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Chapter 3 

Second Order Differential Equations  

Preamble.  

 The Operator D 

 

 

Preamble 

 

   Second order differential equations, or differential equations of order two, include 

second derivatives 
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   These examples are linear equations with constant coefficients.  They are linear 

because there are no terms such as 
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.   The coefficients are constants rather than 

functions of x or y.  To begin with we shall deal only with linear equations with constant 

coefficients.  Within this constraint, however, we may find that we need not limit 

ourselves to equations of order two.   We may find also that we are able to solve 

equations of third or higher order, such as  
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  We shall find that the general solution  (GS) of 
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can be written as the sum of two functions, known as the particular integral (PI) and the 

complementary function (CF): 
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in which the CF is the solution of  

 

.0
2

2

=++ cy
dx

dy
b

dx

yd
a  



 2 

 

Thus, if we can solve ,0
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b
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a  we are already halfway to solving 
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   Some people like, for brevity, to use the “prime” notation 'y  to denote 
dx

dy
.   This is 

usually pronounced “y-primed” in North America, and “y-dashed” in Britain.   The 

equation then looks like 

 

).('" xfcybyay =++  

 

   In practical applications, very often the independent variable is the time t, so we are 

solving equations such as 
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In that case you may like to use the “dot” notation, in which y&  means 
dt

dy
, and the 

equation looks like 

 

).(tfcyybya =++ &&&  

 

 

   The equation 

 

02
0 =ω+γ+ xxx &&&  

 

is obviously (with change of notation) of the form 0
2

2

=++ cy
dx

dy
b

dx

yd
a .  It is of 

enormous importance in classical mechanics - it is the equation that describes damped 

oscillatory motion. 

 

   Likewise the equations  tFkxxbxm ω=++ cosˆ&&&   and tfxxx ω=ω+γ+ cosˆ2
0&&&  

are also of immense importance - they describe forced, damped oscillations. 

Similar equations occur in the theory of alternating currents.  Thus the equation 

tCVQQRCQLC ω=++ cosˆ&&&  is of huge importance in the study of electricity.  It 

describes how the current in a circuit containing resistance, inductance and capacitance 

varies when you apply an alternating voltage across it. If you have an analogue radio, 

when you turn a knob to tune it to a particular station at a given a resonant frequency, you 
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are changing the capacitance of the circuit, and the radio responds according to the 

solution of the above equation. 

 

   In spite of the huge importance of equations of the type tfxxx ω=ω+γ+ cosˆ2
0&&&  and 

tCVQQRCQLC ω=++ cosˆ&&& , I shan’t give them an undue amount of importance in 

this file.  Instead I refer you to Chapters 11 and 12 of  

http://orca.phys.uvic.ca/~tatum/classmechs.html 

  

and Chapters 13 and 14 of  

http://orca.phys.uvic.ca/~tatum/elmag.html 

 

where the applications and solutions of these equations are dealt with in exquisite detail. 

 

You’ll find it yet again in spectroscopy.  See, for example, Chapter 9 Section 9.2 of 

http://orca.phys.uvic.ca/~tatum/stellatm.html  

where the theory is used to relate the strengths of spectrum lines to the number of atoms  

producing them in a stellar atmosphere.  It’s all the same equation. 

 

 

    

 

In addition to the “prime” notation 'y  for 
dx

dy
 and the “dot” notation y& for 

dt

dy
, I shall 

use, in this file, the notation D to denote the operator 
dx

d
.  This notation will be 

convenient in the context of this file, though if you use it in some other context, you 

cannot assume that your readers will know what you mean by it, and you will have to 

define it.  The equation to be solved, then, may be written 
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  You may find yourself greatly disconcerted or alarmed, when I tell you that the solution 

to this equation is  

cbDaD
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and even more alarmed when you see me bandying the symbol D around with careless 

abandon as though it were just another variable rather than an operator with special 

meaning.  For example, if  acb 42 > , I may take even further liberties, and factorize the 

denominator into ))(( β−α− DDa , and I may even go outrageously further and split 
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  Obviously such 

liberties will have to be justified, and we shall have to have a clear understanding of 

exactly what is meant by an operation such as .
1

α−D
 

 

   Alarmed or not, or whatever notation I may be using, you will probably not be 

surprised to find that the nature of the solution, or the procedure for solving it, may 

depend upon whether acb 42 − is negative, zero or positive. 

 

   

 How much preparatory background mathematical knowledge are you going to need 

before embarking further into the theory of second order differential equations with 

constant coefficients?  Well, of course you do need the basic algebra, trigonometry and 

calculus that you almost certainly already have if you are reading this page.  As I write 

this, I anticipate two topics that you will need some familiarity with.   

 

   One is the decomposition of partial fractions.   For example, if we come across an 

expression such as 
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I shall expect the viewer to be able to decompose it into 
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I wouldn’t call this easy or difficult, but something in between, and I wouldn’t expect the 

viewer to write down the answer instantly on sight (though with lots of practice it’s not 

impossible).  It takes a few minutes of algebra.  However, I do assume that the viewer 

knows how to do it, so, if I encounter such an expression in the text that follows, I shall 

write down the decomposition without further explanation 

 

   You will need to be familiar with the basic algebra and arithmetic of complex numbers. 

(I don’t anticipate, at least just now, that you will need to be familiar with “functions of a 

complex variable”.)  Perhaps the most important thing to know is that, if you ever (not 

only in the present context) find yourself faced with a complicated fraction with lots of 

algebra in the numerator and in the denominator, and there is a complex number in the 

denominator: 
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in which each capital letter represents some function of x or y or both, such as 12 −x  

or )/ln( yx  or )325cos( −+ xy ,  and there is a complex number in the denominator, you 

never need hesitate for an instant as to what to do next.  Without giving it a moment’s 

thought, you multiply top and bottom by the complex conjugate to obtain 
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EFGH

ABCD
 

If I come across such an expression in the text that follows, I shall always do that without 

a word of explanation. 

   Return to the equation 
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If the function )(xf  is a periodic function such as kxcos , we may well find complex 

numbers to be useful in solving the equation.  If, however, )(xf  is some other sort of 

function, not periodic, complex numbers may be less useful, and we may find that we can 

solve the equation by means of Laplace Transforms.  At the time of writing this, I am not 

going to assume that viewers are familiar with Laplace transforms, so that you can 

certainly read on if you are not familiar with them. If I find, later on, that we have need of 

them, I’ll try to give a brief explanation. 

  

 

The Operator D 

 

   We shall use the symbol D to mean 
dx

d
, and D

2
 to mean 

2

2

dx

d
, etc.  We mentioned in 

the preamble that we shall be taking certain liberties with this operator, and that we shall 

need to justify such liberties and we shall need to become familiar with some of its 

properties.  For example, if f and g are functions of x, the viewer will have no difficulty in 

understanding that DgDfgfD +=+ )(   or that fDfDD nmnm += or that 

.)( afDffaD +=+   The viewer may have to spend a little time to convince him- or 

herself that fabbDaDDfbDaD )())(( 2 +++=++  or that 

faDfaDaD )())(( 22 −=+−  or conversely that faDaDfaD ))(()( 22 +−=− . 

It is worth spending a moment or two to convince yourself of these.  You will then be 

well on your way to dealing confidently with the operator often in just the same way that 
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you treat other variables.  Not always, of course.  For example .)( gDffDgfgD +=   

But you already know that, and are unlikely to get it wrong. 

 

   A useful thing to know is what if one of the functions, say  f, is of the form ax
e .  Then 

what is )( geD ax ?  A moment or two will show you that 

gaDegeD axax )()( +=     (1) 

  If you feel like spending the time to differentiate a second time, you will eventually 

arrive at 

                                              gaDegeD axax 22 )()( +=                                          (2) 

 [This looks interesting, so, in case you didn’t do it, here’s a start: 

gaDDegaDaegaDeDgeDDgeD axaxaxaxax )()(])([)]([)( 22 +++=+== , etc.] 

  I wonder if it is generally true that 

gaDegeD naxaxn )()( +=                                       (3) 

If you differentiate this again, you will find (in a similar manner to the way in which we 

derived equation (2) that 

gaDegeD naxaxn 11 )()( ++ +=                                  (4) 

And since we know that equation (3) is indeed true for n = 1, it must be true for all 

positive integral n. 

 

 

 

 

 

The Operator 
D

1
or D

−−−−1 

 

   We define this such that ffDD =−1 .  In other words, D
−1

 does just the opposite to 

what D does.  In other words  fdxfD ∫=−1   − except that we take the arbitrary constant 
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of integration to be zero.  Readers of this site will already know how to use the operator 

D
−1

 on almost any function, but we need to know the meaning of 

 

The Operator 
a-D

1
or -1)( a-D

 

 

and how to use it.  Believe it or not, but it means an operation such that 

 

                                         ).()( 11 axax feDefaD −−− =−                                          (5) 

 

 We’ll explain why in a moment, but first an example.  Suppose .2xf =  Then 
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That’s all very well, but why does )()( 11 feDefaD axax −−− =− ? 

faD 1)( −−  has to be defined so that ffaDaD =−− − ]))[(( 1 .   That is to say, 

faD 1)( −−  has to be defined so that   fgaD =− )( , where faDg 1)( −−= .  That is 

to say )(xfag
dx

dg
=− .  Since you have by now thoroughly mastered the chapter on 

differential equations of the first order, you immediately recognize this as a first order 

DE, which can be solved by means of the IF ax
e

− , and that it has the solution 

 

).(1 axax feDeg −−=      (6) 

 

There will now be a long pause while you absorb that lot. 

 

LONG PAUSE 

 

Having got so far, we may need another pause, a shorter one, to see now why its it that 

the operation 1)( −− aD has to mean what equation (5) says it does. 

 

SHORT PAUSE 

 

Now that we are convinced of equation (5), let us do 1)( −− aD  to both sides of it.  We 

soon arrive at 

 

).()( 22 axax feDefaD −−− =−                                   (7) 

 

This leads us to speculate that maybe  
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).()( axnaxn feDefaD −−− =−                                   (8) 

 

If you  now do 1)( −− aD  to both sides of equation (8), you almost immediately get 

 

).()( )1()1( axnaxn feDefaD −+−+− =−                          (9) 

 

And since equation (8) is true for n = 1, it is true for any positive integer. 
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Most readers will be comfortable with the equivalence of the operators 

))(( bDaD −−  and abDbaD ++− )(2 .  That is 

abDbaDbDaD ++−≡−− )())(( 2 ,  or 

( )fabDbaDfbDaD ++−=−− )())(( 2 . 

 

Most will probably also go along with 
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Are we also willing to go along with the next step - i.e. to declare that either of these 

operators is equivalent to the operator 
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Let us do the calculation: 
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This, then, justifies spitting up an operator of the form 
abDbaD ++− )(

1
2

into partial 

fractions, just as if D were an ordinary variable rather than an operator. 

 

 


