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POLARIZED LIGHT AND THE STOKES PARAMETERS 

 

   Suppose that we wish to characterize a beam of parallel monochromatic light.  A description of it 

should include the following. 

 

   * Its wavelength or frequency.  Its wavelength depends upon the refractive index of the material 

in which it is travelling, whereas its frequency does not.  Therefore, if the wavelength is given, the 

medium must be specified.  It may not always be realized, but most tables of wavelengths of 

spectrum lines in the visible region of the spectrum are given for air and not for a vacuum. 

[Actually for something called “Standard Air” - details of which may be found in 

http://orca.phys.uvic.ca/~tatum/stellatm/atm7.pdf  ]   Specifying the 

frequency rather than the wavelength removes possible ambiguity.   Spectroscopists often quote the  

wavenumber in vacuo, which is the reciprocal of the vacuum wavelength. 

 

  * Its flux density in W m
−2

.   This is related to the electric field strength of the electromagnetic 

wave, in a manner that will be discussed later in the chapter. 

 

  * Its state of polarization.   In this chapter, polarized light will in general be taken to mean 

elliptically polarized light, which includes circularly and linearly (plane) polarized light as special 

cases. The state of polarization can be described by specifying 

 

          * the eccentricity of the polarization ellipse 

          * the orientation of the polarization ellipse 

          * the chirality (handedness) of the polarization ellipse 

          * whether the polarization is total or partial, and, if partial, the degree of polarization. 

 

 

   Polarized light is generally described by supposing that, at some point in space, the tip of the 

vector that represents the strength of the electric field describes a Lissajous ellipse (figure 1). 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

     In the drawing the semi major axis a represents the greatest value of the electric field strength, 

in volts per metre, during a cycle, and the semi minor axis b represent the least value of the electric 

a 

θ 

FIGURE 1 
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field strength during the cycle.  If you prefer, you could use symbols such as Emax and Emin instead 

of a and b. 

 

     In order to describe the ellipse, we need to describe its size, its shape, its orientation and its 

chirality or handedness (i.e., whether the vector is rotating clockwise or counterclockwise). 

The natural way of doing this is to give the length  a of the semi major axis (in volts per metre), the 

eccentricity of the ellipse ( / )e b a= −1 2 2 , the angle θ that the major axis makes with the 

horizontal, and perhaps one of the words "clockwise" or "counterclockwise".   It will be necessary, 

however, to make clear whether you, the observer, are looking towards the source of light, or are 

looking in the direction of travel of the light.  Not everyone uses the same convention in this matter, 

and the onus is on the writer to make clear which convention he or she is using.  In this chapter I 

shall assume that we are looking towards the source of the light.  In figure 1, I have drawn the 

ellipse with b a e/ ( . ) .= = = =1
2

3

2
0 8660 30and oθ  

 
  [Since I wrote the above paragraph, I received in December 2015 a memorandum from the International Astronomical 

Union stating that there has long been an IAU convention that position angle is to be reckoned positive in the 

counterclockwise direction for an observer looking towards the source of light.  This is in fact the convention that I use 

in these notes.  The IAU memorandum, however, pointed out that some scientists who investigate the polarization of 

the Cosmic Background Radiation have been using the opposite convention, and consequently the IAU reiterates its 

recommendation that all astronomers, including those working on the CBR, use the above convention.  This is a good 

example of what I meant in the previous paragraph.  I would emphasize that, even although there is an IAU convention 

- one which I strongly support - it is incumbent upon YOU, to make certain, if you wish your readers to understand 

you, to make it unambiguously clear, whenever you write about polarization, as to what convention you are using. And 

don’t just say “the IAU convention”.  Say that angles are reckoned positive if increasing counterclockwise when you 

are facing towards the source of light.   I hope that referees and editors will enforce this!]  

 

   We noted above that the flux density of the beam is related to the electric field strength of the 

electromagnetic wave.  In this paragraph and the next we explore this relation.  Suppose, for 

example, that the light is plane polarized, and that the maximum value of the electric field is E
)

 

volts.   Its mean square value during a cycle is .ˆ 2

2
12

EE =    The energy per unit volume is 

2

4
12

2
1 ÊE ε=ε    J m

−3
  , where ε is the permittivity of the medium in which the radiation is 

travelling.    If it is moving at speed v, the flux density of the beam is 2

4
1 Êεv   W m

−2
 . 

The speed of an electromagnetic wave in a medium of permittivity ε and permeability µ is given by 

εµ
=

1
v , so this expression becomes 

Z

E
E

4

ˆ
ˆ

2
2

4
1 =

µ

ε
, where 

ε

µ
=Z  is the impedance (in the 

sense used in electromagnetic theory) of the medium.  For most transparent media, µ is very close 

to µ0. the permeability of free space.  This is not the case for the permittivity, which usually ranges 

from 1 up to a few tens of times ε0.  For a vacuum, the impedance has a value of about 377 Ω. 

 

   If the light is elliptically polarized, the expression for the flux density will be   ,
4

22

Z

ba +
 where a 

and b are the electric fields described in earlier paragraphs.  That the 2Ê  for plane polarized light 
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can be replaced by 22 ba +  for elliptically polarized light should become apparent later while 

discussing the director circle property of an ellipse. 

 

   While these parameters may be the obvious ones to use in decribing the state of polarization, the 

fact is that none of them is directly measurable.  What we can measure relatively easily is the 

intensity of the light when viewed through a polarizing filter oriented at various angles. What we 

can measure are four parameters known as the Stokes parameters, which we shall describe shortly.  

We can measure the Stokes parameters, and it will then be our task to determine from these the 

eccentricity, orientation and chirality of the polarization ellipse, and the degree of polarization.  

 

   Before describing them, a word about notation.  

 

   The traditional symbols used to describe the Stokes parameters are IQUV. These may seem 

somewhat haphazard, so some modern authors prefer a more systematic S1 S2 S3 S4, while some 

prefer  S0 S1 S2 S3.  If you use the modern S notation, I would (strongly) recommend S0 S1 S2 S3 over 

S1 S2 S3 S4.  In these notes, however, I shall be old-fashioned and I shall use IQUV , which at least 

has the advantage of avoiding the ambiguity over the two possible S notations, and you will not 

have to worry which version I am using. 

 

 

 

 

 

     

 

   

 

 

 

 

 

 

 

 

    In the figure the lines represent the component of the electric field passed by the filter. The 

lengths of the long organic molecules embedded within the filter are perpendicular to this 

transmission direction.  Light (i.e. an oscillating electromagnetic field) that is oscillating parallel to 

the lengths of these molecules is strongly absorbed, because of the highly anisotropic polarizability 

of these molecules. 

 

    Perhaps we can measure the intensity of the light after passage through the filter at each of these 

angles, and also without the filter, and somehow determine from these measurements the shape and 

orientation of the polarization ellipse. 

 

FIGURE 2 

0º 90º 45º 135º 



 4 

  The Stokes parameters are named after a nineteenth century British physicist, Sir George Stokes, 

and may be referred to as Stokes's parameters, Stokes' parameters or the Stokes parameters, but not, 

of course, as Stoke's parameters. 

 

  Let us imagine that we have in our hand a flux meter, and that it can measure the flux density, in 

W m
−2

  of our parallel beam of monochromatic light. While we would prefer to use the symbol F 

for flux density, in fact the flux density of the unobstructed light is the first of the Stokes 

parameters, for which the traditional symbol is I (and whose modern symbol is S0 or S1, depending 

on which book you are reading.) 

 

   Now let us suppose that we measure the flux density of the light after passage through a 

polarizing filter oriented at various angles as suggested in figure 2.  The second and third Stokes 

parameters, then, are defined by 

 

900 FF −=Q      (1) 

and     13545 FF −=U      (2) 

 

  Unless you are fortunate or rich, it is unlikely that your little flux meter will accurately measure 

the flux densities in absolute SI units in W m
−2

.   Therefore those of us of more modest means will 

just have to be content with dimensionless Stokes parameters - measured in units so that the 

unobstructed flux density is 1.  We define the dimensionless Stokes parameters (for which I use a 

different font) by 

I

Q
=

−
=

F

FF
Q 900     (3) 

I

U
=

−
=

F

FF
U 13545     (4) 

Thus, for the dimensioned Stokes parameters in W m
−2

 (which we may not easily be able to 

measure), I use IQUV.  For the dimensionless Stokes parameters, I use QUV.  (There is no need for 

a dimensionless I, because it is 1.) 

 

    It is possible to determine the eccentricity e and the inclination θ of the polarization ellipse from 

Q and U.  Here I give the relations without derivation.  I shall give a derivation in an Appendix to 

this chapter.  For the time being, then, here are the relations: 

 

    
2

2

2

2

2

2sin

2

2cos

e

e
U

e

e
Q

−

θ
=

−

θ
=                (5)   (6) 

 

   Perhaps of more interest are the converses of these: 

 

 

            
Q

U

UQ

UQ
e =θ

++

+
= 2tan

1

2

22

22
2

              (7)   (8) 
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   In solving equation (8) for θ, it is necessary to know the signs of U and Q separately, in order to 

avoid an ambiguity of quadrant.  Provision of the arctan2 function in a calculator or computer 

greatly facilitates this. 

 

  The table below shows a sample of polarization ellipses for various combinations of Q and U. 

For reasons that will become apparent during the derivation of the formulas in the Appendix, all of 

the ellipses are drawn such that 22 ba +  is the same for each.  This ensures that the flux density is 

the same for each. 
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U 
Q +1+1+1+1    −1−1−1−1    −0.866−0.866−0.866−0.866    +0.866+0.866+0.866+0.866    −0.−0.−0.−0.5555    

    

+0.5+0.5+0.5+0.5    0000    

−1−1−1−1    

−0.866−0.866−0.866−0.866    

++++0.8660.8660.8660.866    

−0.5−0.5−0.5−0.5    

0000    

+0.5+0.5+0.5+0.5    

+1+1+1+1    
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  Thus far we have dealt with the Stokes parameters I (related to the flux density of the light), and Q 

and U (related to the shape and orientation of the polarization ellipse).  Now we have to describe 

the Stokes parameter V, and how it is related to the chirality (handedness) of the ellipse. In this 

account, when I use the words “clockwise” and “counterclockwise” I shall assume that we are 

looking towards the source of light. 

 

  If we really want to know the chirality, we need to have a good research grant and to be in 

possession of a filter that passes only circularly polarized light.  A linear polarizer in conjunction 

with a quarter-wave plate will do it.  I shall take it that the filter passes only light that is circularly 

polarized in the counterclockwise sense.  Suppose the flux density after passage through such a 

filter is FC.   The Stokes V parameter is defined as 

 

 

     FF −= C2V ,     (9) 

 

or, in dimensionless form, 

     1
2 C −=
F

F
V .     (10) 

 

  It will be observed that this parameter (like the others) ranges from −1 (if FC = 0) to +1 (if FC = 1), 

and hence that negative V implies counterclockwise polarization, and positive V implies clockwise 

polarization.   We shall also show in the Appendix, that (subject to an important condition - see 

below),  V is related to the eccentricity by 

 

     
22

2
2

)2(

)1(4

e

e
V

−

−
= .                             (11) 

  

This means that V = 0 implies e = 1, and hence linear polarization (for which there is no chirality).    

Also,  V
2
 = 1 implies e = 1, and hence circular polarization.  Conversely 

 

    
( )

2

22
2 112

V

VV
e

−++−
=               (12) 

 

 Thus one can determine both the chirality and the eccentricity (but not θ) from V alone.  Figure 3 

shows the relation between |V| and e.  The figure shows, however, that e cannot always be 

determined with great precision from |V| alone, so that Q and U are really in practice necessary. 
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FIGURE 3 

 

 

   

  This redundancy must mean that Q, U and V are not independent, and indeed it will be observed 

from equations (5), (6) and (11) that 

 

.1222 =++ VUQ         (13) 

 

   In terms of the dimensioned Stokes parameters: 

 

    .2222
IVUQ =++          (14) 

 

   In one of the S notations, this would conveniently be 

 

    .2
0

2
3

2
2

2
1 SSSS =++            (15) 

 

   Just before equation (11) we referred to an important condition.  Equations (11) - (15), and figure 

3, are valid only for the case of total elliptical polarization.  The case of partial polarization is 

discussed in what follows.  The section on partial polarization should not be thought of as a 

relatively unimportant afterthought, because most sources of polarized light that one comes across 

are more likely to be partially polarized rather than totally polarized. 
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Partial Polarization 
 

        Until this point we have assumed that we have been concerned with a single coherent wave 

with one well-defined polarization state.  In practice, we rarely see this, and we more often have to 

deal with partially polarized light.   Most of us have a fairly good idea of what is meant by light 

that is partially plane polarized horizontally.   We mean that the light is mostly like this:   

 

 

 

but there’s also a little bit of this:       

 

 

But if that were so with two coherent waves, this would result, if they were in phase, in this:  

 

 

 

 

or if they were not in phase,  in this: 

 

 

 

 

 

 

 

   In truth, unless we are looking at a coherent light source, such as a laser, partially polarized light 

might be more like this: 

     

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4 

 

This is partially plane polarized at about an angle of 30º, but it is clearly not totally plane polarized.  

 

Partially polarized light can be described as the sum of a totally polarized component plus an 

unpolarized component.  Thus we might describe the situation illustrated above by something like 

this: 
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FIGURE 5 

 

 

Partially elliptical polarized light might be described by a totally elliptically polarized component, 

plus an unpolarized component: 

 

 

 

 

 

          

 

 

 

 

 

 

 

FIGURE 6 

 

 

   If we could somehow separately measure the flux densities of the polarized (p) and unpolarized 

(u) components, we could define the degree of polarization by 

 

     
up

p

FF

F
p

+
=          (16) 

 

If we know that the light is partially plane (linearly) polarized, as in figure 5 (rather than elliptically 

polarized as in figure 6), we can measure this rather easily.  Place the polarizing filter in front of the 

source, and rotate it until the transmitted flux density goes through a maximum, maxF .  and then 

through a further 90º until it goes through a minimum, minF .  This will give you the degree of 

polarization from  
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     .
minmax

minmax

FF

FF
p

+

−
=        (17)   

 

and of course it also gives you the polarization angle.  This applies, of course, only to light that you 

know to be partially linearly polarized.  It will not do for partially elliptically polarized light. 

 

    Recall that 

 

I

Q
=

−
=

F

FF
Q 900     (3)  

 

and     
I

U
=

−
=

F

FF
U 13545     (4) 

 

   If the source is partially plane polarized, each of the measurements 13545900 ,,, FFFF includes a 

total linear or elliptical component, and an unpolarized component.  However, the unpolarized 

component is the same for each of these four measurements.  Consequently Q and U describe the 

“total” component only.  Thus all equations up to and including equation (8), as well as the table 

illustrating the shape of the ellipse as a function of Q and U, are still valid for the “total” 

component.   

 

  The parameter V, however, was defined in equations (9) and (10) by 

 

     IF −= C2V ,     (9) 

 

or, in dimensionless form, 

     1
2 C −=
F

F
V .     (10) 

 

FC and F each contain a “total” and an unpolarized component, so that, unlike Q and U, the “total” 

component is not separated out. 

 

Recall from equations (13) and (14) that  222
VUQ      I ++=  and .1222 =++ VUQ   

These were derived for totally elliptically (which includes linearly) polarized light.   For light that 

is partially polarized, it applies only to the “total” part, so that, for partially polarized light, 

 

.222
VUQp ++=                                                (18) 

 

From equations (5), (6) and (18) we determine that 

.
)2( 22

4
2

e

e
Vp

−
+=                                             (19) 
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   Thus from the measurements of 13545900 ,,, FFFF and their combinations IQUV we have 

determined, for partially polarized light, the degree of polarization, and the eccentricity, orientation 

and chirality of the polarization ellipse. 

 

   Equation (18) suggests that that the state of polarization of light can be described by a point in 

QUV space .  This concept is described by the Poincaré sphere: 

 

 

 

 

 

 

 

 

 

             

 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

   In this context I have often seen the notation 2ψ for φ  and 2χ for 90º  −  θ.   (The θ here, of 

course, is not the same as the θ of figure 1. 

 

   Let us suppose, to begin with, that we have total polarization, so that p = 1.  The reader is invited 

to imagine the shape of the polarization ellipse at any point on the surface of the sphere.  Recall in 

particular that V = 0 implies linear polarization, and 1±=V  implies circular polarization.  Thus 

anywhere around the equator of the Poincaré represents linear polarization, and at the poles we 

have circular polarization. 

 

  Let us look along the meridian of longitude with φ = 0  (U = 0).  As we go from the “north pole” 

to the “south pole”,  V goes from +1 (circular) through 0 (linear) to −1 (circular), and Q goes from 0 

Q 

 

V 

p 

θ 

φ 

FIGURE 7 
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(circular) through 1 (linear) to 0 (circular).  It will be useful (essential) to refer to the table on page 

5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      The reader is now invited to think about (while referring to the table on page 5) the situation 

along the meridian with φ = 90º.  And then to try other meridians, eventually covering the sphere 

with ellipses.  This is a little beyond my artistic ability, but I found a very good one by Googling 

for Poincaré sphere.  Choose “Images for poincare sphere”.   There are some excellent images 

there.  I particularly like the orange-coloured one from University of Arizona.  If you click on it, 

the sphere rotates, and you can see all round the sphere. 
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APPENDIX 

 

 

   In the article above I described the Stokes parameters, and I related them to the shape, orientation 

and chirality of the polarization ellipse, as follows (for total polarization): 

 

2

2

2

2

2

2sin

2

2cos

e

e
U

e

e
Q

−

θ
=

−

θ
=    

22

2
2

)2(

)1(4

e

e
V

−

−
=  

 

 In this Appendix,  I derive these relations. 

 

  Before starting, let us remind ourselves of an established property of an ellipse of semi major and 

semi minor axes a and b, namely that the locus of the corners of all circumscribing rectangles to an 

ellipse is a circle, known as the director circle, which is of radius  22
ba + . This is illustrated in 

figure A1, in which I have drawn three circumscribing rectangles.   The semidiagonals of all the 

circumscribing rectangles are of the same length, namely 22
ba + .   A proof of this theorem is to 

be found in  http://orca.phys.uvic.ca/~tatum/celmechs/celm2.pdf , section 2.3,  or in 

many books on the properties of the conic sections. 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

FIGURE A1 
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  Recall now the meanings of a and b.  They are the semi major and semi minor axes of the ellipse, 

but they are also the greatest and least values of the electric field during a cycle.   Recall also that 

the energy per unit volume of an electric field is proportional to the square of the electric field 

strength.    When the light is observed direct without the intervention of a polarizing filter, the flux 

density of the light is proportional, then, to a b
2 2+ .  That is to say, the Stokes parameter I is 

proportional to the square of the radius of the director circle. 

 

  In what follows, we shall have occasion to refer the polarization ellipse to three rectangular 

coordinate systems.  

 

  i.  A coordinate system (x ,  y), in which the axes of coordinates coincide with the axes of the 

polarization ellipse. 

 

 ii.  A coordinate system (x1 ,  y1), in which the axes of coordinates are horizontal and vertical - or, 

to more precise, parallel to the transmission axes of the first two filters illustrated in figure 1. 

 

iii.  A coordinate system (x2 ,  y2), in which the axes of coordinates are parallel to the transmission 

axes of the last two filters illustrated in figure 1. 

 

   The ellipse referred to these three coordinate systems is shown in figures A2, A3, A4.  In each of 

these drawings, I have drawn a circumscribing rectangle and the director circle. The flux density of 

the radiation is proportional to the square of the rectangle diagonal, which is the same in all three 

drawing, and is equal to the diameter of the director circle, namely .2 22
ba +  

  

  I have also indicated the lengths 2211 ,,,,, bababa  in these drawings.  These represnt the 

maximum values of the component of the electric field during a cycle in the directions of the six 

axes.  Indeed, the reader might even prefer an alternative notation: 

 

2

2

1

1

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

2

2

1

1

y

x

y

x

y

x

Eb

Ea

Eb

Ea

Eb

Ea

≡

≡

≡

≡

≡

≡

 

 

  The first notation is easier for the analysis of the geometry of the ellipse.  The second notation 

reminds us of the physical meaning of the symbols.  Indeed the readings of our flux meter are 

proportional, successively, to ,ˆ,ˆ,ˆ,ˆ,ˆˆ 222222

2211 yxyxyx EEEEEE +  or, in the a, b notation 

.,,,, 2
2

2
2

2
1

2
1

22 bababa +   The Stokes parameters I, Q, U are proportional successively to 

222222

2211

ˆˆ,ˆˆ,ˆˆ
yxyxyx EEEEEE −−+ , or in the a, b notation, .,, 2

2
2
2

2
1

2
1

22 bababa −−+  
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FIGURE A3 
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   Refer to figure A2.   The equation to the ellipse, referred to this coordinate system, is the 

familiar 

 

1
2

2

2

2

=+
b

y

a

x
,        (A1) 

 

However, I want to express lengths (electric field strengths) in units such that a b
2 2 1+ = , and, 

further, I want to write the equation in terms of the eccentricity e b a= −1 2 2/ .  In that case, 

equation (A1) becomes  

 

fx gy
2 2 1+ = ,     (A2) 

 

x2 y2 b2 

a2 

FIGURE A4 
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where     f e g
e

e
= − =

−

−
2

2

1

2
2

2
and .    (A3) 

 

 

 

   Now refer to figure A3.  If the major axis of the ellipse makes an angle θ with the horizontal, the 

coordinate systems are related by  

 


















−
=









1

1

y

x

cs

sc

y

x
,                    (A4) 

 

θ= cosc    and   θ= sins . 

 

On making use of equations (A2) and (A4), we find that the equation to the ellipse referred to the 

(x1 ,  y1) coordinate system is 

 

( ) ( ) ( )fc gs x g f scx y fs gc y
2 2

1

2

1 1

2 2

1

22 1+ − − + + =              (A5) 

 

We now wish to find    
1

ˆ
1 xEa ≡  and  

1

ˆ
1 yEb ≡ , the maximum horizontal and vertical components 

of the electric field.  The length a1 can be found as follows. The vertical line x a1 1=  intersects this 

ellipse at values of y1 given by 

 

( ) ( ) ( ) .fs gc y g f sca y fc gs a
2 2

1

2

1 1

2 2

1

22 1 0+ − − + + − =                             (A6) 

 

But the line x a1 1=  is to be a vertical tangent to the ellipse, and therefore the quadratic equation 

(A6) must have two equal real roots, which tells us, after a little algebra, that 

 

a
fs gc

fg
1

2
2 2

=
+

.          (A7) 

 

A similar analysis starting with the horizontal line y b1 1=  reveals that 

 

b
fc gs

fg
1

2
2 2

=
+

.        (A8) 

 

 

For a check on the correctness of the algebra, it can now be verified that a b1

2

1

2 1+ = . 

 

The Stokes Q parameter is a b1

2

1

2− , and , after some algebra and trigonometric identities, it is 

found that 
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Q a b
e

e
= − =

−
1

2

1

2
2

2

2

2

cos θ
,       (A9) 

 

which is one of the relations that we sought. 

 

 

Now refer to figure A3.  The ),( 22 yx  and ),( yx coordinate systems are related by 

 
















 −
=









2

2

y

x

CS

SC

y

x
,      (A10) 

 

where    S C= − = −sin( ) cos( )45 45o oandθ θ .    (A11) 

 

 

On making use of equations (A2) and (A10), we find that the equation to the ellipse referred to the 

(x2 ,  y2) coordinate system is 
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To obtain U, we now proceed in a similar fashion to the analysis of Q.  We combine this equation 

with x a2 2=  and put in the condition that the resulting quadratic equation in y2 has two equal real 

roots, to obtain 
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Likewise, by combination with y2  =  b2 , we obtain 
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The correctness of the algebra can be checked by verifying that a b2

2

2

2 1+ = .   Then U, which is  

a b2

2

2

2− , can be calculated with some algebra and trigonometry, to be 
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     (A15) 

And this is a good time to remind ourselves of equation (A9): 
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   In our drawings in this chapter, we have taken ,
2
1 ab =    o

2

3 30, =θ=e , so that 

Q U= =0 3 0 5196. , . . 
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   Now for the chirality or handedness of the radiation.  From measurements of  Q and U we have 

deduced the eccentricity and orientation of the Lissajous ellipse, but we don’t yet know whether the 

tip of the E-vector is moving clockwise or counterclockwise (as seen when looking towards the 

source of light).  This is what the Stokes V parameter is going to tell us.   

 

    It is well known that a Lissajous ellipse can be generated as the resultant of two simple harmonic 

linear oscillations at right angles to each other.  In order to understand the V parameter it is 

necessary to understand that a Lissajous ellipse can also be generated by two circular motions, of 

different amplitude, and moving in opposite directions.  If the semi major and semi minor axes of 

the Lissajous ellipse are, respectively, a and b, the radii of the circular components are )(
2
1 ba +  

and )(
2
1 ba −  (see figure A5). 

 

 

 

 

 

 

 

 
 

 

 

      

 

 

 

 

 

 

 

 

 

 

   

 To measure V we place in front of the light source a filter that transmits only circularly polarized 

light.  We’ll suppose that it transmits light that is left-handed (counterclockwise) as seen when 

looking towards the light source.  I.e. it will obstruct the smaller circle of figure A5 and transmit 

the large circle. 

 

    If the fraction of the flux density passed by the filter is f , the Stokes V parameter is .12 −f  

Examples: 

 

     If the light is lefthand circularly polarized, the filter will transmit all of the light.  That is,  

.1,1 == Vf  

 

     If the light is righthand circularly polarized, the filter will transmit none of the light.  That is,  

.1,0 −== Vf  

 

FIGURE A5 
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    If the light is linearly polarized, the filter will transmit half of the light.  (Linearly polarized light 

can be generated by two equal circles moving in opposite directions.)      That is,  

.0,
2
1 == Vf  

 

   In figure A5, ab
2
1= .  The radius of the small circle (which is obstructed) is a

4
1  and the radius of 

the large circle (which is transmitted) is .
4
3 a   The flux density of the unfiltered light is proportional 

to .2

4
522

aba =+   The flux density of the light that is passed is proportional to .2

8
9 a   (The flux 

density, we recall, is proportional to the square of the director circle.  The radius of the director 

circle of the large circle is 2

8
92

4
32

4
3 )()()( aaa =+ .)  So we have .8.0,9.0 == Vf  

 

 

  If we were to reverse all of the arrows in figure A5, it would be the larger circle that would be 

blocked and the small circle passed.  The flux density of the light that is passed is then proportional 

to .2

8
1 a   So we have .8.0,1.0 −== Vf  

 

  Thus positive V means that the tip of the E-vector is moving counterclockwise, and negative V 

means that it is rotating clockwise. 

   

  In general, the radius of the large circle is )(
2
1 ba +  and the radius of its director circle is 

).(
2

1 ba +   If this is the circle that is transmitted, the flux density passed is proportional to 

2

2
1 )( ba + . 

We have, then,  .
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=     This means, incidentally, that V is proportional 

to the area of the ellipse.  If we take ,122 =+ ba  then abV 2= .   If it is the small circle that is 

passed, .
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    Since the eccentricity of the ellipse is given by 
2

2
2 1

a

b
e −= , we can express V

2
 in terms of the 

eccentricity, thus 
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   This equation is valid for totally polarized light.  For partially polarized light, return to the main 

text. 

 

 

 


