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CHAPTER 4 

OPTICAL ABERRATIONS 

 

 

4.1 Introduction 

 

We have hitherto made the assumption that a lens or a curved mirror is able to form a 

point image of a point object.  This may be approximately true if the depth of the mirror 

or the thickness of the lens is small compared with other distances, and if the angle that 

all rays make with axis of the mirror or lens is small, and if we are using monochromatic 

light.  Usually none of these conditions is satisfied exactly, and consequently the image 

formed by a lens or curved mirror suffers from several aberrations. 

 

There are five geometrical aberrations, given the names 

 

Spherical aberration 

Astigmatism 

Coma 

Curvature of field 

Distortion (pincushion or barrel distortion). 

 

In addition, unless we are using monochromatic light, lenses (but not mirrors) exhibit 

chromatic aberration (longitudinal and transverse). 

 

It may be possible to minimize some of these aberrations by careful choice of the radii of 

curvature of a lens system (“bending the lens”), although the condition for minimizing 

one aberration may be different from minimizing another.  Consequently some sort of 

compromise must be reached, which may depend on which aberrations are important, and 

which are not so important, for a particular application. 

 

 

4.2 Spherical Aberration 

 

We’ll begin by looking at the spherical aberration resulting from reflection from a 

spherical mirror.  We have hitherto assumed that a parallel beam of light, after reflection 

from a spherical mirror, comes to a focus at a point, and that the distance of the focal 

point from the surface of the mirror is half the radius of curvature of the mirror, as in 

figure IV.1: 
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This is approximately true for a small aperture mirror (“aperture” meaning the ratio of the 

diameter to the focal length).   This is not the case, however, for a large aperture mirror.  

In figure IV.2 I have drawn a hemispherical mirror.  I assume that there is an incident 

beam of light (not drawn) coming in horizontally from the left, and I have drawn the rays 

after reflection from the mirror.  (Some of the rays will be reflected a second time from 

the surface before eventually escaping, but I have not drawn the rays after a second 

reflection because they would only clutter up the diagram and are not pertinent in 

describing what I want to describe.)   You can see that the reflected rays are bounded by 

an envelope known as a caustic curve, shown as a dashed red curve in figure IV.2. 

 

 
 

 

FIGURE IV.1 

FIGURE IV.2 



 3 

Can we find the equation to this caustic curve? 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We’ll take the centre of curvature of the mirror as origin O of coordinates, and suppose 

that the radius of curvature of the mirror is a.  Let us consider the adventures of a ray of 

light coming in parallel to the horizontal (x) axis and at a height h from it.  The equation 

to the incoming light ray is just hy  , and the equation to the mirror surface is 
222 ayx  .  A little bit of coordinate geometry will enable us to determine that the 

equation to the reflected ray is 
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FIGURE IV.3 
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and that it crosses the x-axis at a point C such that 
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It is also convenient to write these formulas in terms of the angle , which is given by 

.sin ah   After a little algebra and application of some trigonometric identities, we 

obtain 


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for the equation to the reflected ray, and 
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We can write equation 4.2.3 as 

 

.0
2cos

sin
2tan);,( 




 y

a
xyxf    4.2.5 

 

From our long-forgotten, yellowed and mildewy mathematics notes, we recall that to find 

the equation to the envelope of a family of curves of the form 0);,( yxf ,  we have 

to eliminate the parameter  from that equation and the equation .0


f
   After some 

more algebra and more application of trigonometric identities, we find that the latter 

equation comes to 

 

)cos.(cos 2

2
3  ax .    4.2.6 

 

So, all we have to do is to eliminate the parameter  from equations 4.2.3 and 4.2.6, and 

this would give us the x ,  y equation to the caustic curve.  These two equations are, in 

fact, the parametric equations to the caustic curve.  Now I don’t know how easy it would 

be to eliminate .   Since equation 4.2.6 is a cubic equation in cos  I suspect that it 

might not be particularly easy.  But (as is often the case with two parametric equations to 

a curve) we can happily plot the curve numerically, without having to eliminate the 

parameter algebraically.  Thus, in order to plot the red curve in figure IV.2, I varied  

from 90º to +90º, and calculated x from equation 4.2.6, and I then calculated y from 

equation 4.2.3. 

 

   To avoid spherical aberration, telescope mirrors can be made in a paraboloidal shape.  

It can be shown that an incident beam of light, coming in parallel to the axis of a 

paraboloidal mirror, after reflection will come to single focal point, namely at the focus 

of the parabola.  A proof of this is given in Section 2.4 of Chapter 2 of my Celestial 
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Mechanics notes   http://orca.phys.uvic.ca/~tatum/celmechs/celm2.pdf   and is not 

repeated there.  In that Chapter, it is also shown that, if a bucket of liquid is rotated about 

a vertical axis, the surface of the liquid will take up a paraboloidal shape, and mention is 

made there of two applications to the manufacture of paraboloidal mirrors.  In one, a vat 

of molten glass is rotated, and is gradually cooled down until the glass solidifies into a 

paraboloidal shape.  In the other, a container of mercury is rotated, the surface of the 

mercury taking up a paraboloidal shape, and this liquid paraboloid is then used as the 

main mirror of a reflecting telescope.   While it can observe only close to the zenith, 

some excellent results have been obtained.  I shan’t repeat it here, but you might want to 

refer to the above-mentioned notes, since it is pertinent here. 

 

   This property (of light being reflected from the surface of a parabola to a single focal 

point) applies only to light coming in parallel to the axis of the paraboloid.  Consequently 

paraboloidal telescope mirrors have only a rather narrow field of view.  A Schmidt 

telescope uses a spherical mirror (hence a large field of view) and, to avoid spherical 

aberration, a corrector plate is mounted in front of the mirror.  Typically the spherical 

mirror is at the “bottom end” of the telescope tube, and the corrector plate is at the “top 

end”. The corrector plate causes light that is coming in parallel to the telescope tube, but 

some distance from the axis of the tube, to diverge slightly from the axis before reaching 

the spherical mirror.  In this manner all of the incoming light, after reflection from the 

mirror, comes to a focus at a single point.    

 

   A lens also suffers from spherical aberration, of course, but it does not lend itself to 

such simple analysis as for a spherical mirror.  One needs to perform detailed numerical 

ray-tracing to find the exact shape of the caustic curve for a lens.   We showed, however, 

in Section 1.4 of Chapter 1, that refraction even at a plane surface produces spherical 

aberration. 

 

   One might wonder, given that a paraboloidal mirror when used on axis is free of 

spherical aberration, whether a lens made with paraboloidal surfaces, is also free of 

spherical aberration.  Alas, that is not so. 

 

   One can, however, design a lens with spherical surfaces that minimize the spherical 

aberration, by suitable choice of the radii or curvature of the lens surfaces.  This is called 

“bending the lens”. 

 

For example, figure IV.4  shows five lenses, in which I have written, beside each surface, 

its radius of curvature in cm.   In what follows I assume that the lens is “thin” in the sense 

that its thickness is very small compared with any other distances under discussion. If the 

refractive index is 1.6, each of these lenses has a focal length of 20 cm. 

 

You can characterize the shape of a lens by means of its shape factor 
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In figure IV.4 I have written the shape factor above each lens.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

   For light coming in horizontally near the axis, the focal length of each of these lenses is 

20 cm.  However, light coming in horizontally at some distance from the axis, after 

passage through the lens, falls a little short of 20 cm.  We may characterize the spherical 

aberration by the amount it falls short.  Assuming that the lenses are thin (compared with 

any other distances under consideration) I calculated the shortfall for a ray of light 

coming in from the left at a height of 1 cm from the axis.  This is shown in figure IV.5, in 

which I have drawn the shortfall (labelled “Aberration” in the figure) versus shape factor 

q.  It is seen that the aberration is least for a shape factor of about q = 0.38.   The radii of 

curvatures of the lens must satisfy equation 4.2.7 as well as 

q =  0.38 
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so that, for f   =  20 cm and q =  0.38, the radii of curvature for least spherical aberration 

should be r1 = 17.4 cm and r2 = 38.7 cm. 

 

  Of course, you have to use the lens the right way round!   If you turn it round, or if light 

is coming in from the right, the shape factor is +0.38, and the spherical aberration is not 

at a minimum.  Mind you, the minimum is fairly shallow, so you can vary the shape 

factor a fair amount without grossly increasing the spherical aberration. 
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FIGURE IV.5

 
 

 

 

4.3  Astigmatism 

 

   In Greek, stigma means a mark - in particular the mark made by the prick of a pointed 

instrument.  An ideal optical instrument produces an image of a point source, which is 

also a point.  If the image is not a point, then it is astigmatic.  However, the use of the 

word astigmatic to describe an image of a point source that is not also a point is restricted 

to the kind of optical aberration described in this section. 

 

   The easiest way to understand the phenomenon of astigmatism is to imagine a lens (or 

mirror) whose surfaces are not exactly spherical but for which the radius of curvature 

(and hence focal length) in one plane is different from the radius of curvature in a plane 

at right angles to the first.   
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   This is going to stretch my poor artistic abilities to the limit.  The ellipse is intended to 

represent a lens seen somewhat from behind, at an angle.  The black line is its optical 

axis.  The lens is supposed to be illuminated from the left with a beam of light parallel to 

the optical axis. I have drawn two transmitted rays in the vertical plane by means of two 

blue arrows converging on to the optical axis at some distance from the lens.  I have 

drawn two transmitted rays in the horizontal plane by means of two red arrows 

converging on to the optical axis at a slightly greater distance from the lens.  (The colours 

of the arrows are not intended to mean different colours of light.  We’ll suppose that the 

light is all monochromatic.)   Evidently the rays from different points around the 

circumference of the lens come to a confused mess on the optical axis;  the image is 

decidedly astigmatic.   In fact at one point on the optical axis, a line image is formed; a 

little further along the axis, another line image, at right angles to the first, is formed.   In 

figure IV.7, I repeat figure IV.6, but I add these two line images. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE IV.6 
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FIGURE IV.7 
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   As you move along the optical axis, the image changes from a horizontal line to a 

vertical line in a sequence that looks something like this: 

 

 

 

   Somewhere about half way between the two linear images is the “circle of least 

confusion”. 

 

   I have explained the aberration of astigmatism by supposing that the lens has a different 

focal length in one plane than in the other.  This may be the easiest way for an 

introductory explanation of the aberration.  However, in practice it is unlikely that a lens 

has different focal lengths in two orthogonal planes; indeed it would be quite difficult to 

make such a lens. 

 

   In most cases astigmatism is caused, as we shall see, by using a perfectly good lens or 

mirror off-axis. 

 

   If you look at a star through a telescope, and if you move the eyepiece in and out as you 

look through it, you may see the star image going through a series of astigmatic images 

such as illustrated above.  This is not usually caused by a bad lens, but is caused if the 

object glass (in a refracting telescope) or lens (in a reflecting telescope) is crooked in its 

cell, so that you are using it off-axis.  Indeed, doing this little test is a good way of telling 

whether the object glass or the mirror is crooked in its cell. 

 

   Although different radii of curvature in different planes is not the usual cause of 

astigmatism, there is an exception - namely, the human eye.  If the radii of curvature of 

the cornea, or of the lens, is different in different planes, then the image on the retina will 

be astigmatic even on-axis.   

 

   We saw in Chapter 1 that refraction at a plane surface produces spherical aberration.   

It is not always appreciated that refraction at a plane surface produces astigmatism when 

the surface is viewed at an angle.  If you visit an aquarium and look into glass side of a 

tank at an angle, you will see that the fish look a little blurred because of this 

astigmatism.   

 

   In figure IV.8 I have drawn two rays from a point O at the bottom of a glass block, 

making angles of  20º and 30º with the normal to the upper surface..  With a refractive 

index of 1.6 the angles that the emerging rays make with the normal are 33º and 53º.  I 

refer to the plane of the paper (or your computer screen) as the tangential plane.   A 

vertical plane perpendicular to the plane of the paper is the sagittal plane.   You will see 

that the two rays in the tangential plane diverge, after refraction, from a point T in the 

tangential plane.  If we take the height of the glass block to be 1, we can calculate that the 

(x , y) coordinates of the point T in the tangential plane are (0.145 , 0.666). 

 

   To anticipate, the image at T is not a point;  rather, it is a short horizontal line in the 

sagittal plane, perpendicular to the plane of the paper.  
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Now let’s look at the glass block from above: 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

I have drawn (accurately, I hope, after some calculation) the ellipse where the cone of 

light coming from O intersects the upper surface of the block.  The point P and Q are in the 

tangential plane, and light emerging from P and Q appears to diverge from T.  The points R 
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FIGURE IV.9 
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and U are in the sagittal plane.  Tracing the rays OR and OU after emergence from the block 

doesn’t look very easy, but it will probably be agreed that they do not diverge from T, as the 

rays in the tangential plane did.  Indeed, after further thought, you’ll probably see that the rays 

OR and OU after emergence will be diverging from a point S on the y-axis;  that is to say, 

directly above O.   

 

   For reference, the coordinates of the several points on the drawing, if my calculations are 

correct, are: 

   

O:     (0.000 000 000 ,     0.000 000 000 ,       0.000 000 000) 

P:     (0.363 970 234 ,     1.000 000 000 ,       0.000 000 000) 

Q:     (0.577 350 269 ,     1.000 000 000 ,       0.000 000 000)   

R:     (0.470 660 252 ,     1.000 000 000 ,       0.069 344 256)  

U:     (0.470 660 252 ,     1.000 000 000 ,     0.069 344 256)  

T:     (0.145 831 216 ,     0.666 360 298 ,        0.000 000 000) 

S:      (0.000 000 000 ,     0.497 301 940 ,       0.000 000 000) 

 

   The angle of incidence of the ray at R is 25.442 358 40 degrees to the normal, and the angle 

of refraction is 43.421 850 83 degrees. 

 

   The net result of this is that there is a short linear “image” at T perpendicular to the tangential 

plane, and a short linear “image” at S perpendicular to the sagittal plane, and, somewhere in 

between, there is a circle of least confusion.   One way of looking at the situation is to 

recognize that the wavefront of the emergent cone is nonspherical - its radii of curvature are 

different in the tangential and sagittal planes. 

 

   Thus refraction at a plane surface results in both spherical aberration and astigmatism.  

Refraction through a glass prism, as in a prism spectrograph, also produces astigmatism, and it 

can be shown that the astigmatism is least when the light passes through the prism 

symmetrically in the position of minimum deviation.  This is one reason why prism 

spectrographs are normally used in the position of minimum deviation. 

 

  We have seen that a lens does not produce a point image of a point object on the axis of the 

lens, but the image is subject to spherical aberration.  The spherical aberration is small if the 

aperture of the lens is small compared with its focal length and object and image distances, so 

that the angles that the various rays make with the optic axis are small enough that one can 

make the approximation  tansin ,  and is small also if the shape of the lens is suitably 

designed as in the example in Section 4.2.  For a point object on the axis, the image is free of 

astigmatism (presuming that the radii of curvature of the lens in the tangential and sagittal 

planes are equal).   However, for a point object off-axis, in which the light passes through the 

lens at an oblique angle, the refracted cone gives rise to an astigmatic image in just the same 

way as for oblique refraction at a plane surface.  This there will be a line “image” normal to the 

tangential plane, and, at a different distance, there will be another line normal to the sagittal 

plane , and a circle of least confusion between them.   The further off-axis the object, the 

greater will be the distance between the tangential and sagittal lines.  (The distance will be zero 

for a point object on axis.)  Unlike the case for spherical aberration, the amount of astigmatism 
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(the distance between T and S) is not greatly improved by changing the shape of the lens, and a 

third lens component is often used to correct for the astigmatism. 

 

  We mentioned, however, that astigmatism in the eye is generally caused by different 

tangential and sagittal curvatures of the cornea, and it is evident on axis as well as off axis.  It 

may be corrected by a single lens, which is designed to have different tangential and sagittal 

curvatures.  Such lenses are not easy to make, and they are generally fairly expensive. 

 

 

4.4 Coma 

 

     Coma, like astigmatism, is another aberration that appears off axis, near the edge of an 

image field.  If you look at a wide-field photograph of some stars taken with a photographic 

telescope, the stars near the centre of the field should be points, but, at the very edge of the 

photograph, if the telescope is less than perfect, the stars may appear like little comets, with a 

sharp nucleus, but each with a fuzzy tail directed away from the centre of the photograph.  This 

aberration is called “coma”.  The word “coma”, as well as the word “comet”, comes from the 

Latin coma, meaning “hair”, from a fanciful resemblance of a comet, or of a comatic image of 

a star, to the head of a girl with her long hair streaming out behind her. 
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   In figure IV.10, we see a parallel bunch of rays entering the lens obliquely from the left.  The 

central ray, in black, goes straight through to a point O.  Two rays in the tangential plane (i.e. 

the plane of the computer screen, or the paper, if you have printed it out) converge not to the 

point O, however, but to a point T as shown.  If I could draw two rays equally far from the 

centre of the lens but in the sagittal plane (i.e. a vertical plane perpendicular to the plane of the 

paper), they would converge to a point S, about a third of the way between O and T. 

 

  If I could draw the rays entering the lens all around the zone of radius h on the lens, each pair 

of opposite rays would converge to a point on the comatic circle.  See figure IV.11. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    The radius and height of the comatic circle is different for each zone on the lens that 

produces it, with the result that the “image” appears as a superposition of all the comatic circles 

produced by all the zones on the lens, something like the drawing below.  That, at least is a 

qualitative description of the phenomenon. 
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    To go further is a bit of a specialist skill, so I’ll leave it here.  Suffice to say that the degree 

of coma and the degree of spherical aberration depend on the shape factor of the lens, and 

fortunately the shape that gives least spherical aberration is not very different from the shape 

that gives least coma. 

 

   The aberrations discussed so far are aberrations that result when the lens or mirror does not 

produce a point image of a point object.  If, somehow, we manage to get rid of spherical 

aberration, astigmatism and coma, then a point object will result in a point image.  But will that 

image be in the right place?   There are two further aberrations that are concerned with where 

the image is formed.  These aberrations are curvature of field and distortion. 

 

4.5  Curvature of Field 

 

   Suppose we have a lens that we have managed to correct for (or at least to minimize) 

spherical aberration, astigmatism and coma, say by a combination of choosing the right shape 

of the lens and not going too far off-axis.  (I.e. we might close the lens to an aperture of f/11 

rather than opening it up to f/5.6.)  Nothing that we know about refraction and lenses and 

mirrors tells us that that light coming in at different angles to the axis forms point images 

conveniently situated in a plane, as illustrated hopefully in figure IV.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Alas, life is not as simple as that, and light doesn’t generally come to a focus in a focal plane, 

but rather in a curved focal surface (sometimes called the Petzval surface), as in figure IV.14. 

 

FIGURE IV.13 
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   This doesn’t matter a great deal in a telescope designed merely for looking through, since the 

eye can rapidly accommodate for slightly different image distance, but it obviously matters in a 

photographic telescope. One effective way of dealing with this problem, particularly if your 

detector is a flexible film, is to shape the filmholder so that the film fits along the Petzval 

surface.   This is often done, for example, with Schmidt astronomical telescopes.   

 

  In designing a lens or lens system, the problems of astigmatism and curvature of field are 

often closely related.  For example a meniscus lens tends to suffer from astigmatism, and there 

is a focal surface for the tangential image, and a focal surface for the sagittal image, and the 

tangential and sagittal surfaces curve in opposite senses.  With luck, or more likely with some 

careful design, the surface (C) for the loci of the circles of least confusion is between the 

tangential (T) and sagittal (S) surfaces and is approximately planar (figure IV.15). 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

FIGURE IV.14 
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   It has been shown that, if you have a doublet lens, made of two lenses, one a converging lens 

of focal length f1 and refractive index n1, and the other a diverging lens of focal length f2 and 

refractive index n2, curvature of field will be least if  .0
11

2211


fnfn

 For example if you 

have two glasses, of refractive indices n1 = 1.51 and the other of refractive index n2 = 1.67,  

and you want to make a doublet lens of focal length 100 cm, what should be the focal lengths 

of the two components of the doublet if you want to minimize curvature of field? 

 

  Answer:   The lenses need to satisfy .
111

and0
11

212211 ffffnfn
    It’s probably 

easier to work in terms of powers rather than focal lengths, so we have to solve 

051.167.1 21  PP     and    .01.021  PP  This gives P1 =  0.094375 cm
1

   and P2  =  

+0.104375 cm
1

, or   f1 = 10.60 cm  and f2  =  9.58 cm.   You will then have to design the lenses 

so that the faces of the two lenses that are in contact have the same radius of curvature, and we 

leave that to the reader.   

 

   For a similar problem concerning a doublet with minimum chromatic aberration, see Chapter 

2, Section 2.10.  

 

 

4.6  Distortion 

 

   Let us suppose that, by dint of great labour and overcoming many obstacles, we have finally 

designed a lens system that is free from chromatic aberration, spherical aberration, 

astigmatism, coma and curvature of field, or at least have minimized these aberrations or have 

come to a tolerable compromise for a particular purpose, can we at last relax?   Unfortunately, 

no, we cannot.   The magnification of an image is image distance divided by object distance, 

and image distance is different off-axis than on-axis, so the image magnification varies with 

distance from the axis.  This means that the image of an object like this: 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 



 17 

may look like this: 

 

 

 

(pincushion  

 distortion) 

 

 

 

 

 

 

 

 

 

or like this: 

 

 

(barrel 

distortion) 

 

 

 

 

 

   If the distortion is quite small, it may not be noticed in ordinary pictorial photography, but if 

one is using a photograph for precise positional measurements (for example, in astrometry) it is 

necessary to correct for the distortion.  Often barrel distortion is introduced into a lens system 

if a stop is placed in front of a lens, while pincushion distortion results if a stop is placed 

behind a lens.  The drawing below, in which I have exaggerated the situation by drawing a very 

small stop, may explain the reason why.  I have placed the object at twice the focal distance 

from the lens, so that, on axis, the image and object distances are equal, and the magnification 

is unity. A symmetric air-spaced doublet with a stop half way between the two components 

minimizes distortion.  
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Off-axis, the image distance is less than the object distance, 

so the magnification is less off-axis than on-axis.  Barrel 

distortion results. 

Off-axis, the image distance is greater than the object 

distance, so the magnification is greater off-axis than on-axis.  

Pincushion distortion results. 

FIGURE IV.16 

 


