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CHAPTER 2 

MOMENT OF INERTIA 

 
 
 
 

2.1   Definition of Moment of Inertia 
  

   Consider a straight line (the "axis") and a set of point masses K,,, 321 mmm  such that the 

distance of the mass mi  from the axis is ri .  The quantity 2

ii rm is the second moment of the i th 

mass with  respect to (or "about") the axis, and the sum 2

ii rm∑ is the second moment of mass of 

all the masses with respect to the axis.  

 

   Apart from some subtleties encountered in general relativity, the word "inertia" is synonymous 

with mass - the inertia of a body is merely the ratio of an applied force to the resulting 

acceleration. Thus 2

ii rm∑  can also be called the second moment of inertia.  The second moment 

of inertia is discussed so much in mechanics that it is usually referred to as just "the" moment of 

inertia. 

 

   In this chapter we shall consider how to calculate the (second) moment of inertia for different 

sizes and shapes of body, as well as certain associated theorems.  But the question should be 

asked:  "What is the purpose of calculating the squares of the distances of lots of particles from 

an axis, multiplying these squares by the mass of each, and adding them all together?  Is this 

merely a pointless make-work exercise in arithmetic? Might one just as well, for all the good it 

does, calculate the sum ii rm∑ 2 ?   Does 2

ii rm∑  have any physical significance?"  

  
 
 
 
 
 

2.2   Meaning of Rotational Inertia. 

 

   If a force acts of a body, the body will accelerate.  The ratio of the applied force to the resulting 

acceleration is the inertia (or mass) of the body.   
 

   If a torque acts on a body that can rotate freely about some axis, the body will undergo an 

angular acceleration.  The ratio of the applied torque to the resulting angular acceleration is the 

rotational inertia of the body.  It depends not only on the mass of the body, but also on how that 

mass is distributed with respect to the axis. 
 

   Consider the system shown in figure II.1. 
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A particle of mass m is attached by a light (i.e. zero or negligible mass) arm of length r to a 

point at O, about which it can freely rotate. A force F is applied, and the mass consequently 

undergoes a linear acceleration a =F/m.  The angular acceleration is then  mrF.=θ&& .  Also, the 

torque is τ  = Fr.  The ratio of the applied torque to the angular acceleration is therefore  mr
2
 .  

Thus the rotational inertia is the second moment of inertia.  Rotational inertia and (second) 

moment of inertia are one and the same thing, except that rotational inertia is a physical concept 

and moment of inertia is its mathematical representation.   

 
 

2.3  Moments of inertia of some simple shapes. 

 

  A student may well ask:  "For how many different shapes of body must I commit to memory 

the formulas for their moments of inertia?"  I would be tempted to say: "None".  However, if any 

are to be committed to memory, I would suggest that the list to be memorized should be limited 

to those few bodies that are likely to be encountered very often (particularly if they can be used 

to determine quickly the moments of inertia of other bodies) and for which it is easier to 

remember the formulas than to derive them.  With that in mind I would recommend learning no 

more than five.  In the following, each body is supposed to be of mass m and rotational inertia I. 
 

   1.  A rod of length 2l about an axis through the middle, and at right angles to the rod: 
 

     I ml= 1
3

2
      2.3.1 

 
 

   2.  A uniform circular disc of radius a about an axis through the centre and perpendicular to the                

O 
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O 

r 
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θ&&  τ 

FIGURE II.1 
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        plane of the disc: 
     

     I ma= 1
2

2
      2.3.2 

 

   3. A uniform right-angled triangular lamina about one of its shorter  sides - i.e. not the  

    hypotenuse.  The other not-hypotenuse side is of length a: 
       

     I ma= 1
6

2
      2.3.3 

 
 

    4. A uniform solid sphere of radius a about an axis through the centre. 

 

      I ma= 2
5

2
      2.3.4 

 

   5. A uniform spherical shell of radius a about an axis through the centre. 

 

    I ma= 2
3

2
      2.3.5 

    
 

I shall now derive the first three of these by calculus.  The derivations for the spheres will be left 

until later. 

 
 

1. Rod, length 2l  (Figure II.2)  

 
 
 
 
   
 
 
 

  The mass of an element  δx  at a distance x  from the middle of the rod is 
 

     
m x

l

δ

2
     

 

and its second moment of inertia is    
mx x

l

2

2

δ
. 

     

The moment of inertia of the entire rod is      
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2.   Disc, radius a.  (Figure II.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

The area of an elemental annulus, radii r r r, + δ  is 2π δr r. 
 

The area of the entire disc is πa
2
. 

Therefore the mass of the annulus is .
22

22
a

rmr

a

mrr δ
=

π

δπ
     

 

and its second moment of inertia is  
2 3

2

mr r

a

δ
.        

              
 

The moment of inertia of the entire disc is .
2

0

2

2
13

2 ∫ =
a

madrr
a

m
             

 
 
 

3.  Right-angled triangular lamina.  (Figure II.4)   
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The equation to the hypotenuse is y b x a= −( / ).1  

 

The area of the elemental strip is y x b x a xδ δ= −( / )1  and the area of the entire triangle is ab/2. 

 

Therefore the mass of the elemental strip is 
2

2

m a x x

a

( )− δ
         

 

and its second moment of inertia is        
2 2

2

mx a x x

a

( )
.

− δ
 

 

The second moment of inertia of the entire triangle is the integral of this from x = 0 to  x = a, 

which is ma
2
 /6.    

 
 

Uniform circular lamina about a diameter.  
 

For the sake of one more bit of integration practice, we shall now use the same argument to show 

that the moment of inertia of a uniform circular disc about a diameter is ma
2
/4.  However, we 

shall see later that it is not necessary to resort to integral calculus to arrive at this result, nor is it 

necessary to commit the result to memory.  In a little while it will become immediately apparent 

and patently obvious, with no calculation, that the moment of inertia must be ma
2
/4.  However, 

for the time being, let us have some more calculus practice.  See figure II.5. 

 

 

 

 
 
    
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

FIGURE II.5 
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The disc is of radius a, and the area of the elemental strip is 2yδx. But y and x are related through 

the equation to the circle, which is ( ) 2/122 xay −= .  Therefore the area of the strip is 

( ) .2
2/122 xxa δ−    The area of the whole disc is 2

aπ , so the mass of the strip is 

.)(
2)(2 2/122

22

2/122

xxa
a

m

a

xxa
m δ−×

π
=

π

δ−
× The second moment of inertia about the y-axis is 

.)(
2 2/122

2
xxax

a

m
δ−×

π
 For the entire disc, we integrate from x = −a to x = +a, or, if you prefer, 

from x = 0 to x = a and then double it.  The result ma
2
 /4 should follow. If you need a hint about 

how to do the integration, let x = a cosθ   (which it is, anyway), and be sure to get the limits of 

integration with respect to θ  right. 

 

The moment of inertia of a uniform semicircular lamina of mass m and radius a about its base, or 

diameter, is also ma
2
/4, since the mass distribution with respect to rotation about the diameter is 

the same.   
   
 

2.4   Radius of gyration. 

 

The second moment of inertia of any body can be written in the form mk
2
.  Thus, for the disc 

(about an axis perpendicular to its plane), the rod, the triangle and the disc (about a diameter), k 

has the values 

a
a

a
a

l
l

a
a

500.0
2

,408.0
6

,577.0
3

,707.0
2

====  

 

respectively.  
 

k is called the radius of gyration.  If you were to concentrate all the mass of a body at its radius 

of gyration, its moment of inertia would remain the same. 
 
 

2.5   Parallel and Perpendicular Axes Theorems 
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In figure II.6a, the two unbroken lines represent two fixed coordinate axes.  I have drawn several 

point masses K321 ,, mmm  distributed in a plane.  The x-coordinate of mass mi is xi.   The dashed 

line is moveable, and it x-coordinate is x, so that the distance of mi this line is .xxi −   The 

moment of inertia of the system of masses about the dashed line is 

 

....)()()( 2
33

2
22

2
11 +−+−+−= xxmxxmxxmI                2.5.1       

   

Now imagine what happens if the dashed line is moved to the right.  The moment of inertia 

decreases – and decreases  -  and decreases.  But eventually the line finds itself to the right of 

m4, and then of m5, and then of m6.   After that is by no means obvious that the moment of 

inertia is going to continue to decrease.  Indeed, by this time it is clear that at some point I is 

going to go through a minimum and then start to increase again as more and more of the masses 

find themselves to the left of the dashed line.  Just where is the dashed line when the moment of 

inertia is a minimum?  I’ll leave you to differentiate equation 2.5.1 with respect to x, and hence 

show that I is least when  

 

.
...

...

321

332211

+++

+++
=

mmm

xmxmxm
x     2.5.2 

 

That is, the moment of inertia is least when xx = .  That is, the moment of inertia is least for an 

axis passing through the centre of mass. 
 

In figure II.6b,  the line CC passes through the centre of mass;  the moment of inertia is least 

about this line.   The line AA is at a distance x   from CC, and the moment of inertia is greater 

about AA than about CC.  The Parallel Axes Theorem tells us by how much. 
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Let us measure distances from CC, so that the distance of mi from CC is xi and the distance of mi 

from AA is  .xxi +  

It is clear that   2
CC ii xmI ∑=         

 

and that .2)( 22
1

2
AA ∑∑∑∑ ++=+= iiiiii mxxmxxmxxmI   2.5.3 

  
 

The first term on the right hand side is ICC.  The sum in the second term is the first moment of 

mass about the centre of mass, and is zero.  The sum in the third term is the total mass.  We 

therefore arrive at the Parallel Axes Theorem:
  

 

     .2
CCAA xMII +=   

   2.5.4 

 
 

 

In words, the moment of inertia about an arbitrary axis is equal to the moment of inertia about a 

parallel axis through the centre of mass plus the total mass times the square of the distance 

between the parallel axes.  The theorem holds also for masses distributed in three-dimensional 

space. 
 

The Perpendicular Axes Theorem, on the other hand, holds only for masses distributed in a 

plane, or for plane laminas. 

  
 
 
 
 
     
 
 
 
 
 

 

  
 
 
           

Figure II.7 shows some point masses distributed in the xy plane, the z axis being perpendicular to 

the plane of the paper.  The moments of inertia about the x, y and z axes are denoted respectively 

by A, B and C.  The distance of mi from the z axis is ( ) .
2/122

ii yx +   Therefore the moment of 

inertia of the masses about the z axis is 

 

     ( ).22

iii yxmC += ∑      2.5.5 

 

That is to say:    C =  A  +  B.      2.5.6 

· 
· z 
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FIGURE II.7 
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This is the Perpendicular Axes Theorem.  Note again very carefully that, unlike the parallel axes 

theorem, this theorem applies only to plane laminas and to point masses distributed in a plane. 
  
 

Examples of the Use of  the Parallel and Perpendicular Axes Theorems. 

From section 2.3 we know the moments of inertia of discs, rods and triangular laminas.  We can 

make use of the parallel and perpendicular axes theorems to write down the moments of inertia 

of most of the following examples almost by sight, with no calculus.     

 

Hoop and discs, radius a. 

 

 

                                                                                                                                

                                                    

 
 
 
 
 
 
 
             
 
 
 

 

 

 

Rods, length 2l. 

 

 

  

 

 

 

 

 

 Rectangular laminas, sides 2a  and  2b;  a > b.                                                

 

 

 

 

                                               

 

                                                                                                       
)(3

2
22

22

ba

bma

+
 

 

· · 

· · 

2
ma  22ma  2

2
1 ma  

2

2
3 ma  

2

2
1 ma  

2

2
3 ma  2

4
1 ma  

2

4
5 ma  

2

3
1 ml  

2

3
4 ml  

· 
2

3
1 ma  2

3
1 mb  ( )22

3
1 bam +  
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Square laminas, side 2a.  

 

 

 

 

                                        

 

 

 

 

 

 

 

Triangular laminas. 
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2

3
2 ma  2

3
1 ma  2

3
1 ma  2

3
1 ma  

a a a 

2

6
1 ma  

 

2

6
1 ma  

 

a 

b c 

θ 
· 

 

 

· 
2a 

2

3
1 ma  

( )222

36
1 cbam ++  
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+
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( ) ( ) ( )
( ) ( ) ( )22

6
122

6
122

6
1

22

6
122

6
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6
1

3232

sin23tan3cot31

bamacmcbm

mcmbmaI

+=−=+=

θ−=θ+=θ+=
 

 

 

2.6 Three-dimensional solid figures.  Spheres, cylinders, cones 

 

Sphere, mass m, radius a. 

 

 

 

 

 

 

 

             

 

 

 

 

 

 

 

 

  The volume of an elemental cylinder of radii x x x, + δ , height 2y is 

( ) .44
2/122 xxxaxyx δ−π=δπ   Its mass is  

( ) ( ) .
34 2/122

33

3
4

2/122

xxxa
a

m

a

xxxa
m δ−×=

π

δ−π
×   Its  

second moment of inertia is ( ) .
3 32/122

3
xxxa

a

m
δ−×   The second moment of inertia of the entire 

sphere is 

    ( ) .
3 2

5
23

2/1

0

22

3
madxxxa

a

m a

=−× ∫  

 

The moment of inertia of a uniform solid hemisphere of mass m and radius a about a diameter of 

its base is also ,2

5
2 ma  because the distribution of mass around the axis is the same as for a 

complete sphere.   

 

 

Problem:  A hollow sphere is of mass M, external radius a and internal radius xa. Its rotational 

inertia is 0.5 Ma
2
.  Show that x is given by the solution of 

 

    1 − 5x
 3

 + 4x 
5
 = 0   

 

and calculate x to four significant figures. (Answer = 0.6836.) 

 

x 

y 
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   Solid cylinder, mass m, radius a, length 2l 

 

 

 

 

   

 

 

 

The mass of an elemental disc of thickness δx is 
m x

l

δ

2
.  Its moment of inertia about its diameter 

is 
1

4 2 8

2
2m x

l
a

ma x

l

δ δ
= .  Its moment of inertia about the dashed axis through the centre of the 

cylinder is 
( )

.
8

4

28

22
2

2

l

xxam
x

l

xm

l

xma δ+
=

δ
+

δ
  The moment of inertia of the entire cylinder 

about the dashed axis is 
( ) ( ).

8

4
2 2

3
12

4
1

0

22

lam
l

dxxam
l

+=
+

∫  

 

In a similar manner it can be shown that the moment of inertia of a uniform solid triangular 

prism of mass m, length 2l, cross section an equilateral triangle of side 2a about an axis through 

its centre and perpendicular to its length is ( ).2

3
12

6
1 lam +   

 

 

Solid cone, mass m, height h, base radius a. 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

The mass of the elemental disc of thickness δx  is   

 

x δx 

2a 

l l 

x 

y 
a 

h 

h

ax
y =  
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   m
y x

a h

my x

a h
× =

π δ

π

δ2

1
3

2

2

2

3
. 

 

Its second moment of inertia about the axis of the cone is 

 

   
1

2

3 3

2

2

2

2
4

2
× × =

my x

a h
y

my x

a h

δ δ
. 

 

But y and x are related through y
ax

h
= , so the moment of inertia of the elemental disk is 

 

    
3

2

2 4

5

ma x x

h

δ
.  

 

The moment of inertia of the entire cone is 

 

    .
10

3

2

3 2

0

4

5

2 ma
dxx

h

ma
h

=∫  

 

The following, for a solid cone of mass m, height h, base radius a, are left as an exercise: 

 

 

      

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7   Three-dimensional hollow figures.  Spheres, cylinders, cones. 

 

Hollow spherical shell, mass m, radius a.         

( )22 4
20

3
ha

m
+  ( )22 23

20
ha

m
+  
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The area of the elemental zone is 2 2π θδθa sin .  Its mass is 

 

 .sin
4

sin2
2
1

2

2

θδθ=
π

θδθπ
× m

a

a
m  

 

Its moment of inertia is  .sinsinsin 32

2
122

2
1 θδθ=θ×θδθ maam  

The moment of inertia of the entire spherical shell is 

 

    .sin 2

3
2

0

32

2
1 madma =θθ∫

π

 

 

This result can be used to calculate, by integration, the moment of inertia 2

5
2 ma  of a solid 

sphere.    Or, if you start with 2

5
2 ma  for a solid sphere, you can differentiate to find the result 

2

3
2 ma  for a hollow sphere.  Write the moment of inertia for a solid sphere in terms of its density 

rather than its mass.  Then add a layer da and calculate the increase dI in the moment of inertia. 

We can also use the moment of inertia for a hollow sphere ( 2

3
2 ma ) to calculate the moment of 

inertia of a nonuniform solid sphere in which the density varies as )(rρ=ρ .   For example, if 

2

0 )/(1 ar−ρ=ρ , see if you can show that the mass of the sphere is 3

0467.2 aρ and that its 

moment of inertia is 2

3
1 ma .   A much easier method will be found in Section 19. 

 

θ 

θsina  
θδ← a  
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Using methods similar to that given for a solid cylinder, it is left as an exercise to show that the 

moment of inertia of an open hollow cylinder about an axis perpendicular to its length passing 

through its centre of mass is ( ),2

3
12

2
1 lam +  where a is the radius and 2l is the length.   

 

The moment of inertia of a baseless hollow cone of mass m, base radius a, about the axis of the 

cone could be found by integration.  However, those who have an understanding of the way in 

which the moment of inertia depends on the distribution of mass should readily see, without 

further ado, that the moment of inertia is 1
2

2ma .  (Look at the cone from above; it looks just like 

a disc, and indeed it has the same radial mass distribution as a uniform disc.) 

 

 

2.8   Torus 

 

The rotational inertias of solid and hollow toruses (large radius a, small radius b) are given 

below for reference and without derivation.  They can be derived by integral calculus, and their 

derivation is recommended as a challenge to the reader. 

 

Solid torus: 

 

 

 

 

         

 

 

 

 

 

 

Hollow torus: 

 

                      

             

             

             

         

 

 

 

 

 

 

 

2.9    Linear triatomic molecule                                        

(((( ))))22

4
1 34 bam ++++  ( )22

8
1 54 bam +  

( )22

2
1 32 bam +   

( )22

4
1 52 bam +  
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Here is an interesting problem.  It should be straightforward to calculate the rotational inertia of 

the above molecule with respect to an axis perpendicular to the molecule and passing through the 

centre of mass.  In practice it is quite easy to measure the rotational inertia very precisely from 

the spacing between the lines in a molecular band in the infrared region of the spectrum.  If you 

know the three masses (which you do if you know the atoms that make up the molecule) can you 

calculate the two interatomic spacings x and y ?   That would require determining two unknown 

quantities, x and y, from a single measurement of the rotational inertia, I.  Evidently that cannot 

be done; a second measurement is required.  Can you suggest what might be done?  We shall 

answer that shortly.  In the meantime, it is an exercise to show that the rotational inertia is given 

by 

    ax hxy by c
2 22 0+ + + = ,      2.9.1 

 

where    ( ) Mmmma /321 +=        2.9.2 

 

    Mmmh /31=        2.9.3 

 

    ( ) Mmmmb /213 +=        2.9.4 

 

    M m m m= + +1 2 3        2.9.5 

 

    c I= −          2.9.6 

 

For example, suppose the molecule is the linear molecule OCS, and the three masses are 16, 12 

and 32 respectively, and, from infrared spectroscopy, it is determined that the moment of inertia 

is 20.  (For this hypothetical illustrative example, I am not concerning myself with units).  In that 

case, equation 2.9.1 becomes 

 

   .02039.1460.1737.11 22 =−++ yxyx &&&      2.9.7 

 

We need another equation to solve for x and y.  What can be done chemically is to prepare an 

isotopically-substituted molecule (isotopomer) such as 
18

OCS, and measure its moment of inertia 

from its spectrum, making the probably very justified assumption that the interatomic distances 

are unaffected by the isotopic substitution.  This results in a second equation: 

 

    a x h xy b y c' ' ' ' .2 22 0+ + + =      2.9.8 

 

Let's suppose that the new moment of inertia is 21' =I , and I leave it to the reader to work out 

the numerical values of a', h' and b' with the stern caution to retain all the decimal places on your 

calculator.  That is, do not round off the numbers until the very end of the calculation. 

m1 m2 m3 

x y 
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You now have two equations, 2.9.1 and 2.9.8, to solve for x and y.  These are two simultaneous 

quadratic equations, and it may be that some guidance in solving them would be helpful.  I have 

three suggestions. 

 

1. Treat equation 2.9.1 as a quadratic equation in x and solve it for x in terms of y.  Then 

substitute this in equation 2.9.8.  I expect you will very soon become bored with this 

method and will want to try something a little less tedious. 

 

2. You have two equations of the form S x y S x y( , ) , ' ( , )= =0 0.  There are standard ways 

of solving these iteratively by an extension of the Newton-Raphson process.  This is 

described, for example, in section 1.9 of Chapter 1 of my Celestial Mechanics notes, and 

this general method for two or more nonlinear equations should be known by anyone who 

expects to engage in much numerical calculation. 

 

For this particular case, the detailed procedure would be as follows.  This is an iterative method, 

and it is first necessary to make a guess at the solutions for x and y.  The guesses need not be 

particularly good.  That done,  compute the following six quantities: 

 

    S x( ax 2hy ) by c
2= + + +  

 

    '')'2'(' 2 cybyhxaxS +++=  

 
    S ax hyx = +2( )  

 
    S hx byy = +2( )  

    
    S a x h yx' ( ' ' )= +2  

 
    S h x b yy' ( ' ' )= +2  

 

Here the subscripts denote the partial derivatives.  Now if 

 

    x(true)  =  x(guess)   +  ε  

and    y(true)  =  y(guess)   +  η   

 

the errors ε and η  can be found from the solution of 

 
    S S Sx yε η+ + = 0 

and    S S Sx y' ' 'ε η+ + = 0 

If we calculate   F
S S S Sy x x y

=
−

1

' '
 

 

The solutions for the errors are 
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    ε = −F S S S Sy y( ' ') 

 
    η = −F S S S Sx x( ' ' )  

 

This will enable a better guess to be made, and the procedure can be repeated until the errors are 

as small as desired.  Generally only a very few iterations are required.  If this is not the case, a 

programming mistake is indicated.  

 

 

3. While method 2 can be used for any nonlinear simultaneous equations, in this particular 

case we have two simultaneous quadratic equations, and a little familiarity with conic 

sections provides a rather nice method. 

 

Thus, if S = 0 and S' = 0 are equations 2.9.1 and 2.9.8 respectively.   Each of these 

equations represents a conic section, and they intersect at four points.  We wish to find the 

point of intersection that lies in the all-positive quadrant - i.e. with x and y both positive.  

Since the two conic sections are very similar, in order to calculate where they intersect it is 

necessary to calculate with great accuracy.  Therefore, do not round off the numbers until 

the very end of the calculation.  Form the equation c S cS' ' .− = 0   This is also a quadratic 

equation representing a conic section passing through the four points.  Furthermore, it has 

no constant term, and it therefore represents the two straight lines that pass through the 

four points.  The equation can be factorized into two linear terms, αβ = 0, where α = 0 and 

β = 0 are the two straight lines.  Choose the one with positive slope and solve it with S = 0 

or with S'  = 0 (or with both, as a check against arithmetic mistakes) to find x and y.  In this 

case, the solutions are x = 0.2529,  y = 1.000. 

 

 

2.10 Pendulums 

 

In section 2.2, we discussed the physical meaning of the rotational inertia as being the ratio of 

the applied torque to the resulting angular acceleration.  In linear motion, we are familiar with 

the equation F = ma.  The corresponding equation when dealing with torques and angular 

acceleration is θ=τ &&I .    We are also familiar with the equation of motion for a mass vibrating at 

the end of a spring of force constant .: kxxmk −=&&    This is simple harmonic motion of period 

2π m k/ .  The mechanics of the torsion pendulum is similar.  The torsion constant c of a wire is 

the torque required to twist it through unit angle.  If a mass is suspended from a torsion wire, and 

the wire is twisted through an angle θ , the restoring torque will be cθ , and the equation of 

motion is ,θ−=θ cI &&   which is simple harmonic motion of period 2π I c/ .   The torsion 

constant of a wire of circular cross-section, by the way, is proportional to its shear modulus, the 

fourth power of its radius, and inversely as its length.  The derivation of this takes a little trouble, 

but it can be verified by dimensional analysis.    Thus a thick wire is very much harder to twist 

than a thin one.  A wire of  narrow rectangular cross-section, such as a strip or a ribbon has a 

relatively small torsion constant. 
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Now let's look not at a torsion pendulum, but at a pendulum swinging about an axis under 

gravity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We suppose the pendulum, of mass m, is swinging about a point O, which is at a distance h  from 

the centre of mass C.  The rotational inertia about O is I.  The line OC makes an angle θ  with the 

vertical, so that the horizontal distance between O and C is h sin θ.   The torque about O is 

mgh sin ,θ  so that the equation of motion is 

 

     .sin θ−=θ mghI &&      2.10.1 

 

For small angles, this is 

 

     .θ−=θ mghI &&       2.10.2 

 

This is simple harmonic motion of period 

 

       P
I

mgh
= 2π .     2.10.3 

 

 

· 

· 

O 

C 

h 

mg 
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We'll look at two examples - a uniform rod, and an arc of a circle. 

First, a uniform rod. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The centre of mass is C.  The rotational inertia about C is 1
3

2ml , so the rotational inertia about O 

is I ml mh= +1
3

2 2 .  If we substitute this in equation 2.10.3, we find for the period of small 

oscillations  

 

     P
l h

gh
=

+
2

3

3

2 2

π .     2.10.4 

 

This can be written 

 

     
( )

,
/

/31
.

3
2

2

lh

lh

g

l
P

+
π=     2.10.5 

 

or, if we write  

g

l

P

3
2π

=P   and  h  =  h/l : 

 

 

     .
31 2

h

h
P

+
=      2.10.6  

 

 

The figure shows a graph of  P versus h. 

 

 

· 

 · O 

C 

h 
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Equation 2.10.6 can be written 

 

     h
h

P 3
12 +=      2.10.7 

 

and, by differentiation of P
2
 with respect to h, we find that the period is least when .3/1=h    

This least period is given by ,122 =P  or P = 1.861. 

  

Equation 2.10.7 can also be written 

 

     .013 22 =+− hPh      2.10.8 

 

This quadratic equation shows that there are two positions of the support O that give rise to the 

same period of small oscillations.  The period is least when the two solutions of equation 2.10.8 

are equal, and by the theory of quadratic equations, then, the least period is given by ,122 =P  

as we also deduced by differentiation of equation 2.10.7, and this occurs when .3/1=h  

 

For periods longer than this, there are two solutions for h.  Let h1  be the smaller of these, and let 

h2 be the larger.  By the theory of quadratic equations, we have 

 

     2

3
1

21 Phh =+      2.10.9 
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and          .3/121 =hh                  2.10.10 

           

Let 12 hhH −=   be the distance between two points O that give the same period of oscillation.  

Then 

    

   ( ) ( ) .
9

12
4

4

21

2

12

2

12

2 −
=−+=−=

P
hhhhhhH              2.10.11

            

If we measure H for a given period P and recall the definition of P we see that this provides a 

method for determining g.   Although this is a common undergraduate laboratory exercise, the 

graph shows that the minimum is very shallow and consequently H and hence g are very difficult 

to measure with any precision. 

 

 

For another example, let us look at a wire bent into the arc of a circle of radius a  oscillating in a 

vertical plane about its mid-point.  In the figure, C is the centre of mass. 

 

 

 

 

 

    

 

 

 

The rotational inertia about the centre of the circle is ma
2
.  By two applications of the parallel 

axes theorem, we see that the rotational inertia about the point of oscillation is 

( ) .2222 mahmhhammaI =+−−=   Thus, from equation 2.10.3 we find 

     P
a

g
= 2

2
π ,      2.10.12 

 

and the period is independent of the length of the arc. 

 

 

2.11.   Plane Laminas.  Product moment.  Translation of Axes (Parallel Axes Theorem). 

 

We consider a set of point masses distributed in a plane, or a plane lamina.  We have hitherto 

met three second moments of inertia: 

 

     A m yi i=∑ 2 ,       2.11.1 

 

     B m xi i=∑ 2 ,      2.11.2 

 

· 

· C 
h 

a-h 
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                 ( ).22∑ += iii yxmC      2.11.3 

 

These are respectively the moments of inertia about the x- and y-axes (assumed to be in the plane 

of the masses or the lamina) and the z-axis (normal to the plane).  Clearly, C = A + B, which is 

the perpendicular axes theorem for a plane lamina. 

 

We now introduce another quantity, H, called the product moment of inertia with respect to the 

x- and y-axes, defined by 

 

     H m x yi i i=∑ .      2.11.4 

 

We'll need sometime to ask ourselves whether this has any particular physical significance, or 

whether it is merely something to calculate for the sake of passing the time of day.  In the 

meantime, the reader should recall the parallel axes theorems (Section 2.5) and, using arguments 

similar to those given in that section, should derive 

 

     H H M x yC= + .     2.11.5 

 

It may also be noted that equation 2.11.4 does not contain any squared terms and therefore the 

product moment of inertia, depending on the distribution of masses, is just as likely to be a 

negative quantity as a positive one. 

 

We shall defer discussing the physical significance, if any, of the product moment until section 

12.  In the meantime let us try to calculate the product moment for a plane right triangular 

lamina: 

 

 

 

 

 

 

 

 

 

 

 

 

 

The area of the triangle is 1
2

ab and so the mass of the element δxδy is ,
2

ab

yxM δδ  where M is 

  

 the mass of the complete triangle.  The product moment of the element with respect to the sides 

OA, OB is 
ab

yxMxy δδ2
 and so the product moment of the entire triangle is ∫∫ .

2
xydxdy

ab

M
  We 

have to consider carefully the limits of integration.   We'll integrate first with respect to x ;  that 

O 

B 

A 

x 

y 

a 

b 
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is to say we integrate along the horizontal (y constant) strip from the side OB to the side AB.  

That is to say we integrate xδx  from where x = 0 to where .1 







−=

b

y
ax   The product moment is 

therefore 

 

     ( ) .1.
2 2

2

2
1 dyay

ab

M
b

y

∫ −  

 

We now have to add up all the horizontal strips from the side OA, where y = 0, to B, where y = b.  

Thus 

 

     ( )∫ −=
b

b

y
dyy

b

Ma
H

0

2
1 , 

 

which, after some algebra, comes to  H Mab= 1
12

.   

 

The coordinates of the centre of mass with respect to the sides OA, OB are ( )ba
3
1

3
1 , , so that, 

from equation 2.11.5, we find that the product moment with respect to axes parallel to OA, OB 

and passing through the centre of mass is − 1
36

Mab. 

 

Exercise: 

 

Calculate the product moments of the following eight laminas, each of mass M, with respect to 

horizontal and vertical axes through the origin, and with respect to horizontal and vertical axes 

through the centroid of each.   (We have just done the first of these, above.)   The horizontal base 

of each is of length a, and the height of each is b.  You are going to have to take great care with 

the signs, and with the limits of integration. If you get an answer right except for the sign, then 

you have got the answer wrong. 
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I make the answers as follows.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.12   Rotation of Axes. 

 

 

 

 

 

 

  

 

 

 

 

 

 

We start by recalling a result from elementary geometry.  Consider two sets of axes Oxy and 

Ox1y1, the latter being inclined at an angle θ  to the former.  Any point in the plane can be 

described by the coordinates (x , y) or by (x1 , y1).  These coordinates are related by a rotation 

matrix: 

    ,
cossin

sincos

1

1


















θθ−

θθ
=









y

x

y

x
     2.12.1 

 

 

    .
cossin

sincos

1

1


















θθ

θ−θ
=









y

x

y

x
     2.12.2 

 

 

The rotation matrix is orthogonal; one of the several properties of an orthogonal matrix is that its 

reciprocal is its transpose. 

 

x 

x1 

y1 

y 

θ 
O 

MabMab
36

1

12

1 −  MabMab
36

1
4
1 +  MabMab

36

1

12

1 +−  

MabMab
36

1
4
1 −−  MabMab

36

1

12

1 +−  MabMab
36

1

12

1 −+  MabMab
36

1
4
1 +  

MabMab
36

1
4
1 −−  
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Now let us apply this to the moments of inertia of a plane lamina.  Let us suppose that the axes 

are in the plane of the lamina and that O is the centre of mass of the lamina.  A, B and H are the 

moments of inertia with respect to the axes Oxy, and A1 , B1 and H1 are the moments of inertia 

with respect to Ox1y1.   Strictly speaking a lamina implies a continuous distribution of matter in a 

plane, but, since matter, we are told, is composed of discrete atoms, there is little difficulty in 

justifying treating a lamina as though it we a distribution of point masses in the plane.  In any 

case the results that follow are valid either for a collection of point masses in a plane or for a 

genuine continuous lamina. 

 

We have, by definition: 

 

    A my1 1

2=∑        2.12.3 

 

    B mx1 1

2=∑        2.12.4 

 

    H mx y1 1 1=∑        2.12.5 

 

Now let us apply equation 2.12.1 to equation 2.12.3: 

 

 ( ) .coscossin2sincossin 22222

1 ∑∑ ∑∑ θ+θθ−θ=θ+θ−= mymxymxyxmA  

 

That is to say  (writing the third term first, and the first term last) 

 

   A A H B1

2 22= − +cos sin cos sin .θ θ θ θ     2.12.6 

 

In a similar fashion, we obtain for the other two moments 

 

   B A H B1

2 22= + +sin sin cos cosθ θ θ θ      2.12.7 

 

and   ( ) .cossinsincoscossin 22

1 θθ−θ−θ+θθ= BHAH    2.12.8 

 

It is usually more convenient to make use of trigonometric identities to write these as 

 

   ( ) ( ) ,2sin2cos
2
1

2
1

1 θ−θ−−+= HABABA     2.12.9 

 

   ( ) ( ) ,2sin2cos
2
1

2
1

1 θ+θ−++= HABABB     2.12.10 

 

   ( ) .2sin2cos
2
1

1 θ−−θ= ABHH      2.12.11 

 

These equations enable us to calculate the moments of inertia with respect to the axes Ox1y1 if 

we know the moments with respect to the axes Oxy.   

 

Further, a matter of importance, we see, from equation 2.12.11, that if 
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     tan ,2
2

θ =
−

H

B A
     2.12.12 

 

the product moment H1 with respect to the axes Oxy is zero.  This gives some physical meaning 

to the product moment, namely: If we can find some axes (which we can, by means of equation 

2.12.12) with respect to which the product moment is zero, these axes are called the principal 

axes of the lamina, and the moments of inertia with respect to the principal axes are called the 

principal moments of inertia.  I shall use the symbols A0 and B0 for the principal moments of 

inertia, and I shall adopt the convention that .00 BA ≤  

 

 

Example:  Consider three point masses at the coordinates given below: 

 

   Mass   Coordinates 

 

5 (1 , 1) 

3 (4 , 2) 

2 (3 , 4) 

 

The moments of inertia are  A = 49,    B = 71,   C  = 53.   The coordinates of the centre of mass 

are (2.3 , 1.9).  If we use the parallel axes theorem, we can find the moments of inertia with 

respect to axes parallel to the original ones but with origin at the centre of mass.  With respect to 

these axes we find A  =  12.9,   B  = 18.1,   H   =  +9.3.   The principal axes are therefore inclined 

at angles θ  to the x-axis given (equation 2.13.12) by tan 2θ  = 3.57669;  That is θ  =  37
o
  11'   

and 127
o
  11'.  On using equation 2.12.9 or 10 with these two angles, together with the 

convention that A B0 0≤ , we obtain for the principal moments of inertia A0  =  5.84 and B0  = 

25.16. 

 

Example.   Consider the right-angled triangular lamina of section 11.  The moments of inertia 

with respect to axes passing through the centre of mass and parallel to the orthogonal sides of the 

triangle are  A Mb B Ma H Mab= = = −1
18

2 1
18

2 1
36

, , .  The angles that the principal axes make 

with the a - side are given by .2tan
22

ab

ab

−
=θ   The interested reader will be able to work out 

expressions, in terms of M, a, b, for the principal moments.  
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2.13   Momental Ellipse  

                                                                                                                                           

      

 

 

 

 

 

 

 

 

 

 

 

 

Consider a plane lamina such that its radius of gyration about some axis through the centre of 

mass is k.  Let P be a vector in the direction of that axis, originating at the centre of mass, given 

by 

 

     rP ˆ
2

k

a
=       2.13.1 

 

Here r̂  is a unit vector in the direction of interest;  k is the radius of gyration, and a  is an 

arbitrary length introduced so that the dimensions of  P are those of length, and the length of the 

vector P is inversely proportional to the radius of gyration.  The moment of inertia is 

Mk Ma P
2 4 2= / .  That is to say 

 

   
Ma

P
A H B

4

2

2 22= − +cos sin cos sin ,θ θ θ θ    2.13.2 

 

where A, H and B are the moments with respect to the x- and y-axes.  Let (x , y) be the 

coordinates of the tip of the vector P,  so that x P= cosθ   and  y P= sin .θ Then 

 

    .2 224 ByHxyAxMa +−=      2.13.3 

 

Thus, no matter what the shape of the lamina, however irregular and asymmetric, the tip of  the 

vector P traces out an ellipse, whose axes are inclined at angles 








−

−

AB

H2
tan 1

2
1  to the x-axis.  

This is the momental ellipse, and the axes of the momental ellipse are the principal axes of the 

lamina. 

 

Example.  Consider a regular n-gon.  By symmetry the moment of inertia is the same about any 

two axes in the plane inclined at 2π/n to each other.  This is possible only if the momental ellipse 

P 

θ 
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is a circle.  It follows that the moment of inertia of a uniform polygonal plane lamina is the same 

about any axis in its plane and passing through its centroid. 

 

Exercise.  Show that the moment of inertia of a uniform plane n-gon of side 2a about any axis in 

its plane and passing through its centroid is ( )( )./cot31 22

12
1 nma π+   What is this for a square? 

For an equilateral triangle? 

 

 

2.14.   Eigenvectors and eigenvalues. 

 

In sections 11-13, we have been considering some aspects of the moments of inertia of plane 

laminas, and we have discussed such matters as rotation of axes, and such concepts as product 

moments of inertia, principal axes, principal moments of inertia and the momental ellipse.  We 

next need to develop the same concepts with respect to three-dimensional solid bodies. In doing 

so, we shall need to make use of the algebraic concepts of eigenvectors and eigenvalues.  If you 

are already familiar with such matters, you may want to skip this section and move on to the 

next.  If the ideas of eigenvalues and eigenvectors  are new to you, or if you are a bit rusty with 

them, this section may be helpful.  I do assume that the reader is at least familiar with the 

elementary rules of matrix multiplication. 

 

Consider what happens when you multiply a vector, for example the vector ,
1

0








  by a square 

matrix, for example the matrix  ,
12

14







 −
  We obtain: 

 

 

    .
1

1

1

0

12

14







−
=















 −
  

 

 

The result of the operation is another vector that is in quite a different direction from the original 

one. 

 

However, now let us multiply the vector 








1

1
 by the same matrix.  The result is .

3

3








  The result 

of the multiplication is merely to multiply the vector by 3 without changing its direction.  The 

vector 








1

1
 is a very special one, and it is called an eigenvector of the matrix, and the multiplier 3 

is called the corresponding eigenvalue.  "Eigen" is German for "own" in the sense of "my own 

book".  There is one other eigenvector of the matrix;  it is the vector .
2

1








  Try it; you should find 

that the corresponding eigenvalue is 2. 
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In short, given a square matrix A, if you can find a vector a such that Aa  =  λa, where λ is 

merely a scalar multiplier that does not change the direction of the vector a, then a is an 

eigenvector and λ is the corresponding eigenvalue.  

 

In the above, I told you what the two eigenvectors were, and you were able to verify that they 

were indeed eigenvectors and you were able to find their eigenvalues by straightforward 

arithmetic.  But, what if I hadn't told you the eigenvectors?  How would you find them? 

 

Let  







=

2221

1211

AA

AA
A  and let 








=

2

1

x

x
x  be an eigenvector with corresponding eigenvalue λ.   Then 

we must have 

 

    .
2

1

2

1

2221

1211










λ

λ
=

















x

x

x

x

AA

AA
 

 

That is, 

 

    ( ) 0212111 =+λ− xAxA   

 

and    ( ) .0222121 =λ−+ xAxA  

 

These two equations are consistent only if the determinant of the coefficients is zero.  That is, 

 

    
A A

A A

11 12

21 22

0
−

−
=

λ

λ
. 

 

This equation is a quadratic equation in λ, known as the characteristic equation, and its two 

roots, the characteristic or latent roots are the eigenvalues of the matrix.  Once the eigenvalues 

are found the ratio of x1 to x2 is easily found, and hence the eigenvectors. 

 

Similarly, if A is a 3 × 3 matrix, the characteristic equation is 

 

 

    

A A A

A A A

A A A

11 12 13

21 22 23

31 32 33

0

−

−

−

=

λ

λ

λ

. 

 

 

This is a cubic equation in λ, the three roots being the eigenvalues.  For each eigenvalue, the 

ratio x1 : x2 : x3 can easily be found and hence the eigenvectors.  The characteristic equation is a 

cubic equation, and is best solved numerically, not by algebraic formula.  The cubic equation can 

be written in the form 
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    λ λ λ3

2

2

1 0 0+ + + =a a a , 

 

and the solutions can be checked from the following results from the theory of equations: 

 
    λ λ λ1 2 3 2+ + = − a , 

 
    λ λ λ λ λ λ2 3 3 1 1 2 1+ + = a ,  

 
     λ λ λ1 2 3 0= − a . 

 

 

2.15.    Solid body. 

 

The moments of inertia of a collection of point masses distributed in three-dimensional space (or 

of a solid three-dimensional body, which, after all, is a collection of point masses (atoms)) with 

respect to axes Oxyz are: 

 

( ) ∑∑ =+= myzFzymA
22  

 

( ) ∑∑ =+= mzxGxzmB
22  

 

( )∑ ∑=+= mxyHyxmC
22  

 

 

Suppose that A,  B,  C,  F,  G,  H, are the moments and products of inertia with respect to axes 

whose origin is at the centre of mass.  The parallel axes theorems (which the reader should 

prove) are as follows:  Let P be some point not at the centre of mass, such that the coordinates of 

the centre of mass with respect to axes parallel to the axes Oxyz but with origin at P are ( )zyx ,, .  

Then the moments and products of inertia with respect to the axes through P are 

 

    

( )
( )
( ) yxMHyxMC

xzMGxzMB

zyMFzyMA

+++

+++

+++

22

22

22

 

 

where M is the total mass.    

 

Unless stated otherwise, in what follows we shall suppose that the moments and products of 

inertia under discussion are referred to a set of axes with the centre of mass as origin.  
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2.16   Rotation of axes - three dimensions. 

 

Let Oxyz be one set of mutually orthogonal axes, and let Ox1y1z1 be another set of axes inclined 

to the first.  The coordinates (x1 , y1 , z1 )  of a point with respect to the second basis set are 

related to the coordinates (x, y, z )  with respect to the first by 

     

    .

333231

232221

131211

1

1

1

































=
















z

y

x

ccc

ccc

ccc

z

y

x

    2.16.1 

 

Here the cij are the cosines of the angles between the axes of one basis set with respect to the 

axes of the other.  For example,  c12  is the cosine of the angle between Ox1 and Oy.   c23 is the 

cosine of the angles between Oy1 and Oz. 

 

Some readers may know how to express these cosines in terms of complicated expressions 

involving the Eulerian angles.  While these are important, they are not essential for following the 

present development, so we shall not make use of the Eulerian angles just here. 

 

The matrix of direction cosines is orthogonal.  Among the several properties of an orthogonal 

matrix is the fact that its reciprocal (inverse) is equal to its transpose - i.e. the reciprocal of an 

orthogonal matrix is found merely my interchanging the rows and columns.  This enables us 

easily to find (x , y , z )  in terms of (x1 , y1 , z1 ). 

 

A number of other properties of an orthogonal matrix are useful in detecting, locating and even 

correcting arithmetic mistakes in computing the elements.  These properties are 

 

1. The sum of the squares of the elements in any row or column is unity.  This merely 

expresses the fact that the magnitude of a unit vector along any of the six axes is indeed 

unity. 

 

2. The sum of the products of corresponding elements of any two rows or of any two columns 

is zero.  This merely expresses the fact that the scalar product of any two orthogonal 

vectors is zero.  It will be noted that checking for property 1 will not detect any mistakes in 

sign of the elements, whereas checking for property 2 will do so. 

 

3. Every element is equal to ± its own cofactor.  This expresses the fact that the cross product 

of two unit orthogonal vectors is equal to the third. 

 

4. The determinant of the matrix is ± 1.  If the sign is negative, it means that the chiralities 

(handedness) of the two basis sets of axes are opposite; i.e. one of them is a right-handed 

set and the other is a left-handed set.  It is usually convenient to choose both sets as right-

handed.   
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If it is possible to find a set of axes with respect to which the product moments F, G and H are all 

zero, these axes are called the principal axes of the body, and the moments of inertia with respect 

to these axes are the principal moments of inertia, for which we shall use the notation A0 , B0 , 

C0, with the convention A B C0 0 0≤ ≤ .  We shall see shortly that it is indeed possible, and we 

shall show how to do it.  A vector whose length is inversely proportional to the radius of gyration 

traces out in space an ellipsoid, known as the momental ellipsoid. 

 

In the study of solid body rotation (whether by astronomers studying the rotation of asteroids or 

by chemists studying the rotation of molecules) bodies are classified as follows. 

 

1. A B C0 0 0≠ ≠     The ellipsoid is a triaxial ellipsoid, and the body is an asymmetric top. 

2. A B C0 0 0< =      The ellipsoid is a prolate spheroid and the body is a prolate symmetric top. 

3. A B C0 0 0= <      The ellipsoid is an oblate spheroid and the body is an oblate symmetric top. 

4. A B C0 0 0= =       The ellipsoid is a sphere and the body is a spherical top. 

5. One moment is zero.  The ellipsoid is an infinite elliptical cylinder, and the body is a linear 

top. 

 

 

Example.   We know from section 2.5 that the moment of inertia of a plane square lamina of side 

2a about an axis through its centroid and perpendicular to its area is 2
3

2ma , and it will hence be 

obvious that the moment of inertia of a uniform solid cube of side 2a about an axis passing 

through the mid-points of opposite sides is also 2
3

2ma .  It will clearly be the same about an axis 

passing through the mid-points of any pairs of opposite sides.  Therefore the cube is a spherical 

top and the momental ellipsoid is a sphere.  Therefore the moment of inertia of a uniform solid 

cube about any axis through its centre (including, for example, a diagonal) is also 2
3

2ma . 

 

Example.   What is the ratio of the length to the diameter of a uniform solid cylinder such that it 

is a spherical top?  [Answer:  I make it 3 2 0 866/ . .]=  

 

Let us note in passing that 

 

   ( ) ,22 2222 ∑∑ =++=++ mrzyxmCBA    2.16.2 

 

which is independent of the orientation of the basis axes    In other words, regardless of how A, 

B and C may depend on the orientation of the axes with respect to the body, the sum A B C+ +  

is invariant under a rotation of axes. 

 

  We shall deal with the determination of the principal axes in section 2.18 - but don't skip 

section 2.17. 

 

 

2.17  Solid Body Rotation.  The Inertia Tensor. 

 



 34 

    It is intended that this chapter should be limited to the calculation of the moments of inertia of 

bodies of various shapes, and not with the huge subject of the rotational dynamics of solid 

bodies, which requires a chapter on its own.  In this section I mention merely for interest two 

small topics involving the principal axes, and a third topic in a bit more detail as necessary 

before proceeding to section 2.18. 

 

  Everyone knows that the relation between translational kinetic energy and linear momentum is 

( ).2/2 mpE =   Similarly rotational kinetic energy is related to angular momentum L by 

( ),2/2 ILE =  where I is the moment of inertia.  If an isolated body (such as an asteroid) is 

rotating about a non-principal axis, it will be subject to internal stresses.  If the body is nonrigid 

this will result in distortions (strains) which may cause the body to vibrate.  If in addition the 

body is inelastic the vibrations will rapidly die out (if the damping is greater than critical 

damping, indeed, the body will not even vibrate).   Energy that was originally rotational kinetic 

energy will be converted to heat (which will be radiated away.)  The body loses rotational kinetic 

energy.  In the absence of external torques, however, L remains constant.  Therefore, while E  

diminishes, I increases.  The body adjusts its rotation until it is rotating around its axis of 

maximum moment of inertia, at which time there are no further stresses, and the situation 

remains stable. 

 

  In general the rotational motion of a solid body whose momental ellipse is triaxial is quite 

complicated and chaotic, with the body tumbling over and over in apparently random fashion. 

However, if the body is nonrigid and inelastic (as all real bodies are in practice), it will 

eventually end up rotating about its axis of maximum moment of inertia.   The time taken for a 

body, initially tumbling chaotically over and over, until it reaches its final blissful state of 

rotation about its axis of maximum moment of inertia, depends on how fast it is rotating.  For 

most irregular small asteroids the time taken is comparable to or longer than the age of formation 

of the solar system, so that it is not surprising to find some asteroids with non-principal axis 

(NPA) rotation.  However, a few rapidly-rotating NPA asteroids have been discovered, and, for 

rapid rotators, one would expect PA rotation to have been reached a long time ago.  It is thought 

that something (such as a collision) must have happened to these rapidly-rotating NPA asteroids 

relatively recently in the history of the solar system. 

 

  Another interesting topic is that of the stability of a rigid rotator that is rotating about a 

principal axis, against small perturbations from its rotational state.   Although I do not prove it 

here  (the proof can be done either mathematically, or by a qualitative argument) rotation about 

either of the axes of maximum or of minimum moment of inertia is stable, whereas rotation 

about the intermediate axis is unstable.   The reader can observe this for him- or herself.  Find 

anything that is triaxial - such as a small block of wood shaped as a rectangular parallelepiped 

with unequal sides.  Identify the axes of greatest, least and intermediate moment of inertia.  Toss 

the body up in the air at the same time setting it rotating about one or the other of these axes, and 

you will be able to see for yourself that the rotation is stable in two cases but unstable in the 

third. 

 

    I now deal with a third topic in rather more detail, namely the relation between angular 

momentum L and angular velocity ωωωω.  The reader will be familiar from elementary (and two-

dimensional) mechanics with the relation .ω= IL   What we are going to find in the three-
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dimensional solid-body case is that the relation is L = Iωωωω.  Here L and ωωωω are, of course, vectors, 

but they are not necessarily parallel to each other.  They are parallel only if the body is rotating 

about a principal axis of rotation.  The quantity I is a tensor known as the inertia tensor.  Readers 

will be familiar with the equation  F = ma.  Here the two vectors are in the same direction, and 

m is a scalar quantity that does not change the direction of the vector that it multiplies.   A tensor 

usually (unless its matrix representation is diagonal) changes the direction as well as the 

magnitude of the vector that it multiplies.   The reader might like to think of other examples of 

tensors in physics.  There are several.  One that comes to mind is the permittivity of an 

anisotropic crystal;  in the equation D = εεεεE,  D and E are not parallel unless they are both 

directed along one of the crystallographic axes. 

 

   If there are no external torques acting on a body, L is constant in both magnitude and direction.  

The instantaneous angular velocity vector, however, is not fixed either in space or with respect to 

the body - unless the body is rotating about a principal axis and the inertia tensor is diagonal. 

 

  So much for a preview and a qualitative description.  Now down to work. 

 

  I am going to have to assume familiarity with the equation for the components of the cross 

product of two vectors: 

 

   A × B  =  ( ) ( ) ( ) .ˆˆˆ zyx xyyxzxxzyzzy BABABABABABA −+−+−  2.17.1 

 

  I am also going to assume that the reader knows that the angular momentum of a particle of 

mass m  at position vector r (components ),,( zyx ) and moving with velocity v (components 

( )zyx &&& ,, ) is mr×v.  For a collection of particles, (or an extended solid body, which, I'm told, 

consists of a collection of particles called atoms), the angular momentum is 

 

 L r v= ×∑m  

 

     = ( ) ( ) ( )[ ]∑ −+−+− zyx ˆˆˆ xyyxmzxxzmyzzym &&&&&&  

 

I also assume that the relation between linear velocity  v ( )zyx &&& ,,  and angular velocity 

ω ω ω ω ( )
zyx ωωω ,,  is understood to be v = ω ω ω ω ×    r, so that, for example, xyz yx ω−ω=& .  Then 

 

 L = ( ) ( )( ) ( ) ( )[ ]∑ ++ω−ω−ω−ω zyx ˆ.etcˆ.etcˆzxzxyym xzyx  

 

     = ( ) .etcˆ22 +ω+ω−ω−ω ∑ ∑ ∑ ∑ xmzmzxmxymy xzyx  

 

     = ( ) ( ) ( )zyx ˆˆˆ ++ω−ω−ω zyx GHA . 

 

Finally, we obtain 
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This is the equation L = Iω ω ω ω referred to above.   The inertia tensor is sometimes written in the 

form  

 

    ,



















=

zzyzxz

yzyyxy

xzxyxx

III

III

III

I  

 

so that, for example, .HI xy −=   It is a symmetric matrix (but it is not an orthogonal matrix). 

 

 

2.18.   Determination of the Principal Axes. 

 

  We now need to address ourselves to the determination of the principal axes.  Unlike the two-

dimensional case, we do not have a nice, simple explicit expression similar to equation 2.12.12 

to calculate the orientations of the principal axes.  The determination is best done through a 

numerical example. 

 

  Consider four masses whose positions and coordinates are as follows: 

 

   M  x y  z 

 

   1  3 1 4 

   2  1 5 9 

   3  2 6 5 

   4  3 5 9 

 

Relative to the first particle, the coordinates are 

 

   1  0 0 0 

   2           −2 4 5 

   3           −1 5 1 

   4  0 4 5 

 

From this, it is easily found that the coordinates of the centre of mass relative to the first particle 

are  ( −0.7 , 3.9 , 3.3),  and the moments of inertia with respect to axes through the first particle 

are 
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A

B

C

F

G

H

=

=

=

=

= −

= −
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From the parallel axes theorems we can find the moments of inertia with respect to axes passing 

through the centre of mass: 

 

     

A

B

C

F

G

H

=

=

=

=

=

= −

63 0

50 2

25 0

6 3

0 1

3 7

.

.

.

.

.

.

 

 

The inertia tensor is therefore 
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We understand from what has been written previously that if ωωωω, the instantaneous angular 

velocity vector,  is along any of the principal axes, then Iωωωω will be in the same direction as ωωωω.  In 

other words, if  ( )nml ,,  are the direction cosines of a principal axis, then 

 

    ,

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where λ is a scalar quantity.  In other words, a vector with components l, m, n  (direction cosines 

of a principal axis) is an eigenvector of the inertia tensor, and λ is the corresponding principal 

moment of inertia.  There will be three eigenvectors (at right angles to each other) and three 

corresponding eigenvalues, which we’ll initially call λ1, λ2, λ3, though, as soon as we know 

which is the largest and which the smallest, we'll call A B C0 0 0, , ,  according to our convention 

A B C0 0 0≤ ≤ . 

 

The characteristic equation is 
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    .0=

λ−−−

−λ−−

−−λ−

CFG

FBH

GHA

 

 

 

In this case, this results in the cubic equation 

 

    a a a0 1 2

2 3 0+ + − =λ λ λ , 

 

where      
a

a

a

0

1

2

76226 44

5939 21

138 20

=

= −

=

.

.

.

 

 

The three solutions for λ, which we shall call A0 , B0 , C0 in order of increasing size are 

 

    

A

B

C

0

0

0

23 498256

50 627521

64 074223

=

=

=

.

.

.

 

 

and these are the principal moments of inertia.  From the theory of equations, we note that the 

sum of the roots is exactly equal to a2, and we also note that it is equal to A + B + C, consistent 

with what we wrote in section 2.16. (See equation 2.16.2)  The sum of the diagonal elements of a 

matrix is known as the trace of the matrix.  Mathematically we say that "the trace of a symmetric 

matrix is invariant under an orthogonal transformation".     

 

Two other relations from the theory of equations may be used as a check on the correctness of 

the arithmetic.   The product of the solutions equals a0 , which is also equal to the determinant of 

the inertia tensor, and the sum of the products taken two at a time equals −a1 . 

 

We have now found the magnitudes of the principal moments of inertia; we have yet to find the 

direction cosines of the three principal axes.  Let's start with the axis of least moment of inertia, 

for which the moment of inertia is A0  =  23.498 256.  Let the direction cosines of this axis be 

( )111 ,, nml .  Since this is an eigenvector with eigenvalue 23.498 256 we must have 
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These are three linear equations in l1 m1, n1, with no constant term.   Because of the lack of a 

constant term, the theory of equations tells us that the third equation, if it is consistent with the 

other two, must be a linear combination of the first two.  We have, in effect, only two 

independent equations, and we are going to need a third, independent equation if we are to solve 
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for the three direction cosines.  If we let l l n m m n' / ' /= =1 1 1 1and , then the first two equations 

become  

 

    
.03.6'744701.26'7.3

01.0'7.3'744501.39

=−+

=−+

ml

ml
 

 

The solutions are  
l

m

' .

' . .

= −

= +

0 019825485

0 238686617
 

 

The correctness of the arithmetic can and should be checked by verifying that these solutions 

also satisfy the third equation. 

 

The additional equation that we need is provided by Pythagoras's theorem, which gives for the 

relation between three direction cosines 

 

,12

1

2

1

2

1 =++ nml  

 

or    ,

1''

1
22

2

1
++

=
ml

n  

 

whence   n1  =   ! 0.972495608. 

 

Thus we have, for the direction cosines of the axis corresponding to the moment of inertia A0, 

 

    

608495972.0

881121232.0

197280019.0

1

1

1

±=

±=

=

n

m

l m

 

 

(Check that l m n1

2

1

2

1

2 1+ + = . ) 

 

It does not matter which sign you choose - after all, the principal axis goes both ways. 

 

 

 

Similar calculations for B0 yield 

 

    

774094228.0

706312932.0

440652280.0

2
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±=

n

m

l

m  

 

and for C0 



 40 

    

415170047.0

987330277.0

796615959.0

3

3

3

m=

±=

±=

n

m

l

 

 

For the first two axes, it does not matter whether you choose the upper or the lower sign.  For the 

third axes, however, in order to ensure that the principal axes form a right-handed set, choose the 

sign such that the determinant of the matrix of direction cosines is +1.  

 

 

We have just seen that, if we know the moments and products of inertia A, B, C, F, G, H with 

respect to some axes (i.e. if we know the elements of the inertia tensor) we can find the principal 

moments of inertia A0 , B0  , C0  by diagonalizing the inertia tensor, or finding its eigenvalues.  If, 

on the other hand, we know the principal moments of inertia of a system of particles (or of a 

solid body, which is a collection of particles), how can we find the moment of inertia I about an 

axis whose direction cosines with respect to the principal axes are (l , m , n)? 

 

First, some geometry. 

 

Let Oxyz be a coordinate system, and let P (x , y , z ) be a point whose position vector is 

 
     r i j k= + +x y z . 

 

Let L be a straight line passing through the origin, and let the direction cosines of this line be  

(l , m , n ).  A unit vector e directed along L is represented by  

 
     e i j k= + +l m n . 

 

The angle θ   between r and e is found from the scalar product r • e,  given by 

 

     r cos θ  = r • e. 
 

I.e.        ( ) .cos2

1
222 nzmylxzyx ++=θ++  

 

The perpendicular distance p from P to L is 

 

    ( ) .sinsin 2

1
222 θ++=θ= zyxrp  

 

If we write ( ) ,cos1sin 2

1
2 θ−=θ   we soon obtain 

 

    ( ) .
22222 znymxlzyxp ++−++=  

 

Noting that  ,1,1,1 222222222 mlnlnmnml −−=−−=−−=   we find, after further 

manipulation: 
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  ( ) ( ) ( ) ( ).22222222222 lmxynlzxmnyzyxnxzmzylp ++−+++++=  

 

Now return to our collection of particles, and let Oxyz be the principal axes of the system.  The 

moment of inertia of the system with respect to the line L is 

 

     ,2∑= MpI  

 

where I have omitted a subscript i  on each symbol.  Making use of the expression for p and 

noting that the product moments of the system with respect to Oxyz are all zero, we obtain 

 

    I l A m B n C= + +2

0

2

0

2

0 .     2.18.1 

 

Also, let A, B, C, F, G, H be the moments and products of inertia with respect to a set of 

nonprincipal orthogonal axes; then the moment of inertia about some other axis with direction 

cosines l, m, n with respect to these nonprincipal axes is 

 

   .222222 lmHnlGmnFCnBmAlI −−−++=   2.18.2 

 

Example.  A Brick. 

 

We saw in section 16 that the moment of inertia of a uniform solid cube of mass M and side 2a  

about a body diagonal is 2
3

2Ma ,  and we saw how very easy this was.   At that time the problem 

of finding the moment of inertia of a uniform solid rectangular parallelepiped of sides 2a, 2b, 2c 

must have seemed intractable, but by now it is not at all hard. 
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Thus we have:   
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We obtain:  
( )

( )
.

3

2
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222222

cba

baaccbM
I

++

++
=  

 

 

We note: 

 

i. This is dimensionally correct; 

ii. It is symmetric in a, b, c; 

iii. If a = b = c, it reduces to 2
3

2Ma . 

 

 

2.19   Moment of Inertia with Respect to a Point. 

 

By “moment of inertia” we have hitherto meant the second moment of mass with respect to an 

axis.  We were easily able to identify it with the rotational inertia with respect to the axis, 

namely the ratio of an applied torque to the resulting angular acceleration. 

 

I am now going to define the (second) moment of inertia with respect to a point, which I shall 

take unless otherwise specified to mean the origin of coordinates.  If we have a collection of 

mass points mi at distances ri from the origin, I define 

 

     ( )2222

iii
i

ii
i

i zyxmrm ++∑=∑=I     2.19.1 

as the (second) moment of inertia with respect to the origin, also sometimes called the 

“geometric moment of inertia”.  I cannot relate it in an obvious way to a simple dynamical 

concept in the same way that I related moment of inertia with respect to an axis to rotational 

inertia, but we shall see that it is by no means merely a tedious exercise in arithmetic, and it does 

have its uses.  The symbol I has probably been used rather a lot in this chapter; so to describe the 

geometric moment of inertia I am going to use the symbol I.  
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The moment of inertia with respect to the origin is clearly something that does not depend on the 

orientation of any particular basis set of orthogonal axes, since it depends only on the distances 

of the particles from the origin.   

 

If you recall the definitions of A, B and C from section 2.15, you will easily see that  

   

     ( ).
2
1 CBA ++=I      2.19.2 

 

and we already noted (see equation 2.16.2) that CBA ++  is invariant under rotation of axes.  In 

section 2.18 we expressed it slightly more generally by saying "the trace of a symmetric matrix is 

invariant under an orthogonal transformation".  By now it probably seems slightly less 

mysterious. 

 

Let us now calculate the geometric moment of inertia of a uniform solid sphere of radius a, mass 

m, density ρ, with respect to the centre of the sphere.  It is  

 

    .2dmr
sphere

∫=I        2.19.3 

 

The element of mass, dm, here is the mass of a shell of radii r,  r + dr;  that is 4πρr
2
dr.  Thus 

 

 

     .4 5

5
4

0

4 adrr
a

πρ=∫πρ=I      2.19.4 

 

With ,3

3
4 ρπ= am  this becomes 

 

    .2

5
3 ma=I        2.19.5 

 

Indeed, for any spherically symmetric distribution of matter, since A = B = C, it will be clear 

from equation 2.19.2, that the moment of inertia with respect to the centre is 3/2 times the 

moment of inertia with respect to an axis through the centre.  For example, it is obvious from the 

definition of moment of inertia with respect to the centre that for a hollow spherical shell it is just 

ma
2
, and therefore the moment of inertia with respect to an axis through the centre is .2

3
2 ma   In 

other words, you can work out that the moment of inertia of a hollow spherical shell with respect 

to an axis through its centre is 2

3
2 ma  in your head without any of the integration that we did in 

section 2.7!   

 

By way of illustration, consider three spheres, each of radius a and mass M, but the density 

between centre and surface varies as  
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for the three spheres.  Calculate for each the moment of inertia about an axis through the centre 

of the sphere.  Express the answer in the form ).(2

5
2 kfMa ×  

 

Solution.   The mass of a sphere is 
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∫ ρπ=
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2)(4  
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The moment of inertia about the centre is 
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a
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4)(4I  

 

and so the moment of inertia about an axis through the centre is 
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For the first two spheres the integrations are straightforward.  I make it 
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for the first sphere, and 
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for the second sphere.    The integrations for the third sphere need a little more patience, but I 

make the answer 
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where .sin k=α  
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This should be enough to convince that the concept of I is useful – but it is not its only use.  We 

shall meet it again in Chapter 3 on the dynamics of systems of particles;  in particular, it will play 

a role in what we shall become familiar with as the virial theorem.  

 

 

2.20     Ellipses and Ellipsoids 

 

Here are some problems concerning ellipses and ellipsoids that might be of interest. 

 

  Determine the principal moments of inertia of the following:  

 

1.  A uniform plane lamina of mass m in the form of an ellipse of semi axes a and b. 

2.  A uniform plane ring of mass m in the form of an ellipse of semi axes a and b. 

3.  A uniform solid triaxial ellipsoid of mass m and semi axes a, b and c. 

4.  A uniform hollow triaxial ellipsoid of mass m and semi axes a, b and c. 

 

 

1.  By integration, an elliptical lamina is slightly difficult, but by physical insight it is very easy! 

 

The distribution of mass around the minor axis is the same as for a circular lamina of radius a, 

and therefore the moment B is the same as for the circular lamina, namely 2

4
1 maB = .  Similarly, 

2

4
1 mbA = , and hence, by the perpendicular axes theorem, )( 22

4
1 bamC += . 

 

   I think you will find that the shape of the momental ellipse is the same as the shape of the 

original elliptical lamina. 

 

2.  An elliptical ring (hoop) is remarkably difficult.  It cannot be expressed in terms of 

elementary functions, and it has to be calculated numerically.  It can be expressed in terms of 

elliptic integrals (no surprise there), but most of us aren’t sure what elliptic integrals are and they 

hardly count as elementary functions, and they have to be calculated numerically anyway.  We 

take the ellipse to be .with,1
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Even calculating the circumference of an ellipse isn’t all that easy.  The circumference is  
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After a bit of algebra, this can be written as 
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At first this looks easy, but I don’t think you can do it in terms of elementary functions.   No 

problem, then – just integrate it numerically.  Unfortunately the integrand becomes infinite at the 

upper limit, so there is still a bit of a problem.  However, a change of variable to θ= sinax  

solves that problem.  The expression for the circumference becomes simply 
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which can be integrated numerically without infinity problems at the limits.  According to my 

calculations, the circumference of the ellipse is ha , where h is a function of b/a as follows: 
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To find the moment of inertia (or the second moment of length) about the minor axis, we have to 

multiply the integrand by x
2
, or θ22 sina , and integrate.     Thus the moment of inertia of the 

elliptical hoop about its minor axis is 2
1mac , where 
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The moment of inertia about the major axis is 2
2mac , where 
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These two coefficients of 2
ma  are shown below as a function of b/a.     
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The moments of inertia of an elliptical ring of mass m and semi major and semi minor axes a and 

b are 2
1mac  about the minor axis and 2

2mac about the major axis, where c1 and c2 are shown as 

functions of b/a. 
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  The moment of inertia about the major axis can also be conveniently expressed in terms of b 

rather than a.  If we write the moment of inertia about the major axis as 2
4mbc , then c4 as a 

function of b/a is shown below. 
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The moment of inertia of an elliptical ring of mass m and semi major and semi minor axes a and b is 

2
4mbc about the major axis, where  c4 is  shown as a function of b/a. 

 

  The moment of inertia about an axis perpendicular to the plane of the ellipse and passing 

through its centre is 2
3mac , where,  of course (by the perpendicular axes theorem), .213 ccc +=  

It is also equal to  .2
4

2
1 mbcmac +   

 

 

3.   For a uniform solid triaxial ellipsoid, the moments of inertia are 
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The momental ellipsoid is not of the same shape.   Its axes are in the ratio 
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For example, if the axial ratios of the original ellipsoid are 1 : 2 : 3, the axial ratios of the 

corresponding momental ellipsoid is ,612.1:140.1:1::1
5

13
10
13 =  which is slightly more 

spherical than the original ellipsoid. 

 

4.  Triaxial elliptical shell.   We have to think carefully about what a triaxial elliptical shell is.  If 

we imagine the inner surface of the shell to be an ellipsoid, and the outer surface to be a similar 

ellipsoid, but with all linear dimensions increased by the same small fractional increment, then 

we obtain a figure like this: 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

In this drawing the linear size of the outer surface is 3 percent larger than that of the inner 

surface.  E. J. Routh correctly shows in his treatise on rigid bodies that the principal moments of 

inertia of such a figure are  ).(),(),( 22

3
122

3
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3
1 bamacmcbm +++  

 

But it can be seen that such a figure is not (as presumably a rugger ball is) of uniform thickness.  

I draw below a shell of uniform thickness.  In such a case the inner and outer surfaces are not 

exactly similar.   
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In attempting to calculate the moment of inertia of such a figure I shall restrict myself to the case 

of a spheroidal shell of uniform thickness.  That is to say, an ellipsoid with two equal axes, 

represented by the equation, in cylindrical coordinates 
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c
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where .222 yx +=ρ    Further, if I put ,ac χ=  the equation to the spheroid can be written 
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If 1<χ ,  the spheroid is oblate.   If 1>χ  , the spheroid is prolate.   

 

We’ll first need to calculate its surface area, which is  
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After some algebra, this comes to 
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This function is shown below as far as χ  =  2.  For χ = 0, the figure is a disc whose total area 

(upper and lower surface) is ,2 2aπ  and .
2
1=f   For χ = 1, the figure is a sphere whose area is 

,4 2aπ  and .1=f   The function goes to infinity as χ goes to infinity. 
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The moment of inertia about the z-axis is 
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After some algebra this becomes 

 

),(2 χ= gmaI  

 

 

( )

( )
1for

11ln)1()1(4

11ln)1)(2(

1)(

/

/
2222/32

2422

≤χ

















χχ−+χ−χ+χ−









χχ−+χ−χ−χ−

−=χg  

 



 52 
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This function is shown below as far as χ  =  2.  For χ = 0, the figure is a disc whose moment of 

inertia is ,2

2
1 aπ  and .

2
1=f   For χ = 1, the figure is a hollow sphere whose moment of inertia is 

,2

3
2 aπ  and .

3
2=f   The function goes to 1 as χ goes to infinity; the moment of inertia then 

approaches that of a hollow cylinder. 
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2.21     Tetrahedra 

 

Exercise.   Show that the moment of inertia about an axis through the centre of mass of a uniform 

solid regular tetrahedron of mass m and edge length a is .2

20
1 ma   

 

Exercise.   Show that the moment of inertia of a methane molecule about an axis through the 

carbon atom is ,2

3
8 ml  where l is the bond length and m is the mass of a hydrogen atom. 

 

And, in case you are wondering that I haven’t specified the orientation of the axis in either case, 

the solid regular tetrahedron and the methane molecule are both spherical tops, and the moment of 

inertia is the same about any axis through the centre of mass. 


