
Chapter 14 

Functions of a Complex Variable 

 

 

 

1.  Function of a Complex Variable 

  

    Let z be a complex variable, which can be written either as x + iy or as     . 

    A function f (z)    (such as, for example z
2
 or sin z)  will result in a new complex number, 

which we’ll call w, which can be written either as u + iv or as     . 

 

   It should be possible, for a given function, to express u and v in terms of x and y, and it should 

be possible to express  and in terms of r and 



 Let us do an example.  Thus, suppose that w = f (z) = sin z. 

That is:   

        (    )                                                           

Thus                   and                 

Can we work in polar coordinates, and express  and  in terms of r and ?  Yes, we can, 

although this particular example is a slightly difficult and messy one.  Other simple functions 

may be easier. 

    

               
      (               )        (     )     (     )         (     )     (     ) 

 We now have u and v in terms of r and and we can calculate  from               and 

from              .   We find, after a little algebra, that 

           (     )          (     ) 

and                                                      (     )     (     ) 

 

2.   Some Simple Functions 

   We shall look at the following simple functions: 

                   ⁄      √                                            . 



Exercise:  For each of the above seven functions, express u and v in terms of  x and y¸  and 

express and   in terms of r and .  The function cos z  will be similar to sin z.  The others will 

be easier. 

   I show below the answers that I get.  Please let me know if you think there are any mistakes. 

tatumjb352 at gmail dot com 
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   2.  Mapping 

      Given a function f(z), to any point               in the z-plane there will be a corresponding 

point              in the w-plane.  And if  the point z is constrained to move in the z-plane 

along some curve  (    )       , the point w will move along some curve  (   )      in the 

w-plane.  We can say that the function  ( ) maps the curve  (    )       in the z-plane on to 

the curve  (   )      in the w-plane. This is the sense in which we use the word “mapping” in 

the title to this section. 



  In what follows I am going to try to map first a circle and then a square in the z-plane using 

several different f (z).  Each of these functions maps the circle and the square on to some most 

interesting and unexpected loci in the w-plane. It is great fun. I hope (but don’t guarantee) that I 

have done them all correctly.  I hope viewers will do them themselves – and let me know if I’ve 

got any wrong.  tatumjb352 at gmail dot com 

2a.  Mapping a circle 

 Let us suppose that we have a point                        in the z-plane, and that the point 

lies upon the circle              . That is to say, in polar coordinates, it lies upon the circle r = 

1. How do each of the functions  

                             √               ⁄                                     

  map the circle on to the w-plane? 

   They are fairly easy to calculate. Vary  from 0° to 360° in steps of one degree.  Since the 

circle is of unit radius, x and y are just cos and sin  respectively.  Then calculate u and v  from 

the formulas given in the previous section, and plot a graph of v versus u. 

 

  w = z
2 

               , therefore            .  Since z lies on the circle r = 1, w also lies on a unit 

circle, but when the argument of z is the argument of w is 2As z moves around its circle in 

its plane, w moves around a similar circle in its plane, but at twice the angular speed.  By the 

time that z has moved completely round its circle, w has moved around its circle twice. 

     √  

As z moves around its circle in its plane, w moves around a similar circle in its plane, but at half 

the angular speed.  By the time that z has moved completely round its circle, w has moved only 

through a semicircle.  

 

w  =  1/z 

  As z moves around its circle in a counterclockwise direction, w moves in a similar circle at the 

same angular speed, but in the clockwise direction. 

w  =  ln z 

 

                  , or, while it is on its unit circle,              ,  so        . 

While z moves around its circle from  = 0 to 2wmoves in a straight line up the imaginary 

axis from v = 0 to 6.28i. 



 

w  =  sin z 

      Recall (Chapter 13, for example) that 

                                                         

           (     )       (     )                    (     )     (     )  

Imagine z to move counterclockwise around its unit circle (r  =  1) one degree at a time starting 

at we (or our computer) can calculate in turn x ( = cos y ( = sin ), u, v,  and  and so 

it is straightforward to plot the progress of w in its plane.  I show below z (in black, in its  x, y 

plane) and w (in red, in its u , v plane). 

 

 

On the real axis,                        

On the imaginary axis,                          

 

w  =  cos z 

  

      It turns out that cos z looks surprisingly different from sin z 



      Recall that 

                                                          

            (     )       (     )                     (     )     (     )  

and  go through the same procedure as with sin z. 

.  I show below what I get for z (in black, in its x , y plane) and w (in red, in its u , v plane). 

 

 
   The red locus of w in its plane looks like a circle, and in fact is very close to a circle, although 

not exactly so.  As z moves counterclockwise from P0 through an angle to P, w moves also 

counterclockwise from Q0 through an angle  to Q.  If z moves at a uniform angular speed, the 

angular speed of w is not quite uniform, but on average is twice the angular speed of z, so, as  z 

goes round its black circel once, w goes round its red circle twice.  Shown below are a table and 

a graph of versus . 

 

   °° 


        0       0 

       15      25 

       30      51 



       45      80 

       60     111 

       75     145 

       90     180 

      105     214 

      120     248 

      135     279 

      150     308 

      165     334 

      180     360         

 

 

 

 

   On the real axis, u has the values cos 1 = 0.5403 and cosh 1 = 1.5431, so that the horizontal 

diameter of the red quasicircle is cosh1 – cos1 =  1.002778, and the mid-point of the quasicircle 

is at u =  0.5(cosh1 +  cos 1) = 1.0417 

  The values of v on the imaginary axis (and hence the vertical diameter of the quasicircle) are 

slightly less easy to compute.  We start from                           (       )   . 



  Some differential calculus shows that the greatest and least values of v occur where  

                  

in which                                                    (       )   . 

The solution to these simultaneous equations is 

x  = 0.647421    y  =  0.762133 

corresponding to v =  0.505476. 

   The viewer might ask if the quasicircle is an ellipse, and, if it is, what is its eccentricity.  The 

present answer to the first question is that, at the moment, I don’t know.  However, if it is an 

ellipse, its eccentricity is 0 0186. 

   The mappings of the unit circle by sin x and by cos x seem surprisingly different. Perhaps some 

enterprising viewer might try mappings of the unit circle by sin (z + and see how the peanut 

morphs into the quasicircle as  goes from 0 to /2.  Maybe even make a movie of it, and share it 

with us on the Web. 

 

w  =  e
z 

   Recall that 

                                                                                    

and  go through the same procedure as with sin z. 

.  I show below what I get for z (in black, in its plane) and w (in red, in its plane). 

 



 

   If we start at x = 1, y = 0 on the black circle, and move counterclockwise by  around the 

circle, then in the w-plane, we start at the right hand side of the red “bean” and move 

counterclockwise.  I show the value of  in degrees at several points around the bean. 

   For v = 0 on the bean, u has the values e
1

  =  0.3679  and  e =  2.7183. 

   The maximum and minimum values of v can be found by putting the derivative of v to zero.  

This results in 
 
x  =  y tan y.   Combined with               this results in  

x =  0.073612    y = 0.739085., which corresponds to u = 1.449574    v  =  1.321161. 

 

2a.  Mapping a square 

   Now let us use the same seven functions 

                             √               ⁄                                     

to map a square in the z-plane on to the w-plane.  We choose the square to be bounded by the 

lines x = 1,  y = 1.  It is easy to generate numbers (x,y) that delineate the square.  Then, for 

each (x,y) we calculate u and v, and hence draw the locus of w in the w-plane.  Here are the 

results that I get. 



  w = z
2 

    The square in the z-plane maps on to a lens-shaped figure in the w-plane.   As we go round the 

square once in the z-plane, we go round the lens twice in the w-plane.  In the figure, I have 

labelled the four corners of the square A, B, C, D.  The small letters a, b, c, d show the 

corresponding points in the lens. 

 

 

w  =  1/z 



 

 

          

  In preparing the figures below, I have taken account of the positive and negative values of the 

square roots.  The first figure is uncluttered with letters.  In the second figure I have labelled, 

outside the black square, in capital letters, key points on the squuare. I have labelled, inside the 

red star, in small letters, correspondng points on the star. As z goes counterclockwise once 

around the square, w goes twice, clockwise, around the star. 



 

 



 

 

w  =  ln z 

    The mapping of the square (black) in the z-plane on to the w-plane (red) is shown below.  The 

real part of w, namely u, is restricted between 0 and  
 
               .  The cusps are at 45° 

and 135°. 



 

 

w  =  sin z 

  If z starts at A in the figure below, and then goes counterclockwise around the square, w starts 

at a in the figure below, and goes counterclockwise round the red path. 

 



 

 

w  =  cos z 

    If z starts at A in the figure below and proceeds counterclockwise around the black square, w 

starts at a on the red path, and goes twice counterclockwise round the red path as z goes round he 

square once. 

 



 

 

  

w = e
z 

   If z starts at A in the figure below and proceeds couterclockwise around the black square, w 

starts at a on the red path, and goes counterclockwise round the red path. 

 



 

  As in the case of mapping the circle, the paths in the w-plane are remarkably different for the 

sine and cosine functions, and it might be interesting for an enterprising viewer to try mapping 

through the function sin(z + ) as  goes from 0 to /2 


