:  
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
''2)''2(

)2(

' BAABBAA

BABA









   5A.10 

 

in which the prime denotes the derivative with respect to .  The derivatives are: 

 

2

4321

)2cos2sin(

]2cos2sin[cos)2cos2sin(sin
)('






hq

ssss
A                       5A.11 

  

 

2

1234

)2sin2cos(

)]2cos2sin(cos)2cos2sin([sin2
)('






hqp

sspfsspg
B    5A.12 

 

in which 

       

s1  =  -qf  +  2gh     5A.13 

s2  =    hf  +  2qg     5A.14 

s3  = -qg     2hf     5A.15 

s4  =   gh     2qf     5A.16 

 

 

Although this may look formidable, it is perfectly straightforward to code, with no 

conditionals or other complications, and computation time is instantaneous.  Thus, here is 

the procedure: 

 

Enter the constants a   b   c   f   g   h   d and the first guess for (It need not be a 

particularly good guess, but we already have good guesses from our graph, so we might 

as well use them.) 

 

Calculate and store one after the other, the following quantities: 

 

sin cos sin 2cos 2p   q   s1   s2   s3   s4   A   B   'A   'B    '  

 

Subtract   '  from  to obtain an improved  and repeat until convergence is achieved. 

 

The second spherical angle, , can then by calculated from equation 5A.5 or 5A.6  

(preferably from both, as a check). 

 

   With a first guess of 40
 
degrees, I achieved convergence to 12 significant figures in four 

iterations, the final solution appearning on the computer screen almost instantaneously.
 


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Second Method  
 

  In the first method, we took advantage of the fact that one of the two variables, , could 

easily be eliminated between the two equations, leaving us with a single equation in one 

variable, which could then be solved by a standard Newton-Raphson procedure.  The 

second method can be used to solve two simultaneous equations in two variables even in 

cases where one of the variables cannot be eliminated.   The method is merely an 

extension to two variables of the Newton-Raphson procedure.   

   

  Before I describe it in detail, I warn in advance:  1. We are going to have to make an 

initial guess at the solutions for both  and ,  and  2. We are going to need the four 

partial derivatives  


F
,    



F
,     



G
,     



G
. 



As for an initial guess, you probably have no idea.  However, as you vary  and 

over the surface of the quadric, looking for a spot where r is an extremum, there are not 

likely to be any sudden rapid changes in r.  That is, F and G are “well-behaved” 

functions. That being the case, you don’t have to make a particularly intelligent initial 

guess.  Since we are looking for solutions for  in the range 0 to and for  in the range 

0 to 2,you might be tempted to try 2/  and  .  However, I’d advise against 

this - you don’t want to risk asking your computer to divide something by zero, so zero 

first guesses are best avoided.   Note that there must be six solutions for () there are 

three mutually orthogonal axes, each of which has two ends.   I’ll describe how I made 

my own guesses a little further on. 

    

 

  2. I warned that we are going to need the partial derivatives, so let’s start by listing them 

here.  (You can probably get them from Wolfram if you don’t trust yourself.) 

 





2sec]2sin22cos)(2[ 2hbabac

F

                                          5A.17 





sin2cos22tan]2cos22sin)[( gfhba

F

                                5A.18 




 2sec]2cos22sin)([ hab
G

                                                                    5A.19   







cos2sin2tan]2sin42cos)(2[ gfhab

G
                         5A.20 
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  Here then, is the method.  You make a guess.  Suppose that your guesses are   

and    +  You would like to know your errors  and , so that you can subtract 

them from your original, erroneous, guesses. If you substitute your original guesses in the 

original equations, you will find, alas, that neither ),( F nor 

),( G are zero.  However, at least to a first approximation, 

 

                          










FF
FF ),(),(                         5A.21                        

 

and                    










GG
GG ),(),(   .                    5A.22       

 

 (No advanced mathematics here - just common sense.)  And of course we are looking for 

solutions with 0),( F    and 0),( G , so equations 5A.21 and 5A.22 are just 
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So now all you have to do is to evaluate F, G and their derivatives with your guessed 

solutions, and solve equations 5A.9 and 5A.10 for   and These solutions are 

 

(GF FG)/(FG FG)    5A.25 

 

(FG GF)/(FG FG)    5A.26


 

   As with Method 1, it looks awfully complicated, but it is very straghtforward to 

program, and the actual calculation is instantaneous. 

 

  Here is the procedure: 

 

Enter the constants a   b   c   f   g   h   d and the first guesses for  and 

Calculate and store cos 2tan tan 2

Calculate F, G and the four partial derivatives. 

Calculate and  

 

Subtract these from your first guesses, to get a new guess much closer to the truth.  

Repeat this until  and  change by as little as you like. 

 

  There are going to be six solutions for (), corresponding to the two ends of the three 

orthogonal axes.  Making a first guess is a potential problem.  However, we have argued 
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that the equations are “well-behaved”, so that a particularly good first guess is not 

essential.  For my first guess I tried the completely arbitrary values of  and each equal 

to one radian.  It was not a good guess, and it took 13 iterations to converge to a 

precision of  10
12

 degree – although the calculation was practically instantaneous.  

To six decimal places, the solution I got, in degrees, was () = (30.029662.  

39.894764).  For the other end of this axis, the solution has to be (180 

 

  For a second axis, I didn’t really know what to so, but I arbitrarily tried   = 60 and  

20 degrees. This was apparently a lucky guess, and the computer came up, in seven 

iterations, with   =  73.786340 and   radians.  The other end of this axis 

is, as before, (180  

 

  For a third axis, there are two methods.  One is to try another guess until you come to 

the third solution.  The other is to convert to l, m, m, and note that the three 

directions must be orthogonal, so that 

 

            212132121321213 ,, lmmlnnllnmmnnml    .                          5A.27 

 

Both methods should be used as a check against mistakes. 

    

 

 

   

 

 


