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APPENDIX A 

Miscellaneous Problems 

 

In this Appendix I offer a number of random problems in classical mechanics.  They are 

not in any particular order – they come just as I happen to think of them, and they are not 

necessarily related to any of the topics discussed in any of the chapters.   They are 

intended just to occupy you on those dull, rainy days when you have nothing better to do.  

Solutions will be in Appendix B – except that whenever I add any new problems to 

Appendix A, which I shall from time to time, I shall wait a few days before posting the 

solutions in Appendix B. 

 

_________________________ 

 

 

 

1.   No book on classical mechanics is complete without a problem of a ladder leaning 

against a wall.  Here, then, is a ladder problem – except that it is nothing whatever to do 

with mechanics, and it is put here just for fun.  It is a problem only in geometry, yet it is 

one which some people at first find difficult.  It even seems difficult to try to find an 

approximate solution by trying to draw it accurately to scale, and I have deliberately not 

drawn it to scale, so you can’t find the answer merely by taking a ruler and measuring it! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two ladders, of lengths 8 m and 10 m, are leaning against two walls as shown.  Their 

point of intersection is 3 m above the ground.  What is the distance between the walls? 

 

 

 

 8 m 

 10 m 

 3 m 
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2.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A pendulum of length l0, is set into motion so that it describes a cone as shown of semi-

vertical angle α, the bob describing a horizontal circle at angular speed Ω 

 

Show that                            .cos
2

0 Ω
=α

l

g
 

 

This, of course, is a very trivial problem not worthy of your mettle.  It is given only as an 

introduction to the next problem. 

 

 

 

 

3. (a)   A string of a pendulum passes through a board as shown in the figure below, in 

such a manner that, by lowering or raising the board, the length of the string below the 

board can be varied.  The part below the board is initially of length l0, and it is set into 

motion as a conical pendulum so that the angular speed and the semi vertical angle are 

related by 

  

    .cos
2

0 Ω
=α

l

g
 

       

As the board is raised or lowered (or alternatively the pendulum is lowered or raised) and 

consequently the length l below the board is varied, the semivertical angle θ will change 

and so will the angular speed ω.  (The symbols l0, α and Ω represent the initial values of 

these quantities.) 

 

 

* * 
Ω 

α 

l0 
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Show that         i.      θθ tansin33l  is constant, 

   ii.     θω 23 cot    is constant, 

  iii.    )sin( 22

0

23 αΩ−ωω ll is constant. 

 

(b)     Start with the following initial conditions: 

 

 l0  =  50 cm      Ω  =  5 rad s
−1

  

 

and assume that g = 9.8 m s
−2

, so that α =  38
o
 22'. 

 

          i.  Plot a graph of θ (vertically) versus l (horizontally), for l = 0 to 1 m.   When l = 

40 cm, what is θ correct to one arcmin? 

 

         ii.  Plot a graph of ω (vertically) versus θ (horizontally), for θ = 0 to 70
o
.   

 

     iii. Plot a graph of ω (vertically) versus l (horizontally) for l = 16 cm to 1 m.   When l 

= 60 cm, what is ω correct to four significant figures? 

 

________________ 

* * 
Ω 

α 

l0 
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The next few problems involve a rod with its lower end in contact with a horizontal table 

and the rod falling over from an initial vertical (or inclined) position.  There are several 

versions of this problem.  The table could be smooth, so that the rod freely slips over the 

table.  Or the lower end could be freely hinged at the table, so that the lower end does not 

move as the rod falls over.  Or the table might be rough, so that the rod might or might 

not slip. 

 

4.  A uniform rod of mass m and length 2l is initially vertical with its lower end in contact 

with a smooth horizontal table.  It is given an infinitesimal angular displacement from its 

initial position, so that it falls over.  When the rod makes an angle θ with the vertical, 

find:   

 

   The angular speed of the rod; 

   The speed at which the centre of the rod is falling; 

   The speed at which the lower end of the rod is moving; 

   The normal reaction of the table on the rod. 

 

Show that the speed of the lower end is greatest when θ  =  37
o
 50'. 

 

If the length of the rod is 1 metre, and g = 9.8 m s
−2

, what is the angle θ when the speed 

of the lower end is 1 m s
−1

? 

 

 

5.  A uniform rod is initially vertical with its lower end smoothly hinged to a horizontal 

table.  Show that, when the rod falls over, the reaction of the hinge upon the rod is 

vertical when the rod makes an angle 48
o
 11' with the vertical, and is horizontal when the 

rod makes an angle 70
o
 31' with the vertical. 

 

6.   A uniform rod of length 1 metre, with its lower end smoothly hinged to a horizontal 

table, is initially held at rest making an angle of 40
o
 with the vertical.  It is then released.  

If g = 9.8 m s
−1

, calculate its angular speed when it hits the table in a horizontal position 

(easy) and how long it takes to get there (not so easy). 

 

7.   A uniform rod is initially vertical with its lower end in contact with a rough 

horizontal table, the coefficient of friction being µ.   

 

Show that:  

  

 a.  If  µ  <  0.3706, the lower end of the rod must slip before the rod makes an 

angle θ with the vertical of 35
o
 05'. 

 

 b.  If  µ  >  0.3706, the rod will not slip before θ  =  51
o
 15', but it will certainly 

slip before θ  =  70
o
  31' . 

 

 If µ = 0.25, at what angle θ will the lower end slip?   If µ = 0.75? 
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8.  It is time for another ladder problem.  Most ladders in elementary mechanics problems 

rest on a rough horizontal floor and lean against a smooth vertical wall.  In this problem, 

both floor and wall are smooth.  The ladder starts making an angle of α with the vertical, 

and then it is released.  It immediately starts to slip, of course.  After a while it will cease 

contact with the smooth vertical wall.  Show that, at the moment when the upper end of 

the ladder loses contact with the wall, the angle θ that the ladder makes with the vertical 

is given by  .coscos
3
2 α=θ  

 

 

9.   If you managed that one all right, this one, which is somewhat similar, should be 

easy.  Maybe. 

 

A uniform solid semicylinder of radius a and mass m is placed with its curved surface 

against a smooth vertical wall and a smooth horizontal floor, its base initially being 

vertical. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is then released.  Find the reaction N1 of the floor on the semicylinder and the reaction 

N2 of the wall on the semicylinder when its base makes an angle θ with the vertical. 

 

Show that the semicylinder loses contact with the wall when θ = 90
o
, and that it then 

continues to rotate until its base makes an angle of 39
o
  46'  with the vertical before it 

starts to fall back. 

 

 

 

_________________________ 
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Many problems in elementary mechanics involve a body resting upon or sliding upon an 

inclined plane.  It is time to try a few of these.  The first one is very easy, just to get us 

started.  The two following that might be more interesting. 

 

10.  A particle of mass m is placed on a plane which is inclined to the horizontal at an 

angle α that is greater than ,tan 1 µ−  where µ is the coefficient of limiting static friction.  

What is the least force required to prevent the particle from sliding down the plane?   

 

 

11.   A cylinder or mass m, radius a, and rotational inertia ka
2
 rolls without slipping down 

the rough hypotenuse of a wedge on mass M, the smooth base of which is in contact with 

a smooth horizontal table.  The hypotenuse makes an angle α with the horizontal, and the 

gravitational acceleration is g.  Find the linear acceleration of the wedge as it slips along 

the surface of the table, in terms of m, M, g, a, k and α .   

 

[Note that by saying that the rotational inertia is ka
2
, I am letting the question apply to a 

hollow cylinder, or a solid cylinder, or even a hollow or solid sphere.] 

 

 

12.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

y 
α 

V0 



 7 

A particle is placed on a rough plane inclined at an angle α to the horizontal.  It is 

initially in limiting static equilibrium.  It is given an initial velocity V0 along the x-axis.  

Ignoring the small difference between the coefficients of moving and limiting static 

friction, show that at a point on the subsequent trajectory where the tangent to the 

trajectory makes an angle  ψ with the x-axis, the speed V is given by 

 

    .
cos1

0

ψ+
=

V
V  

 

What is the limiting speed reached by the particle after a long time? 

 

 

13. 

 

 

 

 

 

 

 

 

 

 

 

 

   Calculate the moment of inertia of a hollow sphere, mass M, outer radius a, inner radius 

xa.  Express your answer in the form  

 

    .)(2

5
2 xfMaI ×=     

 

What does your expression become if x = 0?  And if x →  1? 

 

 

14.    

 

 

 

 

 

 

 

 

 

 

 

a 
xa 

a 
xa 
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Calculate the moment of inertia of a spherical planet of outer radius a, consisting of a 

dense core of radius xa surrounded by a mantle of density s times the density of the core.  

Express your answer in the form 

 

    .),(2

5
2 sxfMaI ×=  

 

Make sure that, if the density of the core is zero, your expression reduces to the answer 

you got for problem 13. 

 

Draw graphs of ( )2

5
2/ MaI   versus x  (x going from 0 to 1), for s  =  0.2,  0.4,  0.6 and 0.8. 

 

Show that, for a given mass M and  density ratio s, the moment of inertia is least for a 

core size give by the solution of 

 

   .0915)1(2 25 =−+− xxs  

 

For a mantle-to-density ratio of 0.6, calculate the core size for which the moment of 

inertia is least and calculate (in units of 2

5
2 Ma ) the moment of inertia for that core. 

 

Now let’s see if we can determine the core size from a knowledge of the moment of 

inertia.  It is sometimes asserted that one can determine the moment of inertia (and hence 

the core size) of a planet from the rate of precession of the orbit of a satellite.  I am not 

sure how this would work with a planet such as Mercury, which has never had a satellite 

in orbit around it.  (Mariner 10, while in orbit around the Sun, made three fly-bys past 

Mercury).  Unless a planet departs from spherical symmetry, the orbit of a satellite will 

not precess, since the gravitational planet is then identical with that from a point mass.  

And, even if a planet were dynamically oblate, the rate of precession allows us to 

determine the dynamical ellipticity (C − A)/C, but not either moment of inertia separately. 

Nevertheless, let’s suppose that the moment of inertia of a planet is (0.92 ± 1%) %   
2

5
2 Ma ;  specifically, let’s suppose that the moment of inertia has been determined to be 

between 0.911 and 0.929 % 2

5
2 Ma , and that the mantle-to-core density ratio is known 

(how?) to be 0.6.  Calculate the possible range in the value of the core radius x. 

 

 

 

15.  A rectangular brick of length 2l rests (with the sides of length 2l vertically) on a 

rough semicylindrical log of radius R.  The drawing below shows three such bricks.  In 

the first one, 2l is quite short, and it looks is if it is stable.  In the second one, 2l is rather 

long, and the equilibrium looks decidedly wobbly.  In the third one, we’re not quite sure 

whether the equilibrium is stable or not.  What is the longest brick that is stable against 

small angular displacements from the vertical? 

 

 

 



 9 
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16.  A Thing with a semicylindrical (or hemispherical) base of radius a is balanced on top 

of a rough semicylinder (or hemisphere) of radius b as shown.  The distance of the centre 

of mass of the Thing from the line (or point) of contact is l.  Show that the equilibrium is 

stable if 

  

     .
111

bal
+>              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If a = b, is the equilibrium stable if the Thing is   

 

(1) A hollow semicylinder? 

(2) A hollow hemisphere? 

(3) A uniform solid semicylinder? 

(4) A uniform solid hemisphere? 

  

 

 

 

 

 

 

 

 

a 

b 

l 

* 
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17. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

A log of square cross-section, sides 2a, rests on two smooth pegs a distance 2ka apart, 

one of the diagonals making an angle θ with the vertical.   

 

Show that, if 354.08/1 =<k  the only equilibrium position possible is θ  =  90
o
, but 

that this position is unstable; consequently, following a small displacement, the log will 

fall out of the pegs.  Show that if the pegs are farther apart, with 500.0354.0 << k , three 

equilibrium positions are possible.  Which of them are stable, and which are unstable?  If 

45.0=k , what are the possible equilibrium values of θ?  Show that, if  

414.1500.0 << k , only one equilibrium position is possible, and that it is stable. 

  

 

18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* * 

θ 
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A uniform solid hemisphere of radius a rests in limiting static equilibrium with its curved 

surface in contact with a smooth vertical wall and a rough horizontal floor (coefficient of 

limiting static friction µ).  Show that the base of the hemisphere makes an angle θ with 

the floor, where 

 

     .
3

8
sin

µ
=θ  

 

Calculate the value of θ if (a) 
4
1=µ  and .

8
3=µ  

 

What happens if ?
8
3>µ  

 

 

19.    A uniform rod of length 2l rocks to and fro on the top of a rough semicircular 

cylinder of radius a.  Calculate the period of small oscillations. 
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20.    

 

 

 

 

 

 

 

 

 

 

 

 

A uniform solid hemisphere of radius a with its curved surface in contact with a rough 

horizontal table rocks through a small angle.  Show that the period of small oscillations is 

 

    .
15

26
2

g

a
P π=  

 

 

 

21.  The density ρ of a solid sphere of mass M and radius a varies with distance r from 

the centre as 

 

    .10 







−ρ=ρ

a

r
 

 

Calculate the (second) moment of inertia about an axis through the centre of the sphere.  

Express your answer in the form of   constant %  Ma
2
. 

 

 

 

22. 

 

 

 

 

 

 

 

 

* 

* 

α − θ 

α + θ 
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Two identical particles are connected by a light string of length 2aα.  The system is 

draped over a cylinder of radius a as shown, the coefficient of limiting static friction 

being µ.  Determine the angle θ when the system is in limiting equilibrium and just about 

to slide. 

 

 

 

 

 

23.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A mass M hangs from a light rope which passes over a rough cylinder, the coefficient of 

friction being µ and the angle of lap being α.  What is the least value of F, the tension in 

the upper part of the rope, required to prevent the mass from falling? 

 

 

 

24. 

 

 

 

 

 

 

M 

F 

α 

x 

y 

* 
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A wooden cube floats on water.  One of its faces is freely hinged to an axis fixed in the 

surface of the water. The hinge is fixed at a distance from the top of the face equal to x 

times the length of a side.  The opposite face is submerged to a distance y times the 

length of a side.  Find the relative density s (that is, relative to the density of the water) of 

the wood in terms of x and y. 

 

 

25.   A uniform solid sphere sits on top of a rough semicircular cylinder.  It is given a 

small displacement so that it rolls down the side of the cylinder.  Show that the sphere 

and cylinder part company when the line joining their centres makes an angle 53
o
 58' 

with the vertical. 

 

 

 

 

 

 

 

 

 

 

 

 

26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 cm 

9 cm 

6 cm 
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A student has a triangular sandwich of sides 9 cm, 12 cm, 15 cm.  She takes a 

semicircular bite of radius 3 cm out of the middle of the hypotenuse.  Where is the centre 

of mass of the remainder?  Is it inside or outside the bite? 

 

 

27.  An rubber elastic band is of length 2πa and mass m; the force constant of the rubber 

is k.  The band is thrown in the air, spinning, so that it takes the form of a circle, stretched 

by the centrifugal force.  (This takes much practice, skill and manual dexterity.)  Find a 

relation between its radius and angular speed, in terms of a, m and k. 

 

 

28.  Most of us have done simple problems on friction at high school or in first year at 

college or university.  You know the sort – a body lies on a rough horizontal table.  A 

force is applied to it.  What happens?  Try this one. 

 

Find a uniform rod AB.  A ruler will do as long as it is straight and not warped.  Or a 

pencil of hexagonal (not circular) cross-section, provided that it is uniform and doesn’t 

have an eraser at the end.  Place it on a rough horizontal table.  Gradually apply a 

horizontal force perpendicular to the rod at the end A until the rod starts to move.  The 

end A will, of course, move forward.  Look at the end B – it moves backward.  There is a 

point C somewhere along the rod that is stationary.  I.e., the initial motion of the rod is a 

rotation about the point C.  Calculate – and measure – the ratio AC/AB.  What is the 

force you are exerting on A when the rod is just about to move, in terms of its weight and 

the coefficient of friction? 
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29.   Some of the more dreaded friction problems are of the “Does it tip or does it slip?” 

type.  This and the following four are examples of this type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A uniform solid right circular cone of height h and basal radius a is placed on an inclined 

plane whose inclination to the horizontal is gradually increased.  The coefficient of 

limiting static friction is µ.  Does the cone slip, or does it tip? 

 

 

30.    

 

 

 

 

 

 

 

 

 

 

A cubical block of side 2a rests on a rough horizontal table, the coefficient of limiting 

static friction being µ.  A gradually increasing horizontal force is applied as shown at a 

distance x above the table.  Will the block slip or will it tip?  Show that, if µ < ½, the 

block will slip whatever the value of x. 

θ 

2a 

x 
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31. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A cylindrical log of diameter 2a and mass m rests on two rough pegs (coefficient of 

limiting static friction µ) a distance 2ka apart.  A gradually increasing torque τ is applied 

as shown.   Does the log slip (i.e. rotate about its axis) or does it tip (about the right hand 

peg)? 

 

When you’ve done that one, you can try a variant (which I haven’t worked out and 

haven’t posted a solution) in which a cylinder of radius a is resting against a kerb (or 

curb, if you prefer that spelling) of height h, and a torque is applied.  Will it tip or will is 

slip? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2ka 

τ 

h 
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32. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This problem reveals the severe limitations of my artistic abilities, but the drawing above, 

believe it or not, represents a motor car seen from behind.  You can see the driver and 

passenger.  The height of the centre of mass is h and the distance between the wheels is 

2d.  The car is travelling on a horizontal road surface, coefficient of friction µ, and is 

steering to the left in a circle of radius R, the centre of curvature being way off to the left 

of the drawing.  As they gradually increase their speed, will the car slip to the right, or 

will it tip over the right hand wheel, and at what speed will this disaster take place?  

Fortunately, driver and passenger were both wearing their seat belts and neither of them 

was badly hurt, and never again did they drive too fast round a corner.   

 

                           

33. 

 

 

 

 

 

 

 

 

 

 

 

 

• 

h 

2d 

l − a  l + a  A  
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A uniform rod of length 2l rests on a table, with a length l − a in contact with the table, 

and the remainder, l + a sticking over the edge – that is, a is the distance from the edge of 

the table to the middle of the rod.  It is initially prevented from falling by a force as 

shown.  When the force is removed, the rod turns about A.  Show that the rod slips when 

it makes an angle θ with the horizontal, where 

 

         .
)/(92

2
tan

2
la+

µ
=θ  

 

Here µ is the coefficient of limiting static friction at A. 

 

 

34.    A flexible chain of mass m and length l is initially at rest with one half of it resting 

on a smooth horizontal table, and the other half dangling over the edge: 

  

 

 

 

 

 

 

 

 

 

It is released, so that it starts to slide off the table.  At a subsequent time t, a length 

xl −
2
1  remains in contact with the table, the remaining length xl +

2
1  hanging vertically, 

and the speed of the chain is v: 

 

                                                                                                            

 

 

 

 

 

 

 

 

 

 

 

 

 

l
2
1  

l
2
1  

xl −
2
1  

xl +
2
1  

v 

v 
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Show that  ,22
x

l

g
gx +=v  

   
t

t

lg

lg

e

el
x

/

2/

4

)1( −
=  

 

and   .
4

)1(
/

/4

t

t

lg

lg

e

egl −
=v  

 

 

 

35.     (a) 

 

 Four books, each of width 2w, are stacked on top of each other in a heap, thus: 

 

 

  

 

 

 

 

 

 

            What is the maximum possible overhang, D? 

 

 

           (b)   How many books would be needed to achieve an overhang of 10w? 

 

 

           (c)   Given an unlimited supply of books, what is the maximum overhang 

achievable? 

 

 

36.   The Man and the Dog. 

 

At time t = 0, the Man is at the origin of coordinates, and he starts to walk up the y-axis at 

constant speed v.   The Dog stars at (a , 0) and runs at constant speed Av  (v > 1) towards 

the Man.  The velocity of the Dog is always directed straight towards the Man. 

 

Find an equation for the path pursued by the Dog, and draw a graph of this path.  How far 

has the Man walked when the Dog reaches the Man, and how long does this take? 

 

 

 

 

 

D 
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37.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A particle A of mass m is attached by a light string to a second particle, B, also of mass 

m.   A rests on a smooth horizontal table, while B hangs vertically through a hole in the 

table. At time zero, the length of the horizontal portion of the string (i.e. the distance of A 

from the hole) is a, and A is moving on the table in a horizontal circle of radius a with 

initial angular speed ω0. 

 

At some subsequent time the length of the horizontal portion of the string is r and the 

angular speed of A is ω.  Let us denote by r& the rate of increase of r with time, which will 

evidently be negative if B is falling.    a.  Show that r&  is given by 

 

.1
2

1 0

0

2
0

2

ω

ω
−









ω

ω
−

ω
+=

g

a

ga

r&
    (1)  

 

b. Show that, if ,2
0 ga =ω     

,/1
2
1

2
3

2

Ω−Ω−=
ga

r&
     (2) 

 

where ./ 0ωω=Ω c. Show that there is only one value of Ω, namely 1, for which there 

is a real solution for r& , namely .0=r&   This implies that the system remains in 

equilibrium, with the radius of the circle, the angular speed of A and the height of B 

remaining constant, with the centrifugal force on A remaining equal to the weight of B. 

 

 

B 

A 
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d.  Show that, if ,22
0 ga =ω  

 

    ,/12
2

Ω−Ω−=
ga

r&
 

 

and that A moves outwards (its angular speed decreasing)  and B moves upwards, 

 

reaching a maximum speed of  gar 841331.0=&   

   where     ar 921259.1=  

                                    when     ,961629.0 0ω=ω  

 

and it reaches an equilibrium when    0=r&   

   where     ar 034618.1=  

                                    when     .966381.0 0ω=ω  

 

 

 

 

e.  Show that, if ,
2
12

0 ga =ω  

 

    ,/1
4
1

4
5

2

Ω−Ω−=
ga

r&
 

 

and that A moves inwards (its angular speed increasing)  and B moves downwards, 

 

reaching a maximum speed of  gar 822243.0−=&   

   where     ar 701793.0=  

                                    when     ,401587.1 0ω=ω  

 

and it reaches an equilibrium when    0=r&   

   where     ar 388640.0=  

                                    when     .447438.2 0ω=ω  

 

 

 

38.   This problem – the bifilar torsion pendulum − was suggested to me by Claude 

Plathey, who used the method in a practical application to determine the rotational inertia 

(moment of inertia) of a real nonuniform rod.  He also drew my attention to an interesting 
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paper on the determination of the moments of inertia of bodies (such as aircraft!) by the 

method:    http://naca.larc.nasa.gov/digidoc/report/tr/67/NACA-TR-467.PDF 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A symmetric but not necessarily uniform rod of mass m and moment of inertia I is 

suspended from the ceiling by two light threads each of length L a distance D apart 

).( LD <<   The rod is twisted about a vertical axis through its midpoint through a small 

angle and then released.  Find the period of small oscillations in the horizontal plane.  

 

 

39. 

  

A yo-yo is of mass M and rotational inertia I.  The radius 

of its axle is a, and it falls in the usual way with a length  

of string wrapped around the axle. 

 

How that its linear acceleration downwards is 

 

g
IMa

Ma
×

+2

2

  

 

and that the tension in the string is 

 

L L 

D 

v 

ω 
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  .
2

Mg
IMa

I
×

+
 

 

 

40.  

 

Yo-yos lend themselves to a number of dynamical problems.  In this one, we have a 

yo-yo, mass M, moment of inertia I, outer radius a, inner radius (i.e. the radius of the 

axle) b.  It is resting vertically with its rim on a horizontal table, and a string is wrapped 

around the axle.  The string is pulled with a force P, and we are asked to describe the 

initial motion.  Depending on the value of the coefficient of limiting static friction 

(hereafter called the coefficient of friction), the initial motion might be a rotation about 

the axle with no translation, so that the outer circumference of the yo-yo slips on the 

table; or the yo-yo might tip about the point of contact with the table; or the yo-yo might 

slide horizontally along the table with no rotation.  Furthermore, a rotation may be 

clockwise or counterclockwise, and a translation may be to the left or the right. 

 

You may imagine the table and the yo-yo to be made of ice, with zero coefficient of 

friction.  Or you may imagine the outer circumference to have gear teeth fitting into 

corresponding gear teeth on the table, so that rolling can occur but slipping is impossible, 

the coefficient of friction being infinite.  Of you may consider an intermediate situation, 

in which the coefficient of friction is µ. 

 

There are five geometrical cases to consider, depending on whether the string is initially 

vertical, or is initially horizontal, or initially makes an angle θ with the horizontal.  

Choose one! 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 
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The manner in which the force is applied might also vary.  It could be increased slowly, 

starting from zero.  Or it could be a sudden, impulsive force. (For the treatment of 

impulsive forces, see Chapter 8.)  Or you could hold the yo-yo steady with your fingers 

while you pull on the string with a force P, and then let go, so that, at time t = 0, the 

force P is already in place and is being fully applied.  In the problems below, I am 

assuming that this is what we are doing. 

 

 

Here, then, are five problems, numbered 40(a) to 40(e). 

 

40(a) 

 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A yo-yo, mass M, axle radius a, outer radius b, rests on a horizontal table as shown. The 

string, wrapped around the axle, is held vertically as shown, and a force P is applied.  The 

coefficient of friction between yo-yo and table is µ. 

 

Show that, if  

 

    ,
))(( 2

MbIPMg

MabP

+−
>µ  

 

the initial motion of the yo-yo will be to roll to the left without slipping, with an initial 

linear acceleration 

(d) (e) 

P 

A 
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     ;
MabI

abP

+
 

but that, if 

,
))(( 2

MbIPMg

MabP

+−
<µ  

 

 the yo-yo will rotate counterclockwise without rolling, with an initial angular 

acceleration about C of 

        .
)(

I

MgbaP µ−µ−
 

 

 

 

40(b) 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A yo-yo, mass M, axle radius a, outer radius b, rests on a horizontal table as shown. The 

string, wrapped around the axle, is held horizontally as shown, and a force P is applied.  

The coefficient of friction between yo-yo and table is µ. 

 

(i)    Show that, if :MabI >  

 

   If 
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
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
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P 

A 
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the initial motion of the yo-yo will be to roll to the right without slipping, with an initial 

linear acceleration 

 

     ;
)(

2
MbI

baPb

+

+
 

 

but that, if 

    ,
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Mg

P

MbI

MabI
 

 

 

 the yo-yo simultaneously accelerates to the right with a linear acceleration of 

 

     
M

MgP µ−
 

 

while undergoing a clockwise angular acceleration about C of  

 

     .
I

MgbPa µ+
 

 
 
 

(ii)    Show that, if :MabI <  

 

   If 
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the initial motion of the yo-yo will be to roll to the right without slipping, with an initial 

linear acceleration 
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2
MbI
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+

+
 

 

but that, if 
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the yo-yo simultaneously accelerates to the right with a linear acceleration of 

 

     
M

MgP µ+
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while undergoing a clockwise angular acceleration about C of  

 

     .
I

MgbPa µ−
 

 

 
 

(iii)   What happens if ?MabI =  

 

 

 

40(c) 

 

  (After Problem 40(b) this one is a good deal easier and a welcome relief.) 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A yo-yo, mass M, axle radius a, outer radius b, rests on a horizontal table as shown. The 

string, wrapped around the axle, is held horizontally as shown, and a force P is applied.  

The coefficient of friction between yo-yo and table is µ. 

 

Show that, if  
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the initial motion of the yo-yo will be to roll to the right without slipping, with an initial 

linear acceleration 

 

A 

P 
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2

)(

MbI

abPb
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and angular acceleration  ;
)(
2

MbI

abP
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but that, if 
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the yo-yo slips at A.  C accelerates to the right at a rate of 
M

MgP µ−
, while the yo-yo 

spins around C with a counterclockwise angular acceleration of  .
I

MgbPa µ−
 

 

 

 

 

40(d) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A yo-yo, mass M, axle radius a, outer radius b, rests on a horizontal table as shown. The 

string, wrapped around the axle, is held at an angle θ to the horizontal as shown, and a 

force P is applied.  The coefficient of friction between yo-yo and table is µ. 

 

P 

A 
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The complete analysis of this problem is similar to that of Problem 40(b), except that a 

factor of cos θ appears in many of the equations.  No new phenomena appear, and the 

analysis is tedious without any new points of interest.  For that reason I limit this problem 

to asking you to show that the direction of the frictional force of the table on the yo-yo at 

A depends upon whether the cos θ is less than or greater than Mab/I. 

 

 

 

 

  

 

40(e) 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A yo-yo, mass M, axle radius a, outer radius b, rests on a horizontal table as shown. The 

string, wrapped around the axle, is held at an angle θ to the horizontal as shown, and a 

force P is applied.  The coefficient of friction between yo-yo and table is µ. 

 

Show that, provided there is no slipping, the yo-yo rolls to the right if ba /cos >θ and to 

the left if ./cos ba<θ   Describe what happens if ba /cos =θ . 
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41. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A uniform plane lamina of mass 3m is in the form of a truncated square like the one 

above.  

 

 

Find the position of the centre of mass, the principal moments of inertia with respect to 

the centre of mass, and the eccentricity and inclination of the momental ellipse. 
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42. 

    A mass M sits on a smooth horizontal table.  A second mass, m, hangs from the first by 

a light inextensible string.  A slot in the table allows m and the string to swing as a 

pendulum. 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   The system is then set in motion with the pendulum swinging, and the mass M sliding 

back and forth on the table.  At some instant when the horizontal displacement of M  

from its equilibrium position is x the string makes an angle θ with the vertical. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Show that the equations of motion are 
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Show that for small oscillations ),,sin,1(cos 2 gx <<θθθ<<θθθ≈θ≈θ &&&&& the period 

the motion is approximately .
)(

2
gmM

Ml

+
π    Note that, if  Mm << , this reduces to  

,2
g

l
π  as expected. 

 

 

43.   A gun projects a shell, in the absence of air resistance, at an initial angle to the 

horizontal.  The speed of projection varies with the angle α of projection and is given by 

 

initial speed = α
2
1

0 cosV . 

 

Show that, in order to achieve the greatest range on the horizontal plane, the shell should 

be projected at an angle to the horizontal whose cosine c is given by the solution of the 

equation 

01223 23 =−−+ ccc  

 

and determine this angle to the nearest arcminute. 

 

 

44.    The length of a cylindrical log is L times its diameter, and its density is s times that 

of water )10( << s .   Show that the log can float vertically in stable equilibrium, 

whatever its density, provided that L  <   0.707.  and that, if its length is greater than this, 

it can float vertically in stable equilibrium only if  

 

)1(8

1

ss
L

−
< . 

 

Show that, if the length is equal to the diameter, it can float in stable equilibrium with its 

cylindrical axis vertical only if its density is less than 0.146 or greater than 0.854 times 

that of water. 
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45. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   A uniform heavy rod of length 6 hangs from a fixed point C by means of two light 

strings of lengths 4 and 5.   What angle does the rod make with the horizontal? 

 

  Incidentally, a (4, 5, 6) triangle has the interesting property that one of its angles is 

exactly twice one of the other ones. 

 

 

46. 
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5 

4 

30º 45º 
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A uniform rod rests on two smooth (frictionless) planes inclined at 30º  and 45º to the 

horizontal.  What angle does the rod make with the horizontal? 

 

 

   

47.   A uniform rod of length 2l rests on the inside of a circular cylindrical pipe of radius 

a.  The coefficient of limiting static friction (often known for short, if with less precision, 

as “the”coefficient of friction) µ.  What is the maximum angle θ that the rod can make 

with the horizontal in static equilibrium? 
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48.   Have a look at the virtual work example given in Chapter 9 Section 9.4, but, instead 

of the hanging weight being Mg
10
1 , it is, instead, mg.   Draw a graph of Mm /:θ from 

.10to0/ =Mm  
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49. 

 

   A uniform rod ABCDE is of weight Mg newtons, and is of length 4a, with  

AB  =  BC  =  CD  =  DE.   One end of a light inextensible string of length 3a is attached 

to the point D, and the other end is attached to a point H on a rough vertical wall, the 

coefficient of limiting static friction being µ.  The lowest point, A, of the rod leans 

against the wall, and the string and the rod each make an angle θ with the wall.  A 

diagram is given below (drawn for ).4.2≈µ  

 

    (a)  Using the conventional method of equating the vertical and horizontal components, 

and the moments, of all the forces to zero, calculate the magnitudes of the following 

forces, in terms of θ and Mg: 

 

T, the tension in the string; 

R, the reaction of the wall on the rod at its lower end A; 

F, the vertical component of R; 

N, the horizontal component of R. 

 

    (b)  Now suppose that the rod is in limiting static equilibirium (i.e. just about to slip), 

and calculate θ in terms of µ, and T, R, F and N in terms of µ and Mg. 

 

     (c)   Do the same problem, but first, calculate F by the method of virtual work.  After 

that, it is easy, by conventional methods, to calculate the remaining quantities. 
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50.  The first problem in this selection was a ladder problem.  It was a purely geometrical 

problem, with little to do with physics.  Here is another ladder problem, and like the first 

problem it is purely geometrical. 

 

   Two corridors, one of width 6 feet, the other of width 8 feet, join at right angles.  What 

is the length of the longest ladder that can be carried round the corner from one corridor 

to the other? 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51.  A heavily damped oscillator is released from rest ]0)[( 0 =x&  at an initial distance 

30 =x  m from its equilibrium position )0( =x .  It reaches a maximum speed of 0.5 m 

w1  =  6 ft 

w2  =  8 ft 
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s
−1

, 2 s after its release.  Calculate the undamped angular frequency ω0 and the damping 

constant γ. 


