Chapter 14
Functions of a Complex Variable

1. Function of a Complex Variable

Let z be a complex variable, which can be written either as x + iy or as re®.

A function f (z) (such as, for example z% or sin z) will result in a new complex number,
which we’ll call w, which can be written either as u + iv or as pe‘®.

It should be possible, for a given function, to express u and v in terms of x and y, and it should
be possible to express p and ¢ in terms of r and 6.

Let us do an example. Thus, suppose that w = f (z) = sin z.
That is:
w = sin(x+iy) = sinxcosiy + cosxsiniy = sinx coshy + icosxsinhy
Thus u = sinxcoshy and v = cosxsinhy

Can we work in polar coordinates, and express p and ¢ in terms of r and 6? Yes, we can,
although this particular example is a slightly difficult and messy one. Other simple functions
may be easier.

w = sinre® =

sin(rcos® + irsin®) = sin(rcos®) cosh(rsin®) + icos(r cos0)sinh(r sinB)

We now have u and v in terms of r and 0 and we can calculate p from p? = u? + v?and
dfromtand = y/x. Wefind, after a little algebra, that
p? = cosh?(rsin®) — cos?(rcos0)

and tand = cot(rcos0)tanh(r sin 0)

2. Some Simple Functions

We shall look at the following simple functions:

w = z2, 1/z, \z, Inz, sinz, cosz, e



Exercise: For each of the above seven functions, express u and v in terms of x andy, and
express p and ¢ in terms of r and 6. The function cos z will be similar to sin z. The others will

be easier.

I show below the answers that | get. Please let me know if you think there are any mistakes.
tatumjb352 at gmail dot com
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w = sinz u = sinxcoshy v = cosx sinhy
p? = cosh?(rsin®) — cos?(r cos 8) tan¢d = cot(r cos ) tanh(r sin 8)
w = cosz u = cosxcoshy v = —sinx sinhy
p? = cosh?(rsin®) + cos?(r cos ) tanp = —tan(r cos ) tanh(r sin 0)
w=e? u= e cosy v = e¥siny p = e?% ¢ = rsin@
2. Mapping

Given a function f(z), to any point z = x + iy inthe z-plane there will be a corresponding
pointw = u + ivinthew-plane. And if the point z is constrained to move in the z-plane
along some curve F(x,y) = 0 , the point w will move along some curve G(u,v) = 0 inthe
w-plane. We can say that the function f(z) maps the curve F(x,y) = 0 in the z-plane on to
the curve G (u, v) = 0 in the w-plane. This is the sense in which we use the word “mapping” in
the title to this section.



In what follows | am going to try to map first a circle and then a square in the z-plane using
several different f (z). Each of these functions maps the circle and the square on to some most
interesting and unexpected loci in the w-plane. It is great fun. I hope (but don’t guarantee) that I
have done them all correctly. | hope viewers will do them themselves — and let me know if I’ve
got any wrong. tatumjb352 at gmail dot com

2a. Mapping a circle

Let us suppose that we have apointz = x + iy = re'® inthe z-plane, and that the point
lies upon the circle x2 + y2 = 1. Thatis to say, in polar coordinates, it lies upon the circle r =

1. How do each of the functions
w = z>, 1/z, +z, Inz, sinz, cosz, e
map the circle on to the w-plane?

They are fairly easy to calculate. Vary 6 from 0° to 360° in steps of one degree. Since the

circle is of unit radius, x and y are just cos 6 and sin 6 respectively. Then calculate u and v from
the formulas given in the previous section, and plot a graph of v versus u.

w=7°

z = re'® thereforew = 12e2®. Since z lies on the circle r = 1, w also lies on a unit
circle, but when the argument of z is 0, the argument of w is 26. As z moves around its circle in
its plane, w moves around a similar circle in its plane, but at twice the angular speed. By the
time that z has moved completely round its circle, w has moved around its circle twice.

w = VA

As z moves around its circle in its plane, w moves around a similar circle in its plane, but at half
the angular speed. By the time that z has moved completely round its circle, w has moved only
through a semicircle.

w = 1/7

As z moves around its circle in a counterclockwise direction, w moves in a similar circle at the
same angular speed, but in the clockwise direction.

w =lInz
z = re® or,whileitisonitsunitcircle, z = e® sow = 6.

While z moves around its circle from 6 = 0 to 2z, w moves in a straight line up the imaginary
axis from v = 0 to 6.28i.



W = sinz
Recall (Chapter 13, for example) that

w = sinz u = sinxcoshy v = cosx sinhy

2

p? = cosh?(rsin@) — cos?(r cos 0) tan¢d = cot(r cos0) tanh(r sin 6)

Imagine z to move counterclockwise around its unit circle (r = 1) one degree at a time starting
at 0 = 0, we (or our computer) can calculate in turn x ( =cos 0), y (=sin 0), u, v, p and ¢, and so
it is straightforward to plot the progress of w in its plane. | show below z (in black, inits x,y
plane) and w (in red, in its u, v plane).

Onthereal axis,u = +sinl = 40.8415

On the imaginary axis, v = +isinh1 = +1.1752i

W = C0Sz

It turns out that cos z looks surprisingly different from sin z



Recall that
W = (0Sz u = cosxcoshy v = —sinx sinhy
p? = cosh?(rsin®) + cos?(r cos0) tanp = —tan(r cos B) tanh(r sin 0)
and go through the same procedure as with sin z.

. I show below what I get for z (in black, in its x , y plane) and w (in red, in its u , v plane).
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The red locus of w in its plane looks like a circle, and in fact is very close to a circle, although
not exactly so. As z moves counterclockwise from P, through an angle 6 to P, w moves also
counterclockwise from Qg through an angle v to Q. If z moves at a uniform angular speed, the
angular speed of w is not quite uniform, but on average is twice the angular speed of z, so, as z
goes round its black circel once, w goes round its red circle twice. Shown below are a table and
a graph of y versus 0.
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On the real axis, u has the values cos 1 = 0.5403 and cosh 1 = 1.5431, so that the horizontal
diameter of the red quasicircle is coshl — cosl = 1.002778, and the mid-point of the quasicircle
isatu= 0.5(coshl + cos 1) =1.0417

The values of v on the imaginary axis (and hence the vertical diameter of the quasicircle) are
slightly less easy to compute. We start from v = —sinxsinhy = —sinx sinh(1 — x?)/2,



Some differential calculus shows that the greatest and least values of v occur where
ytanhy = xtanx
in which y = (1 — x»)/2,
The solution to these simultaneous equations is
x =0.647421 y = +0.762133
corresponding to v = +0.505476.

The viewer might ask if the quasicircle is an ellipse, and, if it is, what is its eccentricity. The
present answer to the first question is that, at the moment, I don’t know. However, if it iS an
ellipse, its eccentricity is 0 0186.

The mappings of the unit circle by sin x and by cos x seem surprisingly different. Perhaps some
enterprising viewer might try mappings of the unit circle by sin (z + o), and see how the peanut
morphs into the quasicircle as o goes from 0 to n/2. Maybe even make a movie of it, and share it
with us on the Web.

w = ¢

Recall that
u= e*cosy v = e siny p = e¥°® ¢ = rsin@
and go through the same procedure as with sin z.

. I show below what I get for z (in black, in its plane) and w (in red, in its plane).
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If we start at x = 1, y = 0 on the black circle, and move counterclockwise by 6 around the
circle, then in the w-plane, we start at the right hand side of the red “bean” and move
counterclockwise. | show the value of 0 in degrees at several points around the bean.

For v = 0 on the bean, u has the values e = 0.3679 and e = 2.7183.

The maximum and minimum values of v can be found by putting the derivative of v to zero.
Thisresults in x = ytany. Combined with x2 + y? =1 this results in

x = 0.073612 vy =0.739085., which corresponds to u = 1.449574 v = +1.321161.

2a. Mapping a square

Now let us use the same seven functions
w = z4, 1/z, z, Inz, sin z, cosZz, e’

to map a square in the z-plane on to the w-plane. We choose the square to be bounded by the
lines x =+1, y=+1. Itis easy to generate numbers (x,y) that delineate the square. Then, for
each (x,y) we calculate u and v, and hence draw the locus of w in the w-plane. Here are the
results that | get.



w=7°

The square in the z-plane maps on to a lens-shaped figure in the w-plane. As we go round the
square once in the z-plane, we go round the lens twice in the w-plane. In the figure, | have
labelled the four corners of the square A, B, C, D. The small letters a, b, ¢, d show the
corresponding points in the lens.

w = 1/7



PR B .
d a

0.5 1
>

S 1

-0.5' c b 7

17 b A

-1 0.5 0 0.5 1
X,U

In preparing the figures below, | have taken account of the positive and negative values of the
square roots. The first figure is uncluttered with letters. In the second figure | have labelled,
outside the black square, in capital letters, key points on the squuare. | have labelled, inside the
red star, in small letters, correspondng points on the star. As z goes counterclockwise once
around the square, w goes twice, clockwise, around the star.
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w =Inz

The mapping of the square (black) in the z-plane on to the w-plane (red) is shown below. The
real part of w, namely u, is restricted between O and 2In2 = 0.3466. The cusps are at +45°
and £135°.



W = sinz

If z starts at A in the figure below, and then goes counterclockwise around the square, w starts
at a in the figure below, and goes counterclockwise round the red path.
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W = C0Sz

If z starts at A in the figure below and proceeds counterclockwise around the black square, w
starts at a on the red path, and goes twice counterclockwise round the red path as z goes round he
square once.
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w=¢

If z starts at A in the figure below and proceeds couterclockwise around the black square, w
starts at a on the red path, and goes counterclockwise round the red path.
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As in the case of mapping the circle, the paths in the w-plane are remarkably different for the
sine and cosine functions, and it might be interesting for an enterprising viewer to try mapping
through the function sin(z + o) as a goes from 0 to n/2



