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CHAPTER 7 

PROJECTILES 

 
      7.1  No Air Resistance 

 

We suppose that a particle is projected from a point O at the origin of a coordinate system, 

the y-axis being vertical and the x-axis directed along the ground.  The particle is projected in 

the xy-plane, with initial speed V0 at an angle α to the horizon.  At any subsequent time in its 

motion its speed is V and the angle that its motion makes with the horizontal is ψ. 

 

The initial horizontal component if the velocity is V0 cos α, and, in the absence of air 

resistance, this horizontal component remains constant throughout the motion.  I shall also 

refer to this constant horizontal component of the velocity as u.  I.e. u = V0 cos α  =  constant 

throughout the motion. 

 

The initial vertical component of the velocity is V0 sin α, but the vertical component of the 

motion is decelerated at a constant rate g.   At a later time during the motion, the vertical 

component of the velocity is V sin ψ, which I shall also refer to as v. 

 

In the following, I write in the left hand column the horizontal component of the equation of 

motion and the first and second time integrals; in the right hand column I do the same for the 

vertical component. 

 

 

  Horizontal.     Vertical 

 

  0=x&&       gy −=&&                       7.1.1a,b 

 

  α== cos0Vux&     gtVy −α== sin0v&              7.1.2a,b 

 

  x V t= 0 cosα      y V t gt= −0
1
2

2sinα           7.1.3a,b 

 

The two equations 7.1.3a,b are the parametric equations to the trajectory. In vector form, 

these two equations could be written as a single vector equation: 

 

     r V g0= +t t1
2

2 .     7.1.4 

 

Note the + sign on the right hand side of equation 7.1.4.  The vector g is directed downwards. 

 

The xy-equation to the trajectory is found by eliminating t between equations 7.1.3a and 

7.1.3b to yield: 

 

     y x
gx

V
= −tan

cos
.α

α

2

0

2 22
    7.1.5 
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Now, re-write this in the form 

 

     ( ) ( ) .
2

yxx −=−  

 

Add to each side (half the coefficient of x)
2
 in order to "complete the square" on the left hand 

side, and, after some algebra, it will be found that the equation to the trajectory can be written 

as: 

 

     ( ) ( ),4
2

ByaAx −−=−      7.1.6 

 

where    A
V

g

V

g
= =0

2

0

2 2

2

sin cos sin ,α α α
   7.1.7 

 

 

     B
V

g
= 0

2 2

2

sin ,α
     7.1.8 

 

 

and     a
V

g
= 0

2 2

2

cos .α
     7.1.9   

 

Having re-arranged equation 7.1.5 in the form 7.1.6, we see that the trajectory is a parabola 

whose vertex is at (A , B).  The range on the horizontal plane is 2A, or 
V

g

0

2 2sin .α
   The 

greatest range on the horizontal plane is obtained when sin 2α = 1, or α = 45
o
.  The greatest 

range on the horizontal plane is therefore V g0

2/ .  The maximum height reached is B, or 

V

g

0

2 2

2

sin .α
   The distance between vertex and focus is a, or 

V

g

0

2 2

2

cos .α
  The focus is above 

ground if this is less than the maximum height, and below ground if it is greater than the 

maximum height.   That is, the focus is above ground if cos sin .2 2α α<   That is to say, the 

focus is above ground if α > 45
o
 and below ground if α < 45

o
. 

 

The radius of curvature ρ anywhere along the trajectory can be found using the usual formula 

( ) .
"

'1 2

3
2

y

y+
=ρ   At the top of the trajectory, y' = 0, so that ρ = 1/y'.  Alternatively (in case one 

has forgotten or is unfamiliar with the "usual formula"), we note that the speed at the top of 

the path is just equal to the (constant) horizontal component of the velocity Vo cos α.  We can 

then equate the centripetal acceleration ( ) gV to/cos
22

0 ρα  and hence obtain:  

 

     ρ
α

=
V

g

0

2 2
cos

.      7.1.10 
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By subtracting this from our expression for the maximum height of the projectile, we find 

that the height of the centre of curvature above the ground is 
( ).

2

cos31 22

0

g

V α−
  The centre of 

curvature is above ground if α > 54
o
 44'. 

 

The range r on a plane inclined at an angle θ to the horizontal can be found by substituting 

x r= cosθ  and y r= sin θ  in the equation 7.1.5 to the trajectory.  This results, after some 

algebra, in 

 

     ( )[ ].sin2sin
cos2

2

0 θ−θ−α
θ

=
g

V
r    7.1.11 

 

This is greatest when 2α − θ = 90
o
;  i.e. when the angle of projection bisects the angle 

between the inclined plane and the vertical.  The maximum range is 

 

     
( )

.
sin1

2

0

θ+
=

g

V
r      7.1.12 

 

This is the equation, in polar coordinates, of a parabola, and this parabola, when rotated 

about its vertical axis, describes a paraboloid, known as the paraboloid of safety.  It is the 

envelope of all possible trajectories with an initial speed V0.  If a gun is firing shells with 

initial speed V0 , or a lawn sprinkler is ejecting water at initial speed V0, you are safe as long 

as you are outside the paraboloid of safety.   Figure VII.1 shows trajectories for α = 20, 40, 

60, 80, 100, 120, 140 and 160 degrees, and, as a dashed line, the paraboloid of safety.  Notice 

how the range changes with α and that it is greatest for α = 45
o
. 
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Problem. 

 

A gun projects a shell, in the absence of air resistance, at an initial angle α to the horizontal. 

The speed of projection varies with angle of projection and is given by 

 

    Initial speed = V0
1
2

cos .α  

 

Show that, in order to achieve the greatest range on the horizontal plane, the shell should be 

projected at an angle to the horizontal whose cosine c is given by the solution of the equation 

 

    3 2 2 1 03 2c c c+ − − = . 

 

Find the optimum angle to a precision of one arcminute. 

 

     

7.2   Air resistance proportional to the speed. 

 

As in the previous section, I shall write the x-component of the equation of motion, and of the 

first and second time integrals,  in the left hand column, and the y-component in the right-hand 

column.  The x-component of the air resistance per unit mass is x&γ  and the y-component is .y&γ   

Here γ is the damping constant, defined in Chapter 6, section 3.   The x-  and y-components of 

the initial velocity are, respectively, V0 cos α and V0 sin α.  It should be readily seen that the 

equations of motion and their time integrals are as follows:      

 

  Horizontal    Vertical 

 

  xx &&& γ−=     ygy &&& γ−−=               7.2.1a,b 

 

  teVux γ−α== .cos0
&    ( )tt eeVy γ−γ− −−α== 1ˆ.sin0 vv&         7.2.2a,b         

         where γ= /ˆ gv  

 

( )t
exx

γ−

∞ −= 1     ( )( ) teVy
t
vv ˆ1ˆsin

1
0 −−+α

γ
= γ−

       7.2.3a,b    

  where x
V

∞ = 0 cosα

γ
 

 

(In case it is not "readily seen", for the horizontal motion refer to Chapter 6, section 3, 

especially equations 6.3.2, 6.3.3 and 6.3.5, and for the vertical motion refer to Chapter 6, 

section 3b, especially equations 6.3.24, 6.3.25 and 6.3.27.)  It will be seen that, as t → ∞,  

.,ˆ0, ∞→→→ xxu v-v    The xy-equation to the trajectory is the t-eliminant of equations 

6.2.3a and 6.2.3b.  After a small amount of algebra this is found to be: 
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( )

.1ln
ˆ

cos

ˆsin

0

0









−

γ
+

α

+α
=

∞x

x

V

Vx
y

vv
    7.2.4 

 

This is illustrated in figure VII.2 for the numerical data given on the next page.  

 

The range on a horizontal plane is found by setting y = 0, to obtain either 

 

    ( )∞−−= xxAx /1ln       7.2.5 

 

or    ( ),1
/ Ax

exx
−

∞ −=       7.2.6 

 

where  
( )v
v

ˆsin

cosˆ

0

0

+αγ

α
=

V

V
A   ,  

γ

α
=∞

cos0V
x    and γ= /ˆ gv . 
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Example.   Suppose     V0 = 20 m s
-1

 

 

α  = 50
o
 

 

            g   = 9.8 m s
-2

 

 

   γ   = 1.96 s
-1

    ( )1
sm5ˆ −=∴v  

 

Then       A   = 1.613 870 65  m 

 

and       x∞ = 6 559 057 24. m. 

 

    

Try to find the range on the horizontal plane, using either equation 7.2.5 or 7.2.6, to nine 

significant figures.  Which equation works best?  Newton-Raphson may fail with a stupid first 

guess - but it should not be difficult to make a fairly intelligent first guess.  I should not tell you, 

but figure VII.2 was calculated using the data of this example. 

 

I make the answer 6.437 584 2 m. 

 

Here’s a more difficult problem:  It is well known that, in the absence of air resistance, the 

maximum range on the horizontal plane is effected by choosing the initial launch elevation to be 

.45
o=α   What if there is air resistance, with damping constant γ?   What, then, should be the 

angle of launch to achieve the greatest range on the horizontal plane?   Given equation 7.2.6, 

 ( ),1 / Axexx −
∞ −=  for what value of α is x greatest? 

 

Equation 7.2.6, written in full, is 

 





















α

+αγ−
−

γ

α
=

cosˆ

)ˆsin(
exp1

cos

0

00

V

xVV
x

v

v
.    7.2.7 

 

This can be written   

   
( )

,
cos

1sin
exp1cos 

















α

+α
−−α=

a

xb
ax      7.2.8  

 

where 
γ

= 0V
a  and .

ˆ
00

g

VV
b

γ
==

v

     We have to find for what value of α is x greatest.   It 

seems a simple enough problem, but at the moment I can’t find a good way of solving it.  If 

anyone has a clue, let me know (jtatum@uvic.ca).  In the meantime, the best I can offer is, for 

our particular numerical example, to calculate the range, x, for several values of α and see where 

it goes through a maximum.  For our particular numerical example, a  =   10.204 081 63 m and 
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b  =  4.  Here is a graph of range versus launch angle, for an initial speed of 20 m s
−1

.  A launch 

angle of about 23º 59′ gives a range of about 8.4635 m.  For a given γ and g, the optimum launch 

angle depends on the launch speed V0.  Is this intuitively obvious? 
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7.3 Air resistance proportional to the square of the speed. 

 

Notation:   V is the velocity, V is the speed.  The horizontal and vertical components of the 

velocity are, respectively, .sinandcos ψ==ψ== VyVxu && v   Here ψ is the angle that the 

instantaneous velocity V makes with the horizontal.   The resistive force per unit mass is kV
2
.  

The horizontal and vertical components of the resistive force per unit mass are kV
2
 cos ψ and kV

2
 

sin ψ respectively.  The launch speed is V0 and the launch angle (i.e. the initial value of ψ) is α.  

Distance travelled from the launch point, measured along the trajectory, is s, and speed  .sV &=   

The equations of motion are: 

          

Horizontal:   ψ−= cos
2

kVx&&      7.3.1 

 

Vertical:    .sin
2 ψ−−= kVgy&&      7.3.2 
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These cannot be integrated as conveniently as in the previous cases, but we can get a simple 

relation between the horizontal component u of the speed and the intrinsic coordinate s.  Thus, 

when we make use of  ,cosand, uVsVux =ψ== &&&&  equation 7.3.1 takes the form 

 

.skuu && −=       7.3.3 

 

Integration, with initial condition u V= 0 cosθ , yields 

 

     u V e k s= −
0 cos . .α      7.3.4 

 

 

We can also obtain an exact explicit intrinsic equation to the trajectory by consideration of the 

normal equation of motion. 

 

The intrinsic equation to any curve is a relation between the intrinsic coordinates (s , ψ).   The 

rate at which the slope angle ψ changes as you move along the curve, i.e. dψ/ds, is called the 

curvature at a point along the curve.  If the slope is increasing with s, the curvature is positive.  

The reciprocal of the curvature at a point,  ds/dψ, is the radius of curvature at the point, denoted 

here by ρ. 

 

The normal equation of motion is the equation F = ma applied in a direction normal to the curve.  

The acceleration appropriate here is the centripetal acceleration V 
2
/ρ or V 

2
dψ/ds. 

 

In a direction normal to the motion, the air resistance has no component, and gravity has a 

component −g cos θ.  (It is minus because the curvature is clearly negative.)  The normal 

equation of motion is therefore 

 

       

     V
d

ds
g2 ψ

θ= − cos .     7.3.5 

 

But    
ψ

α
=

ψ
=

−

cos

.cos

cos

0

sk
eVu

V      7.3.6 

 

Therefore   V e
d

ds
gk s

0

2 2 2 3cos . cos .α
ψ

ψ− = −     7.3.7 

 

Separate the variables, and integrate, with appropriate initial conditions: 

 

    .
cos

sec
0

2

22

0

3
dse

V

g
d

s
sk

∫∫
ψ

α α
−=ψψ     7.3.8 

 

From here it is good integration practice to show that the intrinsic equation is 
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( ).1
costansec

tansec
lntansectansec

2

22

0

sk
e

kV

g
−

α
=









α+α

ψ+ψ
+αα−ψψ   7.3.9 

 

This equation is of the form 

 

         ( ) .tanseclntansec 2 skBeA −=ψ+ψ+ψψ     7.3.10 

 

While it would be straightforward now to compute s as a function of ψ and hence to plot a graph 

of s versus ψ, we really want to show y as a function of x, and x and y as a function of time.  I am 

indebted to Dario Bruni of Italy for the following analysis. 

 

Let (x1 , y1) be a point on the trajectory.   When the projectile moves a short distance ∆s, the new 

coordinates will be (x2 , y2), where 

 

    112 cos ψ∆+= sxx       7.3.11 

 

and    ,sin 112 ψ∆+= syy       7.3.12 

 

provided that ∆s is taken to be sufficiently small that the path between the two points is 

approximately a straight line.  The calculation starts with x1 = y1 = 0 and ψ = α.  At each stage of 

the calculation, the new value of ψ can be calculated from equation 7.3.10.  This can be done 

easily, for example, by Newton-Raphson iteration, since the derivative of the left hand side of the 

equation with respect to ψ is just 2sec
3ψ.  Thus, with a sufficiently small interval ∆s, the shape 

of the trajectory can be built up point by point. 

 

While this gives us the shape of the trajectory, it tells us nothing about the time.  To do this, we 

can write the equations of motion, equations 7.3.1 and 7.3.2 in the forms 

 

    22
yxxkx &&&&& +−=       7.3.13 

 

and    .
22

yxykgy &&&&& +−−=      7.3.14 

 

 

Let (x1 , y1) be a point on the trajectory.   After a short time ∆t, the new coordinates will be (x2 , 

y2), where 

 

    2

12
1

112 )( txtxxx ∆+∆+= &&&      7.3.15 

 

and    ,)(
2

12
1

112 tytyyy ∆+∆+= &&&      7.3.16 

 

provided that ∆t is taken to be sufficiently small that the acceleration between the two instants of 

time is approximately constant.   Also, the new velocity components are given by 
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          txxx ∆+= 112
&&&&       7.3.17 

 

and           .112 tyyy ∆+= &&&&       7.3.18 

 

The calculation starts with  

 

 ,sin,cos 00 α=α= VyVx && ,cos
2

0 α−= kVx&& ,sin
2

0 α−−= kVgy&&  

 

and after each increment ∆t the new coordinates and velocity and acceleration components are 

calculated.  The results of Sr Bruni’s calculations are shown in figure VII.3 for 

   2o1

0

1 sm8.9,60,sm5.90,m0177.0 −−− ==α== gVk   

     

   

 

FIGURE VII.3 
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Plotted with step by step method from intrinsic equation with ∆s = 0.025 m. 

Horizontal range 79.0 m; maximum height 62.4 m. Total flight duration 7.1 seconds. 

The time taken to reach the maximum height is 2.8 seconds, so the descent time is longer than 

the ascent time.   
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An alternative approach has been given by Ambrose Okune, of Uganda.  In Okune’s analysis, he 

obtains explicit expressions for t, x and y in terms of the angle ψ.  (In equation 7.3.10 we already 

have a relation between s and ψ.) 

 

We start with equation 7.3.1, the horizontal equation of motion 

 

    .coscos2 ψ−=ψ−= VkVkVx&&     7.3.19 

 

Now ,cosand,, 22 uVuVux =ψ+== v&&&  so that 

 

    .22
v+−= ukuu&       7.3.20 

 

Similarly, equation 7.3.2, the vertical equation of motion, is 

    

   ,sinsin
2 ψ−−=ψ−−= VkVgkVgy&&     7.3.21 

 

and, with  ,v&&& =y  22
v+= uV and ,sin v=ψV this becomes 

 

             .22
vvv +−−= ukg&      7.3.22 

 

Now    .
22
v

vvv

+
+==

uku

g

udu

d

u&

&
     7.3.23 

 

Also ,tan ψ= uv so that  

 

   .sectan 2

du

d
u

du

d ψ
ψ+ψ=

v
     7.3.24 

 

On comparison of equations 7.3.23 and 7.3.24, we see that 

 

   .sec
2

22
ψψ=

+
du

uku

g

v

     7.3.25 

 

Upon substitution of ,tan ψ= uv this becomes 

 

   .sec3

3
du

d

ku

g ψ
ψ=        7.3.26 

 

and hence  .sec
33 ψψ= ∫∫

−
dduu

k

g
      7.3.27 
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Upon integration, we obtain 

 

.tansec)tanln(sectansec)tanln(sec
2

0

2
αα+α+α+==ψψ+ψ+ψ+

ku

g
A

ku

g
 

            7.3.28 

 

From this, we obtain 

 

  ,
tansec)tanln(sec

1

ψψ−ψ+ψ−
=

Ak

g
u     7.3.29 

 

and hence   

  .
tansec)tanln(sec

tan

ψψ−ψ+ψ−

ψ
=

Ak

g
v     7.3.30 

 

 

Thus we now have the velocity components explicitly in terms of the angle ψ. 

 

For simplicity, let us write 

 

    .tansec)tanln(sec ψψ−ψ+ψ−=λ A     7.3.31 

 

Then the equations for the velocity components are 

    

    
λ

=
1

k

g
u       7.3.32 

 

and    .
tan

λ

ψ
=

k

g
v       7.3.33 

 

In the limit, as ,,90,0 o ∞−→−→ψ→ yu the motion approaches a vertical asymptote.  As 

,tansec,90
o ψψ−→λ−→ψ   and hence .1

tan
Lim

o90
−=

λ

ψ

−→ψ
  Thus the limiting value of the 

vertical component of the velocity is 
k

g
− .  This agrees precisely with what one would expect 

for a body falling vertically at terminal speed, with resistance proportional to the square of the 

speed (see equation 6.4.5).   

  

We now aim to find an expression relating ψ to t, which we do by noting that 
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    .

ψ

λ

λ

=

ψ

=
ψ

d

d

d

du
dt

du

d

du
dt

du

dt

d
     7.3.34 

 

The derivative dtdu / can be found from the horizontal equation of motion ψ−= cos
2

kVx&& , 

which can be written (because ψ= cosVu and ux &&& = ) as .sec
2 ψ−= kuu&   Then, making use of 

equation 7.3.32, we obtain 

    .secψ
λ

−=
g

dt

du
      7.3.35 

 

The derivative λddu / can be found from equation 7.3.32 and is 

 

    .
1

2

1
2/3λ

−=
λ k

g

d

du
      7.3.36 

 

The derivative ψλ dd / can be found from equation 7.3.31 and is 

 

    .sec2
3 ψ−=

ψ

λ

d

d
      7.3.37 

 

Thus the relation we seek is 

 

    .cos2 ψλ−=
ψ

gk
dt

d
     7.3.38 

 

If the initial motion of the projectile at time zero makes an angle α with the horizontal, then 

integration of equation 7.3.38 gives the following expression for the subsequent time t when the 

motion  makes an angle ψ with the horizontal. 

 

    .
cos

1
2∫

α

ψ ψλ

ψ
=

d

gk
t      7.3.39 

 

Also .
dt

d

d

dx

dt

dx
u

ψ

ψ
== With u and 

dt

dψ
given respectively by equations 7.3.32 and 7.3.38, 

we obtain 

    ,
cos

1
2 ψλ

−=
ψ kd

dx
      7.3.40 

 

from which we can calculate x as a function of ψ: 
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    .
cos

1
2∫

α

ψ ψλ

ψ
=

d

k
x       7.3.41  

 
 

Further, .
dt

d

d

dy

dt

dy ψ

ψ
==v With v and 

dt

dψ
given respectively by equations 7.3.33 and 

7.3.38, we obtain 

 

    ,
cos

tan
2 ψλ

ψ
−=

ψ kd

dy
      7.3.42 

   

from which we can calculate y as a function of ψ: 

 

    

 

 

    .
cos

tan1
2∫

α

ψ ψλ

ψψ
=

d

k
y       7.3.43 

 

Equations 7.3.39, 7.3.41 and 7.3.43 enable us to calculate t, x and y as a function of ψ, and 

hence to calculate any one of them in terms of any of the others.  In each case a numerical 

integration is required, such as by Simpson’s rule or by Gaussian quadrature, or other 

integration algorithm, and, as is always the case, sufficient points must be sampled to obtain 

adequate precision.  Numerical integration of these equations, using the data of Dario 

Bruno’s example above, produced the same x: y trajectory as calculated for figure VII.3 by 

Bruno, and the x : t and y : t relations shown in figure VII.4. 

 

I am greatly indebted to Dario Bruni and to Ambrose Okune for their interesting and 

instructive contributions to this section – an inspirational example of international scientific 

cooperation between, Italy, Uganda and Canada! 
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