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CHAPTER 15 

SPECIAL RELATIVITY 

 

15.1.  Introduction 

 

Why a chapter on relativity in a book on “classical mechanics”?   A first excuse might be 

that the phrase “classical mechanics” is used by different authors to mean different 

things.  To some, it means “pre-relativity”; to others it means “pre-quantum mechanics”.  

For the purposes of this chapter, then, I mean the latter, so that special relativity may 

fairly be included in “classical” mechanics.   A second excuse is that, apart from one brief 

foray into an electromagnetic problem, this chapter deals only with mechanical, 

kinematic and dynamical problems, and therefore deals with only a rather restricted part 

of relativity that can be dealt with conveniently in a single chapter of classical mechanics 

rather than in a separate book.  This is in fact a quite substantial restriction, because 

electromagnetic theory plays a major role in special relativity.  It was in fact difficulties 

with electromagnetic theory that led Einstein to the special theory of relativity.  Indeed, 

Einstein’s theory of relativity was introduced to the world in a paper with the title Zur 

Elektrodynamik bewegter Körper (On the Electrodynamics of Moving Bodies), Annalen 

der Physik, 17, 891 (1905). 

 

The phrase “special” relativity deals with the transformations between reference frames 

that are moving with respect to each other at constant relative velocities.  Reference 

frames that are accelerating or rotating or moving in any manner other than at constant 

speed in a straight line are included as part of general relativity and are not considered in 

this chapter. 

 

 

15.2.   The Speed of Light 

 

The speed of light is, by definition, exactly 2.997 924 58 % 10
8
 m s

−1
, and is the same 

relative to all observers. 

 

This seemingly simple sentence invites several comments.     

 

First:  Note that I have used the word “speed”.   Some writers use the word “velocity” as 

if it were merely a more impressive and scientific-sounding synonym for “speed”.  I trust 

that all readers of these notes know the difference and will use the word “speed” when 

they mean “speed”, and the word “velocity” when they mean “velocity – surely not an 

unreasonable demand.   To say that the “velocity” of light is the same for all observers 

means that the direction of travel of light is the same relative to all observers.  This is 

doubtless not at all what a writer who uses the word “velocity” intends to convey – but it 

is the literal (and of course quite erroneous) meaning of the assertion. 

 

Second:  How can we possibly define the speed of light to have a certain exact value?  

Surely the speed of light is what we find it to be, and we are not free to define its value.  

But in fact we are allowed to do this, and the explanation, briefly, is as follows. 
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Over the course of history, the metre has been defined in several different ways.  At one 

time it was a specified fraction of the circumference of Earth.  Later, it was the distance 

between two scratches on a bar of platinum-iridium alloy held in Paris.  Later still it was 

a specified number of wavelengths of a particular line in the spectrum of mercury, or 

cadmium, or argon or krypton.  In our present state of technology it is far easier to 

measure and reproduce precise standards of frequency than it is to measure and reproduce 

standards of length.  Because of that, the current SI (Système International) unit of time is 

the SI second, which is based on the frequency of a particular transition in the spectrum 

of caesium, and from there, the metre is defined as the distance travelled by light in vacuo 

in a defined fraction of an SI second, the speed of light being assigned the exact value 

quoted above. 

 

Detailed discussion of the exact definitions of the units of time, distance and speed is part 

of the subject of metrology.  That is an important and interesting subject, but it is only 

marginally relevant to the topic of relativity, and consequently, having quoted the exact 

value of the speed of light, we leave further discussion of metrology here. 

 

Third:  How can the speed of light be the same relative to all observers?   This assertion 

is absolutely central to the theory of special relativity, and it may be regarded as its 

fundamental and most important principle.  We shall discuss it further in the remainder of 

the chapter. 

 

 

 15.3.   Preparation 

 

The ratio of the speed v of a body (or a particle, or a reference frame) to the speed of light 

is often given the symbol β: 

     β  =  v / c.     15.3.1  

 

For reasons that will become apparent (I hope!) later, the range of β is usually restricted 

to between 0 and 1.   In our study of special relativity, we shall find that we have to make 

frequent use of a number of functions of β.  The most common of these are 

 

    ,)1( 2/12 −β−=γ       15.3.2 

 

    ,)1/()1( β−β+=k     15.3.3 

 

    z  =  k  −  1  ,      15.3.4 

 

              K  =  γ  −  1  ,      15.3.5 

 

  .lntanh)]1/()1ln[( 1

2
1 k=β=β−β+=φ −    15.3.6 
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   ).(sincos 11 βγ=γ=θ −− i      15.3.7 

 

 
In figures XV.1-3 I draw γ, k and φ as functions of  β .  The functions γ and k go from 1 

to ∞ as β goes from 0 to 1;  z, K and φ go from 0 to ∞.  The function θ is imaginary. 
 

Many – one might even say most – problems in special relativity (including examination 

and homework questions!) amount, when stripped of their verbiage, to the following:  

 

“Given one of the quantities β , γ , k , z , K , φ, θ , calculate one of the others.”   Thus I 

would suggest that, even before you have any idea what these quantities mean, you might 

write a program for your computer (or programmable calculator) such that, when you 

enter any one of the real quantities, the computer will instantly return all seven of them.  

This will save you, on future occasions, from having to remember the exact formulas or 

having to bother with tedious arithmetic, so that you can concentrate your mind on 

understanding the relativity. 
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Just for future reference, I tabulate here the relations between these various quantities.  

This has involved some algebra and typesetting; I don’t think there are any mistakes, but 

I hope some reader might check through them all carefully and will let me know (jtatum 

at uvic dot ca) if he or she finds any.   
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15.4.   Speed is Relative.  The Fundamental Postulate of Special Relativity. 

 

You are sitting in a railway carriage (or a railroad car, if you prefer the term).  The 

windows and curtains are closed and you cannot see outside.  You are asked to measure 

the constant speed of the carriage along its tracks.  You try a number of experiments.  

You measure the period of a simple pendulum.  You slide a puck and roll a ball down an 

inclined plane.  You throw a ball vertically up in the air and catch it as it comes down.  

You throw it up at an angle and you watch it describe a graceful parabola.  You cause 

billiard balls to collide on the billiards table thoughtfully provided in your carriage.  You 

experiment with a torsion pendulum.  You stand a pencil on its end and you watch it as it 

falls to a horizontal position. 
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All your careful work is to no avail.  None of them tells you what speed you are moving 

at, or even if you are moving at all.  After exhausting all mechanical experiments you can 

think of, you are led to the conclusion: 

 

It is impossible to determine the speed of motion of a uniformly-moving 
reference frame by means of any mechanical experiment performed within 
that frame. 
 
Frustrated, you open a curtain on one side of the carriage.  You look out and you see that 

there is another train on the line next to you.  It appears to be moving backwards.  Or are 

you moving forwards?  Or are you both moving in the same direction but at different 

speeds?  You still can’t tell. 

 

You move to the other side of the carriage and open the curtain there.  This time you see 

the station platform, and the station platform is moving backwards.  Or are you moving 

forwards?  (Those of you who have not done much travel by train may not appreciate just 

how very strong the impression can be that the platform is moving.)  What does it mean, 

anyway, to say that it is you that is moving rather than the platform?  

 

The following story is not true, but it ought to be.  (It is an “apocryphal” story.)  Einstein 

was travelling by train across Canada.  Halfway across the Prairies he leant across and 

tapped on the knee of his fellow passenger and asked: “Excuse me, mein Herr, bitte, but 

does Regina stop at this train?” 

 

You are about to conclude that it is not possible by any means, whether by experiment or 

by observation, to determine the speed of your reference frame, or even whether it is 

moving or stationary. 

 

But not so hasty!  I am about to invent a speedometer, which I intend to patent and to use 

to make myself rich.  I am going to use my invention to measure the speed of our train – 

without even looking out of the window! 

 

We shall set up two long parallel glass rods in the middle of the corridor, parallel to the 

railway lines and to the velocity of the train.  We shall suspend the rods horizontally, side 

by side from a common support, and we shall rub each of them with a silken 

handkerchief, so that each of them bears an electrostatic charge of λ C m
−1

.  They will 

repel each other with an electrostatic force per unit length of 

 

    ,mN
4

1

0

2

e

−

πε

λ
=

r
F     15.4.1 

 

where r is their distance apart, and consequently they will hang out of the vertical – see 

figure XV.4.  

 

 

 



 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now see what happens when the train moves forward at speed v .  Each rod, bearing a 

charge λ per unit length, is now moving forward at speed v, and therefore each rod 

constitutes an electric current λv A.  Therefore, by Ampère’s law, in addition to the 

Coulomb repulsion, they will experience a magnetic attraction per unit length equal to 

 

    .mN
4

1
22

0
m

−

π

λµ
=

r
F

v
    15.4.2 

 

The net repulsive force per unit length is now   

 

    ( ).1
4

2

002
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2
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r
    15.4.3 

 

 

This is a little less than it was when the train was stationary, so the angle between the 

suspending strings is a little less, as shown in figure XV.5.  It might be noted that the 

force between the strings is reduced to zero (and the angle also becomes zero) when the 

train is travelling at a speed ./1 00 εµ   We remember from electromagnetic theory that 

the permeability of free space is µ0 = 4π % 10
−7

 H m
−1

 and that the permittivity ε0 is 

* * Fe Fe 

mg mg 

FIGURE XV.4 
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8.8542 % 10
−12 

 F m
−1

; consequently the force and the angle drop to zero and the strings 

hang vertically, when the train is moving at a speed of 2.998 % 10
8
 m s

−1
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To complete my invention, I am now going to attach a protractor to the instrument, but 

instead of marking the protractor in degrees, I am going to calibrate it in miles per hour, 

and my speedometer is now ready for use (figure XV.6). 
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You now have a choice.  Either: 

 

i.  You can choose to believe that the speedometer will work and you can accompany me 

to the patent office to see if they will grant a patent for this invention, which will measure 

the speed of a train without reference to any external reference frame.  If you choose to 

believe this, there is no need for you to read the remainder of the chapter on special 

relativity. 

 

Or: 

 

ii.  You can say that it defies common sense to believe that it is possible to determine 

whether a given reference frame is moving or stationary, let alone to determine its speed.  

Common sense dictates that  

 
It is impossible to determine the speed of motion of a uniformlyIt is impossible to determine the speed of motion of a uniformlyIt is impossible to determine the speed of motion of a uniformlyIt is impossible to determine the speed of motion of a uniformly----moving reference moving reference moving reference moving reference 
frame by any means whatever, whether by a mechanical or electrical oframe by any means whatever, whether by a mechanical or electrical oframe by any means whatever, whether by a mechanical or electrical oframe by any means whatever, whether by a mechanical or electrical or indeed any r indeed any r indeed any r indeed any 
experiment performed entirely or partially within that frame, or even by reference to experiment performed entirely or partially within that frame, or even by reference to experiment performed entirely or partially within that frame, or even by reference to experiment performed entirely or partially within that frame, or even by reference to 
another frame.another frame.another frame.another frame.    
 
Your common sense, then, leads you – as it should – to the fundamental principle of 

special relativity.  Whereas some people protest that relativity “defies common sense”, in 

fact relativity is common sense, and its predictions (such as your prediction that my 

speedometer will not work) are exactly what common sense would lead you to expect. 

 

 

 

 

15.5.   The Lorentz Transformations 

 

For the remainder of this chapter I am taking, as a fundamental postulate, that 

 
It is impossible to determine the speed of motion of a uniformlyIt is impossible to determine the speed of motion of a uniformlyIt is impossible to determine the speed of motion of a uniformlyIt is impossible to determine the speed of motion of a uniformly----moving reference moving reference moving reference moving reference 
frame by any means whatever, whether by a mechanical or electrical or indeed any frame by any means whatever, whether by a mechanical or electrical or indeed any frame by any means whatever, whether by a mechanical or electrical or indeed any frame by any means whatever, whether by a mechanical or electrical or indeed any 
experiment performed entexperiment performed entexperiment performed entexperiment performed entirely or partially within that frame, or even by reference to irely or partially within that frame, or even by reference to irely or partially within that frame, or even by reference to irely or partially within that frame, or even by reference to 
another frameanother frameanother frameanother frame    
 
and consequently I am choosing to believe that my speedometer will not work.  If it is 

impossible by any electrical experiment to determine our speed, we must assume that all 

the electromagnetic equations that we know, not just the ones that we have quoted, but 

indeed Maxwell’s equations, which embrace all electromagnetic phenomena, are the 

same in all uniformly-moving reference frames.   

 

One of the many predictions of Maxwell’s equations is that electromagnetic radiation 

(which includes light) travels at a speed  
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    ./1 00εµ=c       15.5.1 

 

Presumably neither the permeability nor the permittivity of space changes merely 

because we believe that we are travelling through space – indeed it would defy common 

sense to suppose that they would.  Consequently, our acceptance of the fundamental 

principle of special relativity is equivalent to accepting as a fundamental postulate that 

the speed of light in vacuo is the same for all observers in uniform relative motion.  We 

shall take anything other than this to be an outrage against common sense – though 

acceptance of the principle will require a careful examination of our ideas concerning the 

relations between time and space.  

 

Let us imagine two reference frames, Σ and Σ'.  Σ' is moving to the right (positive x-

direction) at speed v relative to Σ.  (For brevity, I shall from time to time refer to Σ as the 

“stationary” frame, in the hope that this liberty will not lead to misunderstanding.)  At 

time t  =  t'  =  0 the two frames coincide, and at that instant someone strikes a match at 

the common origin of the two frames.  At a later time, which I shall call t if referred to 

the frame Σ, and t' if referred to Σ', the light from the match forms a spherical wavefront 

travelling radially outward at speed c from the origin O of Σ, and the equation to this 

wavefront, when referred to the frame Σ, is 

 

    .022222 =−++ tczyx     15.5.2 

 

Referred to Σ', it also travels outward at speed c from the origin O' of Σ', and the equation 

to this wavefront, when referred to the frame Σ', is 

 

    .0'''' 22222 =−++ tczyx     15.5.3 

 

Most readers will accept, I think, that y  =  y' and z =  z'.  Some formal algebra may be 

needed for a rigorous proof, but that would distract from our main purpose of finding a 

transformation between the primed and unprimed coordinates such that 

 

    .'' 222222 tcxtcx −=−     15.5.4 

 

It is easy to show that the “Galilean” transformation x'  =  x  −  ct,  t'  =  t does not satisfy 

this equality, so we shall have to try harder. 

 

Let us seek linear transformations of the form 

 

    ,' BtAxx +=      15.5.5 

 

    ,' DtCxt +=      15.5.6 

 

which satisfy equation 15.5.4. 
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We have   ,
'

'

DtCx

BtAx

t

x

+

+
=      15.5.7 

 

and, by inversion,  .
''

''

AtCx

BtDx

t

x

+−

−
=      15.5.8 

 

Consider the motion of O' relative to Σ  and to Σ'.  We have x/t = v  and x'  =  0. 

  

â    ./AB−=v       15.5.9 

 

Consider the motion of O relative to Σ' and to Σ.  We have x'/t' = −v  and x  =  0. 

 

 

â    ./DB=−v       15.5.10 

 

From these we find that D = A and B  =  −Av, so we arrive at 

 

    )(' txAx v−=      15.5.11 

 

and    .' AtCxt +=       15.5.12 

 

On substitution of equations 15.5.11 and 15.5.12 into equation 15.5.4, we obtain 

 

  .)()( 2222222 tcxAtCxctxA −=+−− v     15.5.13 

 

Equate powers of t
2
 to obtain 

 

   .
/1

1

22
γ=

−
=

c
A

v

     15.5.14 

 

Equate powers of xt to obtain 

 

    .
2

c
C

γ
−=
v

      15.5.15 

 

Equating powers of x
2
 produces no new information. 

 

We have now determined A, B, C and D, and we can substitute them into equations 

15.5.5 and 15.5.6, and hence we arrive at 

 

    )(' txx v−γ=      15.5.16 
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and    .)/(' 2cxtt v−γ=      15.5.17 

 

These, together with y  =  y' and z =  z', constitute the Lorentz transformations, which, by 

suitable choice of axes, guarantee the invariance of the speed of light in all reference 

frames moving at constant velocities relative to one another. 

 

To express x and t in terms of x' and t', you may, if you are good at algebra, solve 

equations 15.5.16 and 15.5.17 simultaneously for x' and t', or, if instead, you have good 

physical insight, you will merely reverse the sign of v and interchange the primed and 

unprimed quantities.  Either way, you should obtain 

 

    )''( txx v+γ=      15.5.18 

 

and    .)/''( 2cxtt v+γ=      15.5.19 

 

 

 

15.6.    But This Defies Common Sense 

 

At this stage one may hear the protest: “But this defies common sense!”.  One may hear it 

again as we encounter several predictions of the invariance of the speed of light and of 

the Lorentz transformations.  But, if you have read this far, it is too late to make such 

protest.  You have already, at the end of Section 15.4, made your choice, and you then 

decided that it defies common sense to suppose that one can somehow determine the 

speed of a reference frame by some experiment or observation.  You rejected that notion, 

and it was the application of common sense, not its abandonment, that led us into the 

Lorentz transformations and the invariance of the speed of light.  

 

There may be other occasions when we are tempted to protest “But this defies common 

sense!”, and it is therefore always salutary to recall this.  For example, we shall later learn 

that if a train is moving at speed V relative to the station platform, and a passenger is 

walking towards the front of the train at a speed v relative to the train, then, relative to the 

platform, he is moving at a speed just a little bit less that V  +  v.  When we protest, we 

are often presented with an “explanation” along the following lines: 

 

In every day life, trains do not move at speeds comparable to the speed of light, nor do 

walking passengers.  Therefore, we do not notice that the combined speed is a little bit 

less than V  +  v.  After all, if V  = 60 mph and v  = 4 mph, the combined speed is 

0.999 999 999 999 999 5 %  64 mph.  The formula V  +  v is just an approximation, we 

are told, and we have the erroneous impression that the combined speed is exactly V  +  v 

only because we are accustomed, in daily life, to experiencing speeds that are small 

compared with the speed of light. 

 

This explanation somehow does not seem to be satisfactory – and nor should it, for it is 

not a correct explanation.  It seems to be an explanation invented for the benefit of the 

nonscientific layman – but nothing is ever made easy to understand by giving an incorrect 



 13 

explanation under the pretence of “simplifying” something. It is not correct merely to say 

that the Galilean transformations are just an “approximation” to the “real” 

transformations. 

 

The problem is that it is exceedingly difficult – perhaps impossible – to describe exactly 

what is meant by “distance” and “time interval”.  It is almost as difficult as describing 

colours to a blind person, or even describing your sensation of the colour red to another 

seeing person.  We have no guarantee that every person’s perception of colour is the 

same.  The best that can be done to describe what we mean by distance and time interval 

is to define how distances and times transform between reference frames.  The Lorentz 

transformations, which we have adopted in order to make it meaningless to discuss the 

absolute velocity of a reference frame, amount to a useful working definition of the 

meanings of space and time.  Once we have adopted this definition, “common sense” no 

longer comes into the matter.  There is no longer a mystery which our minds cannot quite 

grasp; from this point on it merely becomes a matter of algebra as to how a measurement 

of length or of time interval, or of speed, or of mass, as appropriately defined, transforms 

when referred to one reference or to another.  There is no impossible feat of imagination 

to be done. 

 

 

15.7   The Lorentz Transformation as a Rotation 

 

The Lorentz transformation can be written 
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    15.7.1 

 

where x1 = x ,   x2 = y ,  x3  =  z and x4  =  −ict, and similarly for primed quantities.  Please 

don’t just take my word for this; multiply the matrices, and verify that this equation does 

indeed represent the Lorentz transformation.  You could, if you wish, also write this for 

short: 

 

       x'  =  λλλλx .      15.7.2 

 

Another way of writing the Lorentz transformation is 
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where x1 = x ,   x2 = y ,  x3  =  z and x0  =  ct, and similarly for primed quantities.    
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Some people prefer one version; others prefer the other.  In any case, a set of four 

quantities that transforms like this is called a 4-vector.  Those who dislike version 15.7.1 

dislike it because of the introduction of imaginary quantities.  Those who like version 

15.7.1  point out that the expression 2/12

4

2

3

2

2

2

1 ])()()()[( xxxx ∆+∆+∆+∆   (the 

“interval” between two events) is invariant in four-space – that is, it has the same value in 

all uniformly-moving reference frames, just as the distance between two points in three-

space,  2/1222 ])()()[( zyx ∆+∆+∆ , is independent of the position or orientation of any 

reference frame.  In version 15.7.3, the invariant interval is 

.])()()()[( 2/12
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1 xxxx ∆−∆+∆+∆   Those who prefer version 15.7.1 dislike the 

minus sign in the expression for the interval.  Those who prefer version 15.7.3 dislike the 

imaginary quantities of version 15.7.1.   

 

For the time being, I am going to omit y and z, so that I can concentrate my attention on 

the relations between x and t.  Thus I am going to write 15.7.1 as 
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and equation15.7.3 as 
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Readers may notice how closely equation 15.7.4 resembles the equation for the 

transformation of coordinates between two reference frames that are inclined to each 

other at an angle. (See Celestial Mechanics Section 3.6.) Indeed, if we let cos θ  =  γ   and   

sin θ  =  iβγ, equation 15.7.4 becomes 
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The matrices in equations 15.7.1, 15.7.4 and 15.7.6 are orthogonal matrices and they 

satisfy each of the criteria for orthogonality described, for example, in Celestial 

Mechanics Section 3.7.  We can obtain the converse relations (i.e. we can express x and t 

in terms of  x' and t') by interchanging the primed and unprimed quantities and either 

reversing the sign of β or of θ or by interchanging the rows and columns of the matrix. 

 

There is a difficulty in making the analogy between the Lorentz transformation as 

expressed by equation 15.7.4 and rotation of axes as expressed by equation 15.7.6 in that, 

since γ > 1, θ is an imaginary angle.  (At this point you may want to reach for your 

ancient, brittle, yellowed notes on complex numbers and hyperbolic functions.)  Thus 

,cos 1 γ=θ −   and for γ > 1, this means that ( ).1lncosh 21 −γ+γ=γ=θ −
ii   And 
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( ).1ln)(sinh)(sin 2211 +γβ+βγ=βγ=βγ=θ −−
iii   Either of these expressions reduces to 

.)]1(ln[ β+γ=θ i   Perhaps a yet more convenient way of expressing this is 
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For example, if β = 0.8, θ  =  1.0986i, which might be written (not necessarily 

particularly usefully) as i % 62
o
 57'. 

 

At this stage, you are probably thinking that you much prefer the version of equation 

15.7.5, in which all quantities are real, and the expression for the interval between two 

events is .])()()()[( 2/12

0

2

3

2

2

2

1 xxxx ∆−∆+∆+∆   The minus sign in the expression is a 

small price to pay for the realness of all quantities.  Equation  15.7.5 can be written 
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where .tanh,sinh,cosh β=φβγ=φγ=φ On the face of it, this looks much simpler. 

No messing around with imaginary angles.  Yet this formulation is not without its own 

set of difficulties.  For example, neither the matrix of equation 15.7.5 nor the matrix of 

equation 15.7.8 is orthogonal.  You cannot invert the equation to find x and t in terms of  

x' and t'  merely by interchanging the primed and unprimed symbols and interchanging 

the rows and columns.  The converse of equation 15.7.8 is in fact 
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which can also (understandably!) be written 
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which demands as much skill in handling hyperbolic functions as the other formulation 

did in handling complex numbers.  A further problem is that the formulation 15.7.5 does 

not allow the analogy between the Lorenz transformation and the rotation of axes. You 

take your choice.   

 

It may be noticed that the determinants of the matrices of equations 15.7.5 and 15.7.8 are 

each unity, and it may therefore be thought that each matrix is orthogonal and that its 

reciprocal is its transpose.  But this is not the case, for the condition that the determinant 

is unity is not a sufficient condition for a matrix to be orthogonal.  The necessary tests are 
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summarized in Celestial Mechanics, Section 3.7, and it will be found that several of the 

conditions are not satisfied. 

 

 

15.8    Timelike and Spacelike 4-Vectors 

 

I am going to refer some events to a coordinate system whose origin is here and now and 

which is moving at the same velocity as you happen to be moving.  In other words, you 

are sitting at the origin of the coordinate system, and you are stationary with respect to it.  

Let us suppose that an event A occurs at the following coordinates referred to this 

reference frame, in which the distances x1 ,  y1 , z1 are expressed in light-years (lyr) the 

time t1 is expressed in years (yr).    

 

  x1  =  2  y1  =  3  z1  =  7  t1  =  −1 

 

A “light-year” is a unit of distance used when describing astronomical distances to the 

layperson, and it is also useful in describing some aspects of relativity theory.  It is the 

distance travelled by light in a year, and is approximately 9.46 % 10
15

 m or 0.307 parsec 

(pc).  Event A, then, occurred a year ago at a distance of 87.762 =  lyr, when referred 

to this reference frame.  Note that, if referred to a reference frame that coincides with this 

one at t = 0, but is moving with respect to it, all four coordinates might be different, and 

the distance 222
zyx ++ and the time of occurrence would be different, but, 

according to the way in which we have defined space and time by the Lorentz 

transformation, the quantity 22222
tczyx −++  would be the same. 

 

Imagine now a second event, B, which occurs at the following coordinates: 

 

  x2  =  5  y2  =  8  z2  =  10 t2  =  +2 

 

That is to say, when referred to the same reference frame, it will occur in two years’ time 

at a distance of 75.13189 =  lyr. 

 

The 4-vector  s  =  B  −  A connects these two events, and the magnitude s of s is the 

interval between the two events.  Note that the distance between the two events, when 

referred to our reference frame, is 56.6)710()38()25( 222 =−+−+−  lyr.  The 

interval between the two events is 83.5)12()710()38()25( 2222 =+−−+−+−  lyr, 

and this is independent of the velocity of the reference frame.  That is, if we “rotate” the 

reference frame, it obviously makes no difference to the interval between the two events, 

which is invariant. 

 

As another example, consider two events A and B whose coordinates are 

 

  x1  =  2  y1  =  5  z1  =  3  t1  =  −2 
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  x2  =  3  y2  =  7  z2  =  4  t2  =  +6 

 

with distances, as before, expressed in lyr, and times in yr.  Calculate the interval 

between these two events – i.e. the magnitude of the 4-vector connecting them.  If you 

carry out this calculation, you will find that s 
2
  =  −58, so that the interval s is imaginary 

and equal to 7.62i. 

 

So we see that some pairs of events are connected by a 4-vector whose magnitude is real, 

and other pairs are connected by a 4-vector whose magnitude is imaginary.  There are 

differences in character between real and imaginary intervals, but, in order to strip away 

distractions, I am going to consider events for which y  =  z  =  0.  We can now 

concentrate on the essentials without being distracted by unimportant details. 

 

Let us therefore consider two events A and B whose coordinates are 

 

   x1  =  2  lyr  t1  =  −2  yr 

 

   x2  =  3  lyr  t2  =  +6  yr 

 

These events and the 4-vector connecting them are shown in figure XV.7.Event A 

happened two years ago (referred to our reference frame); event B will occur (also 

referred to our reference frame) in six years’ time.  The square of the interval between the 

two events (which is invariant) is −63 lyr
2
, and the interval is imaginary.  If someone 

wanted to experience both events, he would have to travel only 1 lyr (referred to our 

reference frame), and he could take his time, for he would have eight years (referred to 

our reference frame) in which to make the journey to get to event B in time.  He couldn’t 

totally dawdle, however;  he would have to travel at a speed of at least 
8
1  times the speed 

of light, but that’s not extremely fast for anyone well versed in relativity. 

 

 

 

 

 

 

 

 

 

 

 

 

Let’s look at it another way.  Let’s suppose that event A is the cause of event B.  This 

means that some agent must be capable of conveying some information from A to B at a 

speed at least equal to
8
1  times the speed of light.  That may present some technical 

problems, but it presents no problems to our imagination. 

 

B 

x 

t 

FIGURE XV.7 
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You’ll notice that, in this case, the interval between the two events – i.e. the magnitude of 

the 4-vector connecting them − is imaginary.  A 4-vector whose magnitude is imaginary 

is called a timelike 4-vector.   There is quite a long time between events A and B, but not 

much distance.  

 

Now consider two events A and B whose coordinates are 

 

   x1  =  2  lyr  t1  =  −1  yr 

 

   x2  =  7  lyr  t2  =  +3  yr 

 

The square of the magnitude of the interval between these two events is +9 lyr
2
, and the 

interval is real.  A 4-vector whose magnitude is real is called a spacelike 4-vector.  It is 

shown in figure XV.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Perhaps I could now ask how fast you would have to travel if you wanted to experience 

both events.  They are quite a long way apart, and you haven’t much time to get from one 

to the other.  Or, if event A is the cause of event B, how fast would an information-

carrying agent have to move to convey the necessary information from A in order to 

instigate event B?  Maybe you have already worked it out, but I’m not going to ask the 

question, because in a later section we’ll find that two events A and B cannot be mutually 

causally connected if the interval between them is real.  Note that I have said “mutually”;  

this means that A cannot cause B, and B cannot cause A.  A and B must be quite 

independent events; there simply is too much space in the interval between them for one 

to be the cause of the other.  It does not mean that the two events cannot have a common 

cause.  Thus, figure XV.9 shows two events A and B with a spacelike interval between 

them (very steep) and a third event C such the intervals CA and CB (very shallow) are 

timelike.  C could easily be the cause of both A and B; that is, A and B could have a 

common cause.   But there can be no mutual causal connection between A and B.  (It 

might be noted parenthetically that Charles Dickens temporarily nodded when he chose 

x 

s 

A 

B 

t 

FIGURE XV.8 
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the title of his novel Our Mutual Friend.  He really meant our common friend.  C was a 

friend common to A and to B.  A and B were friends mutually to each other.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise.  The distance of the Sun from Earth  is 1.496 % 10
11

 m.  The speed of light is 

2.998 % 10
8
 m s

−1
.  How long does it take for a photon to reach Earth from the Sun?  

Event A:  A photon leaves the Sun on its way to Earth.  Event B: The photon arrives at 

Earth.  What is the interval (i.e. s in 4-space) between these two events? 

 

 

15.9   The FitzGerald-Lorentz Contraction 

 

This is sometimes described in words something like the following:  

 

If a measuring-rod is moving with respect to a “stationary” observer, it “appears” to be 

shorter than it “really” is. 

 

This is not a very precise statement, and the words that I have placed in inverted commas 

call for some clarification. 

 

We have seen that, while the interval between two events is invariant between reference 

frames, the distance between two points (and hence the length of a rod) depends on the 

coordinate frame to which the points are referred.  Let us now define what we mean by 

the length of a rod.  Figure XV.10 shows a reference frame, and a rod lying parallel to the 

x-axis.  For the moment I am not specifying whether the rod is moving with respect to the 

reference frame, or whether it is stationary.    

 

 

Distance 

C 

A 

B 

Time 
FIGURE XV.9 
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Let us suppose that the x-coordinate of the left-hand end of the rod is x1, and that, at the 

same time referred to this reference frame, the x-coordinate of the right-hand end is x2.  

The length l of the rod is defined as l = x2 − x1.  That could scarcely be a simpler 

statement – but note the little phrase “at the same time referred to this reference frame”.  

That simple phrase is important. 

 

Now let’s look at the FitzGerald-Lorentz contraction.  See figure XV.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are two reference frames, Σ and Σ'.  The frame Σ' is moving to the right with 

respect to Σ with speed v.  A rod is at rest with respect to the frame Σ', and is therefore 

moving to the right with respect to Σ at speed v.   

 

In my younger days I often used to travel by train, and I still like to think of railway trains 

whenever I discuss relativity.  Modern students usually like to think of spacecraft, 

presumably because they are more accustomed to this mode of travel.  In the very early 

days of railways, it was customary for the stationmaster to wear top hat and tails.  Those 

days are long gone, but, when thinking about the FitzGerald-Lorentz contraction, I like to 

y 

x 

x2 x1 

FIGURE XV.10 

y y' 

x x' 

Σ' Σ 
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think of Σ as being a railway station in which there resides a stationmaster in top hat and 

tails, while Σ' is a railway train.  

 

The length of the rod, referred to the frame Σ', is l '  =  x'2 − x'1, in what I hope is obvious 

notation, and of course these two coordinates are determined at the same time referred to 

Σ'. 

 

The length of the rod referred to a frame in which it is at rest is called its proper length. 

Thus l ' is the proper length of the rod. 

 

Now it should be noted that, according to the way in which we have defined distance and 

time by means of the Lorentz transformation, although x'2 and x'1 are measured 

simultaneously with respect to Σ', these two events (the determination of the coordinates 

of the two ends of the rod) are not simultaneous when referred to the frame Σ (a point to 

which we shall return in a later section dealing with simultaneity).  The length of the rod 

referred to the frame Σ is given by  l  =  x2 − x1, where these two coordinates are to be 

determined at the same time when referred to Σ.  Now equation 15.5.16 tells us that 

./'/' 1122 txxandtxx vv +γ=+γ=  (Readers should note this derivation very 

carefully, for it is easy to go wrong.  In particular, be very clear what is meant in these 

two equations by the symbol t.  It is the single instant of time, referred to Σ, when the 

coordinates of the two ends are determined simultaneously with respect to Σ.)  From 

these we reach the result: 

 

     l  =  l '/γ .     15.9.1 

 
This is the FitzGerald-Lorentz contraction. 

 

It is sometimes described thus:  A railway train of proper length 100 yards is moving past 

a railway station at 95% of the speed of light (γ  =  3.2026.)  To the stationmaster the 

train “appears” to be of length 31.22 yards; or the stationmaster “thinks” the length of the 

train is 31.22 yards; or, “according to” the stationmaster the length of the train is 31.22 

yards.  This gives a false impression, as though the stationmaster is under some sort of 

misapprehension concerning the length of the train, or as if he is labouring under some 

sort of illusion, and it introduces some sort of unnecessary “mystery” into what is nothing 

more than simple algebra.   In fact what the stationmaster “thinks” or “asserts” is entirely 

irrelevant.  Two correct statements are:  1.  The length of the train, referred to a reference 

frame in which it is at rest – i.e. the proper length of the train – is 100 yards.  2.  The 

length of the train when referred to a frame with respect to which it is moving at a speed 

of 0.95c is 31.22 yards. And that is all there is to it.  Any phrase such as “this observer 

thinks that” or “according to this observer” should always be interpreted in this manner.  

It is not a matter of what an observer “thinks”.  It is a matter of which frame a 

measurement is referred to.  Nothing more, nothing less. 
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It is possible to describe the Lorentz-FitzGerald contraction by interpreting the Lorentz 

transformations as a rotation in 4-space.  Whether it is helpful to do so only you can 

decide.  Thus figure XV.12 shows Σ and Σ' related by a rotation in the manner described 

in section 15.7.   The thick continuous line shows a rod oriented so that its two ends are 

drawn at the same time with respect to Σ'.  Its length is, referred to Σ', l', and this is its 

proper length.  The thick dotted line shows  the two ends at the same time with respect to 

Σ.  Its length referred to Σ is l  =  l'/cosθ.  And, since cos θ = γ, which is greater than 1,, 

this means that, in spite of appearances in the figure, l < l'.  The figure is deceptive 

because, as discussed in section 15.7, θ is imaginary.  As I say, only you can decide 

whether this way of looking at the contraction is helpful or merely confusing.  It is, 

however, at least worth looking at, because I shall be using this concept of rotation in a 

forthcoming section on simultaneity and order of events.  Illustrating the Lorentz 

transformations as a rotation like this is called a Minkowski diagram. 

 

 

15.10    Time Dilation 

 

We imagine the same railway train Σ' and the same railway station Σ as in the previous 

section except that, rather than measuring a length referred to the two reference frames, 

we measure the time interval between two events.  We’ll suppose that a passenger in the 

railway train Σ' claps his hands twice.  These are two events which take place at the same 

place when referred to this reference frame 'Σ . Let the instants of time when the two 

events occur, referred to  Σ', be .'and' 21 tt   The time interval 'T is defined as .'' 12 tt −  

But the Lorentz transformation is )/''( 2cxtt v+γ= , and so the time interval when 

referred to Σ is 

 

     '.TT γ=       15.10.1 
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This is the dilation of time.  The situation is illustrated by a Minkowski diagram in figure 

XV.13.  While it is clear from the figure that θ= cos'TT  and therefore that ,'TT γ= it is 

not so clear from the figure that this means that T is greater than T ' – because cos θ > 1 

and θ is imaginary. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Thus, let us suppose that a passenger on the train holds a 1-metre measuring rod (its 

length in the direction of motion of the train) and he claps his hands at an interval of one 

second apart.  Let’s suppose that the train is moving at 98% of the speed of light (γ =  

5.025).  In that case the stationmaster thinks that the length of the rod is only 19.9 cm and 

that the time interval between the claps is 5.025 seconds. 

 

I deliberately did not word that last sentence very well.  It is not a matter of what the 

stationmaster or anyone else “thinks” or “asserts”.  It is not a matter that the stationmaster 

is somehow deceived into erroneously believing that the rod is 19.9 cm long and the claps 

5.025 seconds apart, whereas they are “really” 1 metre long and 1 second apart.  It is a 

matter of how length and time are defined (by subtracting two space coordinates 

determined at the same time, or two time coordinates at the same place)  and how space-

time coordinates are defined by means of the Lorentz transformations.  The length is 19.9 

cm, and the time interval is 5.025 seconds when referred to the frame Σ.  It is true that 

the proper length and the proper time interval are the length and the time interval 

referred to a frame in which the rod and the clapper are at rest.  In that sense one could 

loosely say that they are “really” 1 metre long and 1 second apart.  But the Lorentz 

contraction and the time dilation are not determined by what the stationmaster or anyone 

else “thinks”. 

 
Another way of looking at it is this.  The interval s between two events is clearly 

independent of the orientation any reference frames, and is the same when referred to two 

reference frames that may be inclined to each other.  But the components of the vector 
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joining two events, or their projections on to the time axis or a space axis are not at all 

expected to be equal. 

 

By the way, in section 15.3 I urged you to write a computer or calculator programme for 

the instant conversion between the several factors commonly encountered in relativity.  I 

still urge it.  As soon as I typed that the train was travelling at 98% of the speed of light, I 

was instantly able to generate γ.  You need to be able to do that, too. 

 

 

15.11   The Twins Paradox 

 

During the late 1950s and early 1960s there was great controversy over a problem known 

as the “Twins Paradox”.  The controversy was not confined to within scientific circles, 

but was argued, by scientists and others, in the newspapers, magazines and many serious 

journals.  It goes something like this: 

 

There are two 20-year-old twins, Albert and Betty.  Albert is a sedentary type who likes 

nothing better than to stay at home tending the family vineyards.  His twin sister Betty is 

a more adventurous type, and has trained to become an astronaut.  On their twentieth 

birthday, Betty waves a cheery au revoir to her brother and takes off on what she intends 

to be a brief spaceflight, at which she travels at 99.98 % of the speed of light (γ = 50).  

After six months by her calendar she turns back and on her 21st birthday she arrives back 

home to greet her brother, only to find that he is now old and sere and has laboured, by 

his calendar for 50 years and is now an aged man of 71 years.  If we accept what we have 

derived in the previous section about the dilation of time, there would seem to be no 

particular problem with that.   It has even been argued that travel between the stars may 

not be an impossibility.  Whereas to an Earthbound observer it may take many decades 

for a spacecraft to travel to a star and back, for the astronauts on board much less time 

has elapsed. 

 

And yet a paradox was pointed out.  According to the principles of the relativity of 

motion, it was argued, one could refer everything to Betty’s reference frame, and from 

that point of view one could regard Betty as being the stationary twin and Albert as the 

one who travelled off into the distance and returned later.  Thus, it could be argued, it 

would be Albert who had aged only one year, while Betty would have aged fifty years. 

Thus we have a paradox, which is a problem which apparently gives rise to opposite 

conclusions depending on how it is argued.  And the only way that the paradox could be 

resolved was to suppose that both twins were the same age when they were re-united.   

 

A second argument in favour of this interpretation that the twins were the same age when 

re-united points out that dilation of time arises because two events that may occur in the 

same place when referred to one reference frame do not occur in the same place when 

referred to another.  But in this case, the two events (Betty’s departure and re-arrival) 

occur at the same place when referred to both reference frames. 
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The argument over this point raged quite furiously for some years, and a particularly 

plausible tool that was used was something referred to as the “k-calculus” – an argument 

that is, however, fatally flawed because the “rules” of the k-calculus inherently 

incorporate the desired conclusion.  Two of the principal leaders of the very public 

scientific debate were Professors Fred Hoyle and Herbert Dingle, and this inspired the 

following letter to a weekly magazine, The Listener, in 1960: 

 

Sir: 

 

The ears of a Hoyle may tingle; 

    The blood of a Hoyle may boil 

   When Hoyle pours hot oil upon Dingle,  

   And Dingle cold water on Hoyle. 

 

   But the dust of the wrangle will settle. 

   Old stars will look down on new soil. 

   The pot will lie down with the kettle, 

   And Dingle will mingle with Hoyle. 

 

 

So what are you, the reader, expected to believe?  Let us say this:  If you are a student 

who has examinations to pass, or if you are an untenured professor who has to hold on to 

a job, be in no doubt whatever:  The original conclusion is the canonically-accepted 

correct conclusion, namely that Albert has aged 50 years while his astronaut sister has 

aged but one.  This is now firmly accepted truth.  Indeed it has even been claimed that it 

has been “proved” experimentally by a scientist who took a clock on commercial airline 

flights around the world, and compared it on his return with a stay-at-home clock.  For 

myself I have neither examinations to pass nor, alas, a job to hold on to, so I am not 

bound to believe one thing or the other, and I elect to hold my peace.   

 

I do say this, however – that what anyone “believes” is not an essential point.  It is not a 

matter of what Albert or Betty or Hoyle or Dingle or your professor or your employer 

“believes”.  The real question is this:  What is it that is predicted by the special theory of 

relativity?  From this point of view it does not matter whether the theory of relativity is 

“true” or not, or whether it represents a correct description of the real physical world.  

Starting from the basic precepts of relativity, whether “true” or not, it must be only a 

matter of algebra (and simple algebra at that) to decide what is predicted by relativity. 

 

A difficulty with this is that it is not, strictly speaking, a problem in special relativity, for 

special relativity deals with transformations between reference frames that are in uniform 

motion relative to one another.  It is pointed out that Albert and Betty are not in uniform 

motion relative to one another, since one or the other of them has to change the direction 

of motion – i.e. has to accelerate.  It could still be argued that, since motion is relative, 

one can regard either Albert or Betty as the one who accelerates – but the response to this 

is that only uniform motion is relative.  Thus there is no symmetry between Albert and 

Betty.  Betty either accelerates or experiences a gravitational field (depending on whether 
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her experience is referred to Albert’s or her own reference frame).  And, since there is no 

symmetry, there is no paradox.  This argument, however, admits that the age difference 

between Albert and Betty on Betty’s return is not an effect of special relativity, but of 

general relativity, and is an effect caused by the acceleration (or gravitational field) 

experienced by Betty.    

 

If this is so, there are some severe difficulties is describing the effect under general 

relativity.  For example, whether the general theory allows for an instantaneous change in 

direction by Betty (and infinite deceleration), or whether the final result depends on how 

she decelerates – at what rate and for how long – must be determined by those who 

would tackle this problem.  Further, the alleged age difference is supposed to depend 

upon the time during which Betty has been travelling and the length of her journey – yet 

the portion of her journey during which she is accelerating or decelerating can be made 

arbitrarily short compared with the time during which she is travelling at constant speed. 

If the effect were to occur solely during the time when she was accelerating or 

decelerating, then the total length and duration of the constant speed part of her journey 

should not affect the age difference at all.  

 

Since this chapter deals only with special relativity, and this is evidently not a problem 

restricted to special relativity, I leave the problem, as originally stated, here, without 

resolution, for readers to argue over as they will 

  

 

15.12    A, B and C 

 

A, B and C were three characters in the Canadian humorist Stephen Leacock’s essay on 

The Human Element in Mathematics.  “A, B and C are employed to dig a ditch.  A can 

dig as much in one hour as B can dig in two...” 

 

We can ask A, B and C to come to our aid in a modified version of the twins’ problem, 

for we can arrange all three of them to be moving with constant velocities relative to each 

other.  It goes like this  (figure XV.14): 

 

 

 

    

 

   

 

The scenario is probably obvious from the figure.  There are three events:  

 

1. B passes A 

2. B meets C 

3. C passes A 

 

*   
A 

*   
B *   

C FIGURE XV.14 
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At event 1, B and A synchronize their watches so that each reads zero.  At event 2, C sets 

his watch so that it reads the same as B’s.  At event 3, C and A compare watches.  I shall 

leave the reader to cogitate over this. The only thing I shall point out is that this problem 

differs from the problem described as the Twins Paradox in two ways.  In the first place, 

unlike in the Twins Paradox, all three characters, A, B and C are moving at constant 

velocities with respect to each other.  Also, the first and third events occur at the same 

place relative to A but at different places referred to B or to C.  In the twin paradox 

problem, the two events occur at the same place relative to both frames.   

 

 

15.13    Simultaneity 

 

If the time interval referred to one reference frame can be different when referred to 

another reference frame (and since time interval is merely one component of a four-

vector, the magnitude of the component surely depends on the orientation in four space of 

the four axes) this raises the possibility that there might be a time interval of zero relative 

to one frame (i.e. two events are simultaneous) but are not simultaneous relative to 

another.  This is indeed the case, provided that the two events do not occur in the same 

place as well as at the same time.  Look at figure XV.15. 

 

 

 

 

 

      

 

 

      

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

I have drawn two reference frames at an (imaginary) angle θ to each other.  Think of Σ as 

the railway station and of Σ' as the railway train, and that the speed of the railway train is 

.tan θc  (You may have to go back to section 15.3 or 15.7 to recall the relation of θ to the 

x 

x' 

ict' 
ict 

l' 

θ 

FIGURE XV.15 

Σ Σ ' 
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speed.)  The thick line represents the interval between two events that are simultaneous 

when referred to Σ', but are separated in space (one occurs near the front of the train; the 

other occurs near the rear).  (Note also in this text that I am using the phrase “time 

interval” to denote the time-component of the “interval”.  For two simultaneous events, 

the time interval is zero, and the interval is then merely the distance between the two 

events.) 

 

While the thick line has zero component along the ict' axis, its component along the ict 

axis is l ' sin θ.  That is, .'sin')( 12 βγ×=θ=− illttic  

 

Hence:    .
'

12
c

l
tt

γβ
=−      15.13.1 

 

For example, if the events took place simultaneously 100,000 km apart in the train (it is a 

long train) and if the train were travelling at 95% of the speed of light  (γ  =  3.203; it is a 

fast train), the two events would be separated when referred to the railway station by 1.01 

seconds.  The event near the rear of the train occurred first. 

 

 

15.14   Order of Events, Causality and the Transmission of Information 

 

Maybe it is even possible that if one event precedes another in one reference frame, in 

another reference frame the other precedes the one.  In other words, the order of 

occurrence of events may be different in two frames.  This indeed can be the case, and 

Minkowski diagrams (figure XV.16) can help us to see why and in what circumstances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In part (a), of the two events 1 and 2, 1 occurs before 2 in either Σ or Σ'.  (from this point 

on I shall use a short phrase such as “in Σ” rather than the more cumbersome “when 

referred to the reference frame Σ”.  But in part (b), event 1 occurs before event 2 in Σ, but 
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after event 2 in Σ'.  One can see that there is reversal of order of events if the slope of the 

line joining to two events is less than the angle θ.  The angle θ, it may be recalled, is an 

imaginary angle such than tan θ  =  iβ  =  iv /c, where v is the relative speed of the two 

frames.  In figure XV.17, for simplicity I am going to suppose that event 1 occurs at the 

origin of both frames, and that event 2 occurs at coordinates (v t , ict) in Σ.  The condition 

for no reversal of events is then evidently 

 

    ;tan
c

i
i

t

ict v

v
=β=θ≥  

 

or     .c≤v       15.14.1 

 

Now suppose that events 1 and 2 are causally connected in the sense that event 1 is the 

cause of event 2.  For this to be the case, some signal carrying information must travel 

from 1 to 2.  However, if event 1 is the cause of event 2, event 1 must precede event 2 in 

all reference frames.  Thus it follows that no signal carrying information that could cause 

an event to occur can travel faster than the speed of light.   

 

This means, in effect, that neither mass nor energy can be transmitted faster than the 

speed of light.  That is not quite the same thing as saying that “nothing” can be 

transmitted faster than the speed of light.  For example a Moiré pattern formed by two 

combs with slightly different tooth spacings can move faster than light if one of the 

combs is moved relative to the other; but then I suppose it has to be admitted that in that 

case “nothing” is actually being transmitted – and certainly nothing that can transmit 

information or that can cause an event.  An almost identical example would be the 

modulation envelope of the sum of two waves of slightly different frequencies.  A well-

known example from wave mechanics is that of the wave representation of a moving 

particle.  The wave group (which is the integral of a continuous distribution of 

wavelengths whose extent is governed by Heisenberg’s principle) moves with the particle 

at a sub-luminal speed, but there is nothing to prevent the wavelets within the group 

moving through the group at any speed.  These wavelets may start at the beginning of the 

group and rapidly move through the group and extinguish themselves at the end.  No 

“information” is transmitted from A to B at a speed any faster than the particle itself is 

moving.   

 

 

 

15.15     Derivatives 

 

We’ll pause here and establish a few derivatives just for reference and in case we need 

them later.   

 

We recall that the Lorentz relations are 

 

    )''( txx v+γ=      15.15.1 
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and    .
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From these we immediately find that 
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We shall need these in future sections. 

 

Caution:   It is not impossible to make a mistake with some of these derivatives if one 

allows one’s attention to wander.   For example, one might suppose that, since 

,'/ γ=∂∂ xx  then “obviously” γ=∂∂ /1/' xx  - and indeed this is correct if t' is being held 

constant. However, we have to be sure that this is really what we want.  The difficulty is 

likely to arise if, when writing a partial derivative, we neglect to specify what variables 

are being held constant, and no great harm would be done by insisting that these always 

be specified when writing a partial derivative.  If you want the inverses rather than the 

reciprocals of equations 15.15.3a,b,c,d, the rule, as ever, is:  Interchange the primed and 

unprimed symbols and change the sign of v or β.  For example, the reciprocal of 
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Now let’s suppose that ,),( txψ=ψ  where x and t are in turn functions 

(equations15.15.1 and 15.1.5.2) of x' and t'.    Then 
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The reader will doubtless notice that I have here ignored my own advice and I have not 

indicated which variables are to be held constant.  It would be worth spending a moment 

here thinking about this. 

 

We can write equations 15.15.4 and 15.15.5 as equivalent operators: 
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We can also, if we wish, find the second derivatives.  Thus 
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from which we find 
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In a similar manner we obtain 
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The inverses of all of these relations are to be found by interchanging the primed 

and unprimed coordinates and changing the signs of v and ββββ. 

 

 

 

15.16    Addition of velocities 

 

A railway train trundles towards the east at speed v1, and a passenger strolls towards the 

front at speed v2.  What is the speed of the passenger relative to the railway station?  We 

might at first be tempted to reply: “Why, ,21 vv +  of course.”  In this section we shall 
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show that the answer as predicted from the Lorentz transformations is a little less than 

this, and we shall develop a formula for calculating it.  We have already discussed (in 

section 15.6) our answer to the objection that this defies common sense.  We pointed out 

there that the answer (to the perfectly reasonable objection) that “at the speeds we are 

accustomed to we would hardly notice the difference” is not a satisfactory response.  The 

reason that the resultant speed is a little less than 21 vv + results from the way in which 

we have defined the Lorentz transformations between references frames and the way in 

which distances and time intervals are defined with reference to reference frames in 

uniform relative motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure XV.17 shows two references frames, Σ and Σ', the latter moving at speed v with 

respect to the former.  A particle is moving with velocity u' in Σ', with components u'x'  

and u'y'.  (“ in Σ' ” = “referred to the reference frame Σ' ”.)   

 

What is the velocity of the particle in Σ? 

 

Let us start with the x-component. 
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We take the derivatives from equations 15.15.3a-d, and, writing v /c for β, we obtain 
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The inverse is obtained by interchanging the primed and unprimed symbols and reversing 

the sign of  v. 
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The y-component is found in an exactly similar manner, and I leave its derivation to the 

reader.  The result is 
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Special cases: 

 

I.     If u'x' = u' and u'y' = 0, then    
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II.   If  u'x' = 0 and u'y' = u', then 

 

        ./' γ== uuandu yx v            15.16.5a,b 

 

Equation 15.16.4a as written is not easy to commit to memory, though it is rather easier if 

we write ./and/',/ 21 cucuc x=β=β=β v    Then the equation becomes 
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In figure XV.18, a train Σ' is trundling with speed β1 (times the speed of light) towards 

the right, and a passenger is strolling towards the front at speed β2.  The speed β of the 

passenger relative to the station Σ is then given by equation 15.16.6.   In figure XV.19, 

two trains, one moving at speed β1 and the other moving at speed β2, are moving towards 

each other.  (If you prefer to think of protons rather than trains, that is fine.)  Again, the 

relative speed β of one train relative to the other is given by equation 15.16.6. 

 

Example.  A train trundles to the right at 90% of the speed of light relative to Σ, and a 

passenger strolls to the right at 15% of the speed of light relative to Σ'.  The speed of the 

passenger relative to Σ is 92.5% of the speed of light.  

 

The relation between β1 , β2 and β is shown graphically in figure XV.20. 
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If I use the notation β1/β2 to mean “combining β1 with β2”, I can write equation 15.16.6 

as 
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You may notice the similarity of equation 15.16.6 
21

21

1 ββ+

β+β
=β to the hyperbolic 

function identity 
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Thus I can represent the speed of an object by giving the value of φ, where 
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The factor φ combines simply as 

 

         φ1/φ2  =  φ1  +  φ2.             15.16.11 

 

If you did what I suggested in section 15.3 and programmed your calculator or computer 

to convert instantly from one relativity factor to another, you now have a quick way of 

adding speeds. 

 

Example.  A train trundles to the right at 90% of the speed of light (φ1 = 1.47222) relative 

to Σ, and a passenger strolls to the right at 15% of the speed of light (φ2 = 0.15114)  

relative to Σ'.  The speed of the passenger relative to Σ is φ = 1.62336, or 92.5% of the 

speed of light.  

 

 
Example. 
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(Sorry – there is no figure XV.21.) 
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An ocean liner Σ' sails serenely eastwards at a speed β1 = 0.9c (γ1 = 2.29416) relative to 

the ocean Σ.  A passenger ambles athwartships at a speed β2 = 0.5c relative to the ship.  

What is the velocity of the passenger relative to the ocean? 

 

The northerly component of her velocity is given by equation 15.16.5b, and is 0.21794c.  

Her easterly component is just 0.9c.  Her velocity relative to the ocean is therefore 

0.92601c in a direction 13
o
 37' north of east. 

 

 

Exercise.  Show that, if the speed of the ocean liner is β1 and the athwartships speed of 

the passenger is β2, the resultant speed β of the passenger relative to the ocean is given by 
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and that her velocity makes and angle α with the velocity of the ship given by 
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12 /ββ−β=α            15.16.13 

 

 

 

Example. 

 

A railway train Σ' of proper length L0 = 100 yards thunders past a railway station Σ at 

such a speed that the stationmaster thinks its length is only 40 yards.  (Correction:  It is 

not a matter of what he “thinks”.  What I should have said is that the length of the train, 

referred to a reference frame Σ in which the stationmaster is at rest, is 40 yards.)  A 

dachshund waddles along the corridor towards the front of the train.  (A dachshund, or 

badger hound, is a cylindrical dog whose proper length is normally several times its 

diameter.)  The proper length l0 of the dachshund is 24 inches, but to a seated passenger, 

it appears to be...  no, sorry, I mean that its length, referred to the reference frame Σ', is 15 

inches.  What is the length of the dachshund referred to the reference frame Σ in which 

the stationmaster is at rest? 

 

We are told, in effect, that the speed of the train relative to the station is given by γ1 = 2.5, 

and that the speed of the dachshund relative to the train is given by γ2 = 1.6.  So how do 

these two gammas combine to make the factor γ for the dachshund relative to the station? 

 

There are several ways in which you could do this problem.  One is to develop a general 

algebraic method of combining two gamma factors.  Thus: 

 

Exercise.  Show that two gamma factors combine according to 
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I’ll leave you to try that.  The other way is to take advantage of the programme you wrote 

when you read section 15.3, by which you can instantaneously convert one relativity 

factor to another.  Thus you instantly convert the gammas to phis.    

 

Thus 56680.15.2 11 =φ⇒=γ  

and   04697.16.1 11 =φ⇒=γ  

â         .86182.661377.2 =γ⇒=φ   

 

Is this what equation 15.16.14 gets? 

 

Therefore, referred to the railway station, the length of the dachshund is 24/γ  = 3.5 

inches. 

 
 

15.17   Aberration of Light 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The direction of Earth’s velocity on any particular date is called the Apex of the Earth’s 

Way.  In part (a) of figure XV.23  I show Earth moving towards the apex at speed v, and 

light coming from a star at speed c from an angle χ from the apex.  The x- and y- 

components of the velocity of light are respectively χ−χ− sinandcos cc .  Relative to 

Earth (part (b)), the x'- and y'-components are, by equations 15.16.2 and 15.16.3  (or 

rather their inverses) 
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You can verify that the orthogonal sum of these two components is c, as it should be 

according to our fundamental assumption that the speed of light is the same referred to all 

reference frames in uniform relative motion.  

 

The apparent direction of the star is therefore given by 

 

    .
)cos)/(1(

sin
'sin

χ+γ

χ
=χ

cv
    15.17.1 

 

It is left as an exercise to show that, for small v/c, this becomes 

    .
sin

'
c

χ
=χ−χ
v

     15.17.2 

 

with v  =  29.8 km s
−1

, v/c is about 20".5.  More details about aberration of light, 

including the derivation of equation 15.17.2, can be found in Celestial Mechanics, 

Section 11.3. 

 

 

15.18    Doppler Effect 

 

It is well known that the formula for the Doppler effect in sound is different according to 

whether it is the source or the observer that is in motion.  An answer to the question 

“Why should this be?” to the effect that “Oh, that’s just the way the algebra works out” is 

obviously unsatisfactory, so I shall try to explain why, physically, there is a difference.  

Then, when you have thoroughly understood that observer in motion is an entirely 

different situation from source in motion, and the formulas must be different, we shall 

look at the Doppler effect in light, and we’ll return to square one when we find that the 

formulas for source in motion and observer in motion are the same!   

 

This section on the Doppler effect will probably be rather longer than it need be, just 

because some aspects interested me – but if you find it too long, just skip the parts that 

aren’t of special interest to you.  These will quite likely include the parts on the ballistic 

Doppler effect. 

 

First, we’ll deal with the Doppler effect in sound.  All speeds are supposed to be very 

small compared with the speed of light, so that we need not trouble ourselves with 

Lorentz transformations.  First, let’s deal with observer in motion (figure XV. 24). 

 

When the source is at rest, it emits concentric equally-spaced spherical wavefronts at 

some frequency.  When an observer moves towards the source, he will pass these 

wavefronts at a higher frequency that the frequency at which they were emitted, and that 

is the cause of the Doppler effect with a stationary source and moving observer. 
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Now, we’ll look at the source-in-motion situation.  (Figure XV.25). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here we see that the wavefronts are not equally spaced, but are compressed ahead of the 

motion of the source, and for that reason they will pass a stationary observer at a higher 

frequency than the frequency at which they were emitted.  Thus the nature of the effect is 

a little different according to whether it is the source or the observer that is in motion, and 

thus one would not expect identical equations to describe the two situations. 

 

We shall move on shortly to discuss the effect quantitatively and develop the relevant 

equations.  I shall assume that the reader is familiar with the usual relation connecting 

* 
v 

FIGURE XV.24 

* 

FIGURE XV.25 
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wavelength, frequency and speed of a wave.  Nevertheless I shall write down the relation 

in large print, three times, just to make sure: 

 

SPEED   =   FREQUENCY   %%%%   WAVELENGTH 

 

FREQUENCY   =   SPEED  ÷   WAVELENGTH 

 

WAVELENGTH   =   SPEED  ÷  FREQUENCY 

 
I am going to start with the Doppler effect in sound, where the speed of the signal is 

constant with respect to the medium than transmits the sound – usually air.  I shall give 

the necessary formulas for source and observer each in motion.  If you want the formulas 

for one or the other stationary, you just put one of the speeds equal to zero. The speeds of 

the source S and of the observer O relative to the air will be denoted respectively by v1 

and v2 and the speed of sound in air will be denoted by c.  The situation is shown in 

figure XV.26. 

 

 

 

 

 

 

 

 

The relevant formulas are shown below: 

  

     Source   Observer 

Frequency       ν0    














−

−
ν

1

2

0
v

v

c

c
  

  

 

Speed    c − v1      c − v2  

 

 

 

Wavelength        (c − v1)/ν0   (c − v1)/ν0 

 
The way we work this table is just to follow the arrows.  Starting at the top left, we 

suppose that the source emits a signal of frequency ν0.   The speed of the signal relative 

to the source is c − v1, and so the wavelength is (c − v1)/ν0.  The wavelength is the same 

* * 
v2 v1 c 

O S 

FIGURE XV.26 
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for the observer (we are supposing that all speeds are very much less than the speed of 

light, so the Lorentz factor is effectively 1.)  The speed of sound relative to the observer 

is   c − v2, and so the frequency heard by the observer is the last (upper right) entry of the 

table. 

 

Two special cases:  

 a.  Observer in motion and approaching a stationary source at speed v.    v1 = 0 and v2 = 

−v.  In that case the frequency heard by the observer is 

 

    .)/1(0 cv+ν=ν      15.18.1 

 

b.  Source in motion and approaching a stationary observer at speed v.     v1 = v  and v2 = 

0.  In that case the frequency heard by the observer is 

 

   ( ).)/()/(1)/1/( 2

00 K+++ν≈−ν=ν ccc vvv   15.18.2 

 

Thus the formulas for source in motion and observer in motion differ in the second order 

of )/( cv . 

 

We might now consider reflection.  Thus, suppose you approach a brick wall at speed v 

while whistling a note of frequency ν0.  What will be the frequency of the echo that you 

hear?  Let’s make the question a little more general.  A source S, emitting a whistle of 

frequency ν0, approaches a brick wall M at speed v1.  A separate observer O approaches 

the wall (from the same side) at speed v2.  And, for good measure, let’s have the brick 

wall moving at speed v3.  (The reader may notice at this point that theoretical physics is 

rather easier than experimental physics.) The situation is shown in figure XV.27. 

 

 

 

 

 

 

 

 

 

We construct a table similar to the previous one.  
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         Source        Mirror  Mirror  Observer 

                      before reflection    after reflection 

 

Frequency        ν0      





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−
ν
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3
0

v

v

c
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−
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3
0

v
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c

c
 








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−+
ν

))((

))((
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0

vv

vv
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Speed      c − v1        c − v3  c + v3   c + v2 

 

 

Wavelength    
0

1

ν

−vc
       

0

1

ν

−vc
     

)(

))((

30

31

v

vv

−ν

+−

c

cc
     

)(

))((

30

31

v

vv

−ν

+−

c

cc
 

 
At all times, the speed relative to the air is c. 

 

The answer to our initial question, in which the source and the observer were one and the same, 

and the mirror (wall) was stationary is found by putting v1  =  v2  =  v   and v3  =  0 in the last (top 

right) formula in the table.  This results in 

 

  ( ).)/(2)/(2)/(21 32

00 K++++ν≈








−

+
ν=ν cvcvcv

c

c

v

v
   15.18.3 

 

So much for the Doppler effect in sound.  Before moving on to light, I want to look at what I shall 

call the Doppler effect in ballistics, or “cops and robbers”.  An impatient reader may safely skip 

this discussion of ballistic Doppler effect.   A police (“cop”) car is chasing a stolen car driven by 

robbers.  The cop car is the “source” and the robber’s car (or, rather the car that they have stolen, 

for it is not theirs) are the “observers”.  The cop car (“source”) is travelling at speed v1 and the 

robbers (“observer”) is travelling at speed v2.  The cops are firing bullets (the “signal”) towards the 

robbers.  (No one gets hurt in this thought experiment, which is all make-believe.)  The bullets 

leave the muzzle of the revolver at speed c (that is the speed of the bullets, and is nothing to do 

with light) relative to the revolver, and hence they travel (relative to the lamp-posts at the side of 

the road) at speed c + v1 and relative to the robbers at speed c + v1 − v2.  The cops fire bullets at 

frequency ν0, and our task is to find the frequency with which the bullets are “received” by the 

robbers.  The distance between the bullets is the “wavelength”.   

 

This may not be a very important exercise, but it is not entirely pointless, for fairness dictates that, 

when we are considering (even if only to discard) possible plausible mechanisms for the 

propagation of light, we might consider, at least briefly, the so-called “ballistic” theory of light 

propagation, in which the speed of light through space is equal to the speed at which it leaves the 

source plus the speed of the source.  Some readers may be aware of the Michelson-Morley 

experiment. That experiment demonstrated that light was not propagated at a speed that was 

constant with respect to some all-pervading “luminiferous aether” – but it must be noted that it did 
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nothing to prove or disprove the “ballistic” theory of light propagation, since it did not measure the 

speed of light from moving sources.  In the intervening years, some attempts have indeed been 

made to measure the speed of light from moving sources, though their interpretation has not been 

free from ambiguity.   

 

 

I now construct a table showing the “frequency”, “speed” and “wavelength” for ballistic 

propagation in exactly the same way as I did for sound. 

 

 

     Source   Observer 

 

Frequency       ν0      












 −+
ν

c

c
21

0

vv
  

  

 

Speed        c         c  +  v1  − v2  

 

 

 

Wavelength    c/ν0        c/ν0 
 

 

In order not to spend longer on “ballistic” propagation than is warranted by its 

importance, I’ll just let the reader spend as much or as little time pondering over this 

table as he or she wishes.  Just one small point might be noted, namely that the formulas 

for “observer in motion” and “source in motion” are the same.  

 

For completeness rather than for any important application, I shall also construct here the 

table for “reflection”.  A source of bullets is approaching a mirror at speed v1.  An 

observer is also approaching the mirror, from the same side, at speed v2.  And the mirror 

is moving at speed v3, and reflection is elastic (the coefficient of restitution is 1.)  You 

are free to put as many of these speeds equal to zero as you wish. 

 

The entries for “speed” give the speed relative to the source or mirror or observer.  The speed 

relative to stationary lampposts at the side of the road is c + v1 before reflection and c + v1 − 2v3 

after reflection. 
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        Source     Mirror   Mirror      Observer  

                             before reflection       after reflection 

 

Frequency       ν0            
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Speed        c       c + v1 − v3            c + v1 − v3     c + v1 + v2 − 2v3 
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0ν

c
                 

0ν

c
             

0ν

c
     

0ν

c
 

 
 

 

We now move on to the only aspect of the Doppler effect that is really relevant to this chapter, 

namely the Doppler effect in light.  In the previous two situations I have been able to assume that 

all speeds were negligible compared with the speed of light, and we have not had to concern 

ourselves with relativistic effects.  Here, however, the signal is light and is propagated at the speed 

of light, and this speed is the same whether referred to the reference frame in which the source is 

stationary or the observer is stationary.  Further, the Doppler effect is noticeable only if source or 

observer are moving at speeds comparable to that of light.   We shall see that the difference 

between the frequency of a signal relative to an observer and the frequency relative to the source is 

the result of two effects, which, while they may be treated separately, are both operative and in that 

sense inseparable.  These two effects are the Doppler effect proper, which is a result of the 

changing distance between source and observer, and the relativistic dilation of time. 

 

I am going to use the symbol T to denote the time interval between passage of consecutive crests 

of an electromagnetic wave.  I’ll call this the period.  This is merely the reciprocal of the frequency 

ν.  I am going to start by considering a situation in which a source and an observer a receding from 

each other at a speed v.  I have drawn this in figure XV.27, which is referred to a frame in which 

the observer is at rest. The speed of light is c. 

 

 

 

 

 

 

 

Let us suppose that S emits an electromagnetic wave of period T0 = 1/ν0 referred to the frame in 

which S is at rest.  We are going to have to think about four distinct periods or frequencies: 

 

c v 

O S 
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   1.  The time interval between the emission of consecutive crests by S referred to the reference 

frame in which S is at rest.  This is the period T0 and the frequency ν0 that we have just mentioned. 

 

    2.  The time interval between the emission of consecutive crests by S referred to the reference 

frame in which O is at rest.  By the relativistic formula for the dilation of time this is 

 

    .
/1 22

0
0

c

T
orT

v−
γ       15.18.4 

 

     3.  The time interval between the reception of consecutive crests by O as a result of the 

increasing distance between O and S (the “true” Doppler effect, as distinct from time dilation) 

referred to the reference frame in which S is at rest.  This is 

 

     .)/1(0 cT v+       15.18.5 

 

4     The time interval between the reception of consecutive crests by O as a result of the increasing 

distance between O and S (the “true” Doppler effect, as distinct from time dilation) referred to the 

reference frame in which O is at rest.  This is 

 

     

     γ  times  .)/1(0 cT v+      15.18.6 

 

This, of course, is what O “observes”, and, when you do the trivial algebra, you find that this is 

 

      ,
/1

/1
0

c

c
TT

v

v

−

+
=      15.18.7

    

     

or, in terms of frequency,            .
/1

/1
0

c

c

v

v

+

−
ν=ν         15.18.8 

 

If source and observer approach each other at speed v, the result is   

 

     .
/1

/1
0

c

c

v

v

−

+
ν=ν      15.18.9 

 

The factor 
c

c

/1

/1

v

v

−

+
is often denoted by the symbol k, and indeed that was the symbol I used in 

section 15.3 (see equation 15.3.3). 

 

Exercise.  Expand equation 15.18.9 by the binomial theorem as far as 2)/( cv  and compare the 

result with equations 15.8.1 and 15.8.2. 
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 I make it   ( ).2

2

1
0 )/()/(1 Kcc vv ++ν=ν     15.18.10 

 

 

 

Question. 

 

 

 

 

An observer O sends an electromagnetic signal of frequency ν0 at speed c to a mirror that is 

receding at speed v.  When the reflected signal arrives back at the observer, what is its frequency 

(to first order in v/c)?  Is it ( )c/1o v−ν  or is it ( )c/21o v−ν ?  I can think offhand of two 

applications of this.  If you examine the solar Fraunhofer spectrum reflected of the equatorial limb 

of a rotating planet, and you observe the fractional change ∆ν/ν0 in the frequency of a spectrum 

line, will this tell you v/c or 2v/c, where v is the equatorial speed of the planet’s surface?  And if a 

policeman directs a radar beam at your car, does the frequency of the returning beam tell him the 

speed of your car, or twice its speed?  You could try arguing this case in court – or, better, stick to 

the speed limit so there is no need to do so.  The answer, by the way, is ( )c/21o v−ν . 

 

Redshift.   When a galaxy is moving away from us, a spectrum line of laboratory wavelength λ0 

will appear to have a frequency for the observer of  λ  =  kλ0.  The fractional increase in 

wavelength 
0

0

λ

λ−λ
is generally given the symbol z, which is evidently equal to k − 1.  (Only to 

first order in β is it approximately equal to β.  It is important to note that the definition of z is 

0

0

λ

λ−λ
, and not v/c. 

 

A note on terminology:   If a source is receding from the observer the light is observed to be 

shifted towards longer wavelengths, and if it is approaching the observer the light is shifted 

towards shorter wavelengths.  Traditionally a shift to longer wavelengths is called a “redshift”, and 

a shift towards shorter wavelengths is called a “blueshift”.  Note, however, that if an infrared 

source is approaching an observer, its light is shifted towards the red, and if an ultraviolet source is 

receding from an observer, its light is shifted towards the blue!  Nevertheless I shall continue in 

this chapter to refer to shifts to longer and shorter wavelengths as redshifts and blueshifts 

respectively. 

 

Example.  
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A red galaxy R of wavelength 680.0 nm and a green galaxy G of wavelength 520.0 nm are on 

opposite sides of an observer X, both receding from him/her.  To the observer, the wavelength of 

the red galaxy appears to be 820.0 nm, and the wavelength of the green galaxy appears to be 640.0 

nm.  What is the wavelength of the green galaxy as seen from the red galaxy? 

 

Solution.  We are told that k for the red galaxy is 82/68 = 1.20588, or z  =  0.20588, and that  k for 

the green galaxy k is 64/52 = 1.23077, or z  =  0.23077.  Because of the preparation we did in 

section 15.3, we can instantly convert these to φ.  Thus for the red galaxy φ = 0.187212 and for the 

green galaxy φ = 0.207639.  The sum of these is 0.394851.  We can instantly convert this to 

.48416.0or48416.1 == zk    Thus, as seen from R, the wavelength of G is 771.8 nm. 

 

Alternatively.  Show that the factor k combines as 

 

     2121 kkkk =⊕       15.18.11 

 

and verify that .48416.1
52
64

68
82 =×    Show also that the redshift factor z combines as 

 

    .212121 zzzzzz ++=⊕      15.18.12 

 

 

 

15.19   The Transverse and Oblique Doppler Effects 

 

I pointed out in section 15.18 that the observed Doppler effect, when the transmitted signal is 

electromagnetic radiation and observer or source or both are travelling at speed comparable to that 

of light, is a combination of two effects – the “true” Doppler effect, caused by the changing 

distance between source and observer, and the effect of time dilation.  This raises the following 

question: 

 

If a source of light is moving at right angles to (transverse to) the line joining observer to source, 

will the observer see a change in frequency or wavelength, even though the distance between 

observer and source at that instant is not changing?  The answer is yes, certainly, and the effect is 

sometimes called the “transverse Doppler effect”, although it is the effect of relativistic time 

dilation rather than of a true Doppler effect. 

 

Thus let us suppose that a source is moving transverse to the line of sight at a speed described by 

its parameter β or γ, and that the period of the radiation referred to the reference frame in which the 

source is at rest is T0 and the frequency is ν0.  The time interval between emission of consecutive 

wavecrests when referred to the frame in which the observer is at rest is longer by the gamma-

factor, and the frequency is correspondingly less.  That is, the frequency, referred to the observer’s 

reference frame, is 

 

    .1/ 2

00 β−ν=γν=ν      15.19.1 
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The light from the source is therefore seen by the observer to be redshifted, even though there is no 

radial velocity component. 

 

This raises a further question.  Suppose a source is moving almost but not quite at right angles to 

the line of sight, so that it has a large transverse velocity component, and a small velocity 

component towards the observer.  In that case, its “redshift” resulting from the time dilation might 

be appreciable, while its “blueshift” resulting from “true” Doppler effect (the decreasing distance 

between source and observer) is still very small.  Therefore, even though the distance between 

source and observer is slightly decreasing, there is a net redshift of the spectrum.  This is in fact 

correct, and is the “oblique Doppler effect”. 

 

In figure XV.30,  a source S is moving at speed β times the speed of light in a direction that makes 

an angle θ with the line of sight.  It is emitting a signal of frequency ν0 in S.  (I am here using the 

frame “in S” as earlier in the chapter to mean “referred to a reference frame in which S is at rest.)  

The signal arrives at the observer O at a slightly greater frequency as a result of the decreasing 

distance of S from O, and at a slightly lesser frequency as a result of the time dilation, the two 

effects opposing each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The frequency of the received signal at O, in O, is 
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For a given angle θ the redshift is zero for a speed of 
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or, for a given speed, the direction of motion resulting in a zero redshift is given by 

 

       .0cos2cos2 =β+θ−θβ      15.19.4 

 

This relation is shown in figure XV.30. (Although equation 15.19.4 is quadratic in cos θ, there is 

only one real solution θ for β between 0 and 1.  Prove this assertion.) It might be noted that if the 

speed of the source is 99.99% of the speed of light the observer will see a redshift unless the 

direction of motion of S is no further than 9
o
 36' from the line from S to O.  That is worth 

repeating:  S is moving very close to the speed of light in a direction that is close to being directly 

towards the observer; the observer will see a redshift. 

 

Equation 15.19.2, which gives ν as a function of θ for a given β, will readily be recognized at the 

equation of an ellipse of eccentricity β, semi minor axis ν0 and semi major axis γν0.  This relation 

is shown in figure XV.31 for several β.  The curves are red where there is a redshift and blue 

where there is a blueshift. There is no redshift or blueshift for β = 0, and the ellipse for that case is 

a circle and is drawn in black.   
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An alternative and perhaps more useful way of looking at equation 15.19.2 is to regard it as an 

equation that gives β as a function of θ for a given Doppler ratio 0/ νν .  For example, if the 

Doppler ratio of a galaxy is observed to be 0.75, the velocity vector of the galaxy could be any 
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arrow starting at the black dot and ending on the curve marked 0.75.  The curves are ellipses with 

semi major axis equal to 2

0 )/(1/1 νν−  and semi minor axis ( ).)/(1/1 2

0νν−  
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15.20    Acceleration 
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Figure XV.33 shows two references frames, Σ and Σ', the latter moving at speed v with respect to 

the former.  A particle is moving with acceleration a' in Σ'.   (“ in Σ' ” = “referred to the reference 

frame Σ' ”.)  The velocity is not necessarily, of course, in the same direction as the acceleration, 

and we’ll suppose that its velocity in Σ' is u'.  The acceleration and velocity components in Σ' are 

.',',',' '''' yxyx uuaa  

 

What is the acceleration of the particle in Σ?  We shall start with the x- component.   
 

The x-component of its acceleration in Σ is given by 
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Equations 15.16.2 and 15.5.19 give us 
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On substitution of these into equation 15.20.1 and a very little algebra, we obtain  
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   The y-component of its acceleration in Σ is given by 
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y =        15.20.5 

 

We have already worked out the denominator dt (equation 15.20.3).   We know that 
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from which 
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           15.20.6 

Divide equation 15.20.6 by equation 15.20.3 to obtain 
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21.    Mass 

 

It is well known that “in relativity” the mass of an object increases as its speed increases.  

This may be well known, but I am not certain that it is a very precise statement of the true 

situation.  Or at least it is no more precise than to say that the length of a rod decreases as 

its speed increases.  The length of a rod when referred to a frame in which it is at rest is 

called its proper length l0, and the mass of a body when referred to a frame in which it is 

at rest is called its rest mass m0, and both of these things are invariant.  The length of a 

rod when referred to a reference frame that is moving with respect to it (i.e., in 

Minkowski language, its component along an inclined axis) and the mass of a body 

referred to a frame that is moving with respect to it may indeed be different from the 

proper length of the rod or the rest mass of the body. 

 

In order to derive the FitzGerald-Lorentz contraction, we had to think about what we 

mean by “length” and how to measure it.  Likewise, in order to derive the “relativistic 

increase of mass” (which may be a misnomer) we have to think about what we mean by 

mass and how to measure it. 

 

The fundamental unit of mass used at present in science is the International Prototype 

Kilogram, a platinum-iridium alloy, held in Sèvres, Paris, France.  In order to determine 

the mass, or inertia, of another body, we need to carry out an experiment to compare its 

reluctance to accelerate when a force is applied to it with the reluctance of the standard 

kilogram when the same force is applied.  We might, for example, attach the body to a 

spring, stretch the spring, let go, and see how fast the body accelerates.  Then we carry 

out the same experiment with the International Prototype Kilogram.  Or we might apply 

an impulse ( Idt∫  - see Chapter 8) to the body and to the Kilogram, and measure the 

speed immediately after applying the impulse.  This might be done, for example, but 

striking the body and the Kilogram with a golf club, or, for a more controlled experiment, 

one could press each body up against a compressed spring, release the spring, and 

measure the resulting speed imparted to the body and to the Kilogram.  (It is probable 

that the International Prototype Kilogram is kept under some sort of guard, and its 
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curators may not altogether appreciate such experiments, so perhaps these experiments 

had better remain Thought Experiments.)  Yet another method would be to cause the 

body and the Kilogram to collide with each other, and to assume that the collision is 

elastic (no internal degrees of freedom) and that momentum (defined as the product of 

mass and velocity) are conserved. 

 

All of these experiments measure the reluctance to accelerate under a force; in other 

words the inertia or the inertial mass or just the  mass of the body. 

 

Another possible experiment to determine the mass of the body would be to place it and 

the Kilogram at a measured distance from another mass (such as the Earth) and measure 

the gravitational force (weight) of each.  One has an uneasy feeling that this sort of 

measurement is somehow a little different from the others, in that it isn’t a measure of 

inertia.  Some indeed would differentiate between the inertial mass and the gravitational 

mass of a body, although the two are in fact observed to be strictly proportional to one 

another.  Some would not find the proportionality between inertial and gravitational mass 

particularly remarkable; to others, the proportionality is a surprising fact of the 

profoundest significance. 

 

In this chapter we do not deal with general relativity or with gravity, so we shall think of 

mass in terms of its inertia.  I am going to measure the ratio of two masses (one of which 

might be the International Prototype Kilogram) by allowing them to collide, and their 

masses are to be defined by assuming that the momentum of the system is conserved in 

all uniformly moving reference frames. 

 

Figure XV.34 shows two references frames, Σ and Σ', the latter moving to the right at 

speed v relative to the former.  Two bodies, of identical masses in Σ' (i.e. referred to the 

frame Σ'), are moving at speed u' in Σ', one of them to the right, the other to the left.  

Their mutual centre of mass is stationary in Σ'. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now let us refer the situation to the frame Σ (see figure XV.35). 

 

FIGURE XV.34 

y' 

x' 

Σ' 

v 

* * 
u' u' 

Σ 
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The total momentum of the system in Σ is m1u1  +  m2u2.  But the centre of mass (which is 

stationary in Σ') is moving to the right in Σ with speed v. Therefore the momentum is also 

v)( 21 mm + .   If they stick together upon collision, we are left with a single particle of 

mass 21 mm + moving at speed v, and, because there are no external forces, the 

momentum is conserved.  In any case, whether the collision is elastic or not, we have 

 

   m1u1  +  m2u2   =   v)( 21 mm + .    15.21.1 
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Our aim is to try to find a relation between the masses and speeds referred to Σ.  

Therefore we must eliminate v and u' from equations 15.21.1, 15.21.2a and 15.21.2b.  

This can be a bit fiddly, but the algebra is straightforward, and I leave it to the reader to 

show that the result is 
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This tells us that the mass m of a body referred to Σ is proportional to 

,/1/1 22
cu− where u is its speed referred to Σ.    If we call the proportionality constant 

m0, then 

 

Σ 

* * x 

y 

m1 m2 

u2 u1 

FIGURE XV.35 
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    .
/1 22

0

cu

m
m

−
=                                     15.21.4 

 

If u = 0, then m = m0, and  m0 is called the rest mass, and it is the mass when referred to a 

frame in which the body is at rest.  The mass m is generally called the relativistic mass, 

and it is the mass when referred to a frame in which the speed of the body is u.       

 

Equation 15.21.4 gives the mass referred to Σ assuming that the mass is at rest in Σ'.  But 

what if the mass is not at rest in Σ'? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure XV.36 we see a mass m' moving with velocity u' in Σ'.  Referred to Σ its mass 

will be m, where 
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=      15.21.5 

 

Its velocity u will be in a different direction (referred to Σ) from the direction of u' in Σ', 

and the speed will be given by 

 

    ,222

yx uuu +=      15.21.6 

 

where ux and uy are given by equations 15.16.2 and 15.16.3.  Substitute equations 

15.21.6, 15.16.2 and15.16.3 into equation 15.21.5.  The objective is to replace u entirely 

by primed quantities.  The algebra is slightly boring, but it is worth persisting.  You will 

find that 2

''yu  appears when you use equation 15.16.3.  Replace that by 2

'

2 '' xuu − .  Also 

write )/1/(1 22 cv− for γ2
.  After a little while you should arrive at 
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y y' 

x' 

Σ 

FIGURE XV.36 

Σ' 

* 

v 

u' 

m' 



 57 

    .
'

1
' 2

' 







+γ=

c

u

m

m xv
     15.21.7 

 

The transformation for mass between the two frames depends only on the x' component 

of its velocity in Σ'.  It would have made no difference, other than to increase the tedium 

of the algebra, if I had added 2

zu+   to the right hand side of equation 15.21.6. 

 

The inverse of equation 15.21.7 is found in the usual way by interchanging the primed 

and unprimed quantities and changing the sign of  v : 
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Example.  Let’s return to the problem of the dachshund that we met in section 15.16.  A 

railway train Σ' is trundling along at a speed v/c = 0.9  (γ  =   2.294).  The dachshund is 

waddling towards the front of the train at a speed .8.0/' ' =cu x   In the reference frame of 

the train Σ' the mass of the dog is m'  =  8 kg.  In the reference frame of the railway 

station, the mass of the dog is given by equation 15.21.7  and is 31.6 kg.  (Its length is 

also much compressed, so it is very dense when referred to Σ and is disc-shaped.)  I leave 

it to the reader to show that the rest mass of the dog is 4.8 kg. 

   

 

15.22   Momentum 

 

The linear momentum p of a body, referred to a frame Σ, is defined as 

 

            .up m=       15.22.1 

 

Here m and u are its mass and velocity referred to Σ.  Note that m is not the rest mass. 

 

Example.  The rest mass of a proton is 1.67 %  10
−27 

kg.  What is its momentum referred 

to a frame in which it is moving at 99% of the speed of light?  Answer = 3.51 %  10
−18

 kg 

m s
−1

. 

 

 

 

15.23    Some Mathematical Results 

 

Before proceeding with the next section, I just want to establish few mathematical results, 

so that we don’t get bogged down in heavy algebra later on when we should be 

concentrating on understanding physics. 

 

First, if    ,)/1( 2/122 −−=γ cu     15.23.1 
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Then, by trivial differentiation,  
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From this, we quickly find that 
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Now for a small result concerning a scalar (dot) product. 

 

Let A be a vector such that  A * A  =  A
2
 .    

Then    AAAA && •• == 2)(2)( 2

dt

d
andAAA

dt

d
 

 

â    .AA && =• AA       15.23.5 

 

We can now safely proceed to the next section. 

 

  

 

15.24   Kinetic Energy 

 

If a force F acts on a particle moving with velocity u, the rate of doing work – i.e. the rate 

of increase of kinetic energy T is uF •=T& .  But ,pF &= where .0 uup mm γ==  

(A point about notation may be in order here.  I have been using the symbol v and v for 

the velocity and speed of a frame Σ' relative to a frame Σ, and my choice of axes without 

significant loss of generality has been such that v has been directed parallel to the x-axis.  

I have been using the symbol u for the velocity (speed = u) of a particle relative to the 

frame Σ.  Usually the symbol γ has meant ,)/1( 2/122 −− cv  but here I am using it to mean 

.)/1( 2/122 −− cu   I hope that this does not cause too much confusion and that the context 

will make it clear.  I toyed with the idea of using a different symbol, but I thought that 

this might make matters worse. Just be on your guard, anyway.)  

 

We have, then 

    )(0 uuF && γ+γ= m      15.24.1 

 

and therefore   .)( 2

0 uu •γ+γ= &&& umT     15.24.2 
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Making use of equations 15.23.4 and 15.23.5 we obtain 

 

    .2
0 cmT γ= &&        15.24.3 

 

Integrate with respect to time, with the condition that when γ = 1, T = 0, and we obtain 

the following expression for the kinetic energy: 

 

    .)1( 2

0cmT −γ=      15.24.4 

 

Exercise.   Expand γ by the binomial theorem as far as u
2
/c

2
, and show that, to this order, 

.2

2
1

0
umT =     

 

I here introduce the dimensionless symbol  

 

    1
2

0

−γ==
cm

T
K      15.24.5 

 

to mean the kinetic energy in units of m0c
2
.  The second half of this was already given as 

equation 15.3.5. 

 

 

15.25   Addition of Kinetic Energies 

    

I want now to consider two particles moving at nonrelativistic speeds – by which I mean 

that the kinetic energy is given to a sufficient approximation by the expression 2

2
1 mu  and 

so that parallel velocities add linearly. 

 

Consider the particles in figure XV.37, in which the velocities are shown relative to 

laboratory space. 

 

 

 

 

 

 

Referred to laboratory space, the kinetic energy is  .2

222
12

112
1 umum +   However, the 

centre of mass is moving to the right with speed ),/()( 212211 mmumumV ++=  and, 

referred to centre of mass space, the kinetic energy is .)()( 2

22
12

112
1 VumVum ++−   

On the other hand, if we refer the situation to a frame in which m1 is at rest, the kinetic 

energy is ,)( 2

2122
1 uum +  and, if we refer the situation to a frame in which m2 is at rest, 

the kinetic energy is .)( 2

2112
1 uum +  

 

m1 m2 

u1 u2 

FIGURE XV.37 
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All we are saying is that the kinetic energy depends on the frame to which speed are 

referred – and this is not something that crops up only for relativistic speeds.   

 

Let us put some numbers in.  Let us suppose, for example that 

 

   m1  =  3 kg  u1  =  4 m s
−1 

 

   
m2  =  2 kg  u3  =  4 m s

−1 

 

so that        V  =   1.2 m s
−1

.   

 

In that case, the kinetic energy 

 

referred to laboratory space is   33 J,  

referred to centre of mass space is   29.4 J, 

referred to m1 is    49 J, 

referred to m2 is     73.5 J. 

 

In this case the kinetic energy is least when referred to centre of mass space, and is greatest when 

referred to the lesser mass. 

 

Exercise.  Is this always so, whatever the values of m1, m2 , u1 and u2? 

 

It may be worthwhile to look at the special case in which the two masses are equal  (m) and the 

two speeds(whether in laboratory or centre of mass space) are equal (u).   

 

In that case the kinetic energy in laboratory or centre of mass space is mu
2
, while referred to either 

of the masses it is 2mu
2
. 

 

We shall now look at the same problem for particles travelling at relativistic speeds, and we shall 

see that the kinetic energy referred to a frame in which one of the particles is at rest is very much 

greater than (not merely twice) the energy referred to a centre of mass frame. 

 

If two particles are moving towards each other with “speeds” given by γ1 and γ2 in centre of mass 

space, the γ of one relative to the other is given by equation 15.16.14, and, since K = γ − 1, it 

follows that if the two particles have kinetic energies K1 and K2 in centre of mass space (in units of 

the m0c
2
 of each), then the kinetic energy of one relative to the other is 

 

  .)2)(2( 2121212121 +++++=⊕= KKKKKKKKKKK    15.25.1 

  

If two identical particles, each of kinetic energy K1 times m0c
2
, approach each other, the kinetic 

energy of one relative to the other is 

 

    .)2(2 11 += KKK       15.25.2 
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For nonrelativistic speeds as K1 → 0, this tends to K = 4K1, as expected. 

 

Let us suppose that two protons are approaching each other at 99% of the speed of light in centre 

of mass space (K1 = 6.08881).  Referred to a frame in which one proton is at rest, the kinetic 

energy of the other will be K = 98.5025, the relative speeds being 0.99995 times the speed of light. 

Thus 116KK =  rather than merely 4K1 as in the nonrelativistic calculation.  For more energetic 

particles, the ratio K/K1 is even more. These calculations are greatly facilitated if you wrote, as 

suggested in section 15.3, a program that instantly connects all the relativity factors given there.   

 

Exercise.  Two protons approach each other, each having a kinetic energy of 500 GeV in 

laboratory or centre of mass space.  (Since the two rest masses are equal, these two spaces are 

identical.)  What is the kinetic energy of one proton in a frame in which the other is at rest?   

(Answer:  I make it 535 TeV.) 

 

The factor K (the kinetic energy in units of m0c
2
) is the last of several factors used in this chapter to 

describe the speed at which a particle is moving, and I take the opportunity here of summarising 

the formulas that have been derived in the chapter for combining these several measures of speed.  

These are 
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2

2

12121 −γ−γ+γγ=γ⊕γ               15.16.14 

 

     2121 kkkk =⊕       15.18.11 

 

    .212121 zzzzzz ++=⊕      15.18.12 

 

  .)2)(2( 2121212121 +++++=⊕= KKKKKKKKKKK    15.25.1 

 

        φ2/φ2  =  φ1  +  φ2.                15.16.11 

 

If the two speeds to be combined are equal, these become 
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2
2

1

1
11

β+

β
=β⊕β      15.25.3 

     12 2

111 −γ=γ⊕γ      15.25.4 

 

                 k1/k1  =  k1
2
      15.25.5 

 

             )2( 1111 +=⊕ zzzz      15.25.6 

 

                    .)2(2 1111 +=⊕ KKKK      15.25.7 
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     .211 φ=φ⊕φ       15.25.8 

 

These formulas are useful, but for numerical examples, if you already have a program for 

interconverting between all of these factors, the easiest and quickest way of combinng two 

“speeds” is to convert them to φ.  We have seen examples of how this works in sections 15.16 and 

15.18.  We can do the same thing with our example from the present section when combining two 

kinetic energies.  Thus we were combining two kinetic energies in laboratory space, each of 

magnitude K1  =  6.08881  (φ1  =   2.64665).  From this, φ  =  5.29330, which corresponds to K  =  

98.5025. 

      

 

   

15.26   Energy and mass 

 

The nonrelativistic expression for kinetic energy 2

2
1 muT = has just one term in it, a term which 

depends on the speed.  The relativistic expression which approximates to the nonrelativistic 

expression at low speeds) can be written ;2

0

2
cmmcT −=  that is, a speed-dependent term minus 

a constant term.  The kinetic energy can be thought of as the excess over the energy over the 

constant term m0c
2
.   The expression m0c

2
 is known as the rest-mass energy.  The sum of the 

kinetic energy and the rest-mass energy is the “total energy”, or just the “energy” E: 

 

    .22

0 mccmTE =+=      15.26.1 

 

This means that, if the kinetic energy of a particle is zero, the total energy of the particle is not zero 

– it still has its rest-mass energy m0c
2
. 

 

Of course, giving the name “rest-mass energy” to the constant term m0c
2
, and calling the speed-

dependent term mc
2
 the “total energy” and writing the famous equation E = mc

2
, does not by itself 

immediately and directly tell us that “matter” can be converted to “energy” or the other way round.  

Whether such conversion can in fact take place is a matter for experiment and observation to 

determine.  The equation by itself merely tells us how much mass is held by a given quantity of 

energy, or how much energy is held by a given quantity of mass.  That entities that we traditionally 

think of as “matter” can be converted into entities that we traditionally think of as “energy” is well 

established with, for example, the “annihilation” of an electron and a positron (“matter” and 

“antimatter”) to form photons (“energy”) as is the inverse process of pair production (production 

of an electron-positron pair from a gamma ray in the presence of a third body).  

 

It is unfortunate that the main (almost the only) example of application of the equation E = mc
2
 

persistently presented to the nonscientific public is the atom bomb, whose operation actually has 

nothing at all to do with the equation E = mc
2
, nor, contrary to the popular mind, is any “matter” 

converted to energy.   

 

I have heard it said that you can find out on the Web how to build an atom bomb, so here goes – 

here is how an atom bomb works.   A uranium-235 nucleus is held together by strong attractive 
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forces between the nucleons, which, at short femtometre ranges are much stronger than the 

Coulomb repulsive forces between the protons.  When the nucleus absorbs an additional neutron, 

the resulting 
236

U nucleus is unstable and breaks up into two intermediate-mass nuclei plus two or 

three neutrons.  The two intermediate-mass nuclei are generally not of exactly equal mass; one is 

usually a bit less than half of the uranium nucleus and the other a bit more than half, but that’s a 

detail.  The potential energy required to bind the nucleons together in the uranium nucleus is rather 

greater than the binding energy of the two resulting intermediate-mass nuclei; the difference is of 

order 200 MeV, and that potential energy is converted into kinetic energy of the two resulting 

nuclei and, to a lesser extent, the two or three neutrons released.  That is all.  It is merely the 

familiar conversion of potential binding energy (admittedly a great deal of energy) into kinetic 

energy.  No matter, no protons, no neutrons, are “destroyed” or “converted into energy”, and E = 

mc
2
 simply doesn’t enter into it anywhere!  The rest-mass energy of a proton or a neutron is about 

1 GeV, and that much energy would be released if a proton were miraculously and for no cause 

converted into energy.  Let us hope that no one invents a bomb that will do that – though we may 

rest assured that that is rather unlikely. 

 

Where the equation E = mc
2
 does come in is in the familiar observation that the mass of any 

nucleus other than hydrogen is a little less than the sum of the masses of the constituent nucleons.  

It is for that reason that nuclear masses, even for pure isotopes, are not integral.  The mass of a 

nucleus is equal to the sum of the masses of the constituent nuclei plus the mass of the binding 

energy, the latter being a negative quantity since the inter-nucleon forces are attractive forces.  The 

equation E = mc
2
 tells us that energy (such as, for example, the binding energy between nucleons) 

has mass. 

 

 

15.27    Energy and Momentum 

 

A moving particle has energy arising from its momentum and also from its rest mass, and we need 

to find an expression relating energy to rest mass and momentum.  It is fairly easy and it goes like 

this: 
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Thus we obtain for the energy in terms of rest mass and momentum 

 

         .)()( 222

0

2
pccmE +=       15.27.1 

 

If the speed (and hence momentum) is zero, the energy is merely m0c
2
.  If the rest mass is zero (as, 

for example, a photon) and the energy is not zero, then E  =  pc  =  muc.  But also E = mc
2
, so that, 

if the rest mass of a particle is zero and the energy is not, the particle must be moving at the speed 

of light.  This could be regarded as the reason why photons, which have zero rest mass, travel at 

the speed of photons.  If neutrinos have zero rest mass, they, too, will travel at the speed of light; if 

they are not massless, they won’t. 
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In addition to equation 15.27.1, which relates the energy to the magnitude of the momentum, it 

will be of interest to see how the components of momentum transform between reference frames.  

As usual, we are considering frame Σ' to be moving with respect to Σ at a speed v with respect to 

Σ.  There is no difficulty with the y- and z- components.  We have merely p'y'  =  py and p'z'  =  pz .  

However: 
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After a little algebra, we obtain 
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And this is 
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The inverse is found in the usual way: 

 

   )./''( 2

' cEpp xx v+γ=       15.27.3 

 

 

 

 

 

If we eliminate ''xp from equations 15.27.2 and 15.27.3, we’ll find E' in terms of E and px: 

 

   .)(' xpEE v−γ=        15.27.4 

 

Thus the transformations between energy and the three spatial components of momentum is similar 

to the transformation between time and the three space coordinates, and are described by a similar 

4-vector: 
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The reader should multiply this out to verify that it does reproduce equations 15.27.3 and  

15.27.4. 

 

 

15.28   Units 

 

It is customary in the field of particle physics to express energy (whether total, kinetic or 

rest-mass energy) in electron volts (eV) or in keV, MeV, GeV or TeV (10
3
, 10

6
, 10

9
, or 

10
12

 eV respectively). A electron volt is the kinetic energy gained by an electron if it is 

accelerated through an electrical potential of 1 volt; alternatively it is the work required to 

move an electron through one volt.  Either way, since the charge on an electron is 1.602 % 

10
−19

) C, 1eV = 1.602 % 10
−19

 J. 

 

The use of such a unit may understandably dismay those who would insist always on 

expressing any physical quantity in SI units, and I am much in sympathy with this view.  

Yet, to those who deal daily with particles whose charge is equal to or is a small multiple 

or rational fraction of the electronic charge, the eV has its attractions.  Thus if you 

accelerate a particle through so many volts, you don’t have to remember the exact value 

of the electronic charge or carry out a long multiplication every time you do so.  One 

might also think of a hypothetical question such as:  An electron is accelerated through 

3426.7189628471 volts.  What is its gain in kinetic energy?  You cannot answer this in 

joules unless you know the value of the electronic charge to a comparable precision; but 

of course you do know the answer in eV. 

 

One situation that does require care is this.  An α-particle is accelerated through 1000 V.  

What is the gain in kinetic energy?  Because the charge on an α-particle is twice that of 

an electron, the answer is 2000 eV. 

 

Very often you know the energy of a particle (because you have accelerated it through so 

many volts) and you want to know its momentum; or you know its momentum (because 

you have measured the curvature of its path in a magnetic field) and you want to know its 

energy.  Thus you will frequent occasion to make use of equation 15.27.1: 

 

    .)()( 222

0

2
pccmE +=  

 

You have to be careful to remember how many cs there are, and what is the exact value 

of c.  Particle physicists prefer to make life easier for themselves (not necessarily for the 

rest of us!) by preferring not to state what the momentum of a particle is, or its rest mass, 
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but rather to give the values of pc  or of m0c
2
 – and to express E, pc and m0c

2
 all in eV (or 

keV, MeV or GeV).  Thus one may hear that 

 

pc  =   6.2 GeV 

m0c
2
  =  0.938 GeV. 

 

More often this is expressed, somewhat idiosyncratically and in somewhat doubtful use 

of English, as 

 

     p   =   6.2  GeV/c 

m0  =  0.938 GeV/c
2 

 

or in informal casual conversation (one hopes not for publication) merely as 

 

p  =   6.2 GeV 

m0  =  0.938 GeV. 

 

While this may puzzle some and raise the ire of others, it is not entirely without merit, 

because, provided one uses these units, the relation between energy, momentum and rest 

mass is then simply 

 

     .22

0

2
pmE +=  

 

The practice is not confined to energy, momentum and rest mass.  For example, the SI 

unit of magnetic dipole moment is N m T
−1

 (newton metre per tesla).  Now N m (unit of 

torque) is not quite the same as a joule (unit of energy), although dimensionally similar.  

Yet it is common practice to express the magnetic moments of subatomic particles in eV 

T
−1

.  Thus the Bohr magneton is a unit of magnetic dipole moment equal to 9.27 %  10
−24

 

N m T
−1

, and this may be expressed as 5.77 %  10
−5

 eV T
−1

. 

 

One small detail to be on guard for is this.  One may hear talk of “a 500 MeV proton”.  

Does this mean that the kinetic energy is 500 MeV or that its total energy is 500 MeV?  

In this case the answer is fairly clear (although it would have been completely clear if the 

speaker had been explicit).  The rest-mass energy of a proton is 938 MeV, so he must 

have been referring to the kinetic energy.  If, however, he had said “a 3 GeV proton”, 

there would be no way of deducing whether he was referring to the kinetic or the total 

energy.  And if he had said “a 3 GeV particle”, there would be no way of telling whether 

he was referring to its total energy, its kinetic energy or its rest-mass energy.  It is 

incumbent on all of us – or at least those of us who wish to be understood by others – 

always to make ourselves explicitly clear and not to suppose that others will correctly 

guess what we mean. 
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15.29   Force 

 

Force is defined as rate of change of momentum, and we wish to find the transformation 

between forces referred to frames in uniform relative motion such that this relation holds 

on all such frames. 

 

Suppose that, in Σ', a mass has instantaneous mass m' and velocity whose instantaneous 

components are .'' '' yx uandu   If a force acts on it, then the velocity and hence also the 

mass are functions of time.  The x-component of the force is given by 

 

    ( ).''
'

' '' xx um
dt

d
F =      15.29.1 

 

We want to express everything on the right hand side in terms of unprimed quantities.  

Thus from equation 15.21.8 and the inverse of equation 15.16.2, we obtain 

 

    ( ).'' ' v−γ= xx umum      15.29.2 

 

Also          
dt

d

dt

dt

dt

d

''
≡      15.29.3 

 

Let us first evaluate .)( vγ−γ mum
dt

d
x   In this expression, v and γ are independent of 

time (the frame Σ' is moving at constant velocity relative to Σ), and 
dt

d
 of xmu is the x-

component of the force in Σ, that is Fx.  Thus 
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Now we need to evaluate 
'dt

dt
in terms of unprimed quantities.  If we start with 
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we’ll just get more primed quantities.  What we’ll do instead is to start with 
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 and we’ll evaluate ,'

dt

dt
 which, being a total derivative, is the reciprocal of 

'dt

dt
.  The 

partial derivatives are given by equations 15.15.3k and l, while .xu
dt

dx
=   Hence we 

obtain 
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1
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2 







−γ

=

c

udt

dt

xv
     15.29.7 

Thus we arrive at 
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/1
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'

2'
cu

dtdmF
F

x

x
x

v

v

−

−
=      15.29.8 

 

The mass is not constant (i.e. dm/dt is not zero) because there is a force acting on the 

body, and we have to relate the term dm/dt to the force.  At some instant when the force 

and velocity (in Σ) are F and u, the rate at which F is doing work on the body is F * u  

zzyyxx uFuFuF ++=  and this is equal to the rate of increase of energy of the body, 

which is 
2

cm& .   (In section 15.24, in deriving the expression for kinetic energy, I wrote 

that the rate of doing work was equal to the rate of increase of kinetic energy.  Now I 

have just written that it is equal to the rate of increase of (total) energy.  Which is right?)  

 

â   ).(
1

2 zzyyxx uFuFuF
cdt

dm
++=     15.29.9 

 

Substitute this into equation 15.29.8 and, after a very little more algebra, we finally 

obtain the transformation for F'x' :  
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The y'-  and z'- components are a little easier, and I leave it as an exercise to show that 
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As usual, the inverse transformations are found by interchanging the primed and 

unprimed quantities and changing the sign of v. 
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The force on a particle and its resultant acceleration are not in general in the same 

direction, because the mass is not constant. (Newton’s second law is not F = ma; it is 

.pF &= ) Thus 

 

    .)( uauF mmm
dt
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&+==              15.29.13 
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2/122
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Thus   .
)/1( 222/122
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15.30    Electromagnetism 

 

These notes are intended to cover only mechanics, and therefore I resist the temptation to 

cover here special relativity and electromagnetism.  I point out only that in many ways 

this misses many of the most exciting parts of special relativity, and indeed it was some 

puzzles with electromagnetism that led Einstein to formulate the theory of special 

relativity.  One proceeds as we have done with mechanical quantities; that is, we have to 

define carefully what is meant by each quantity and how in principle it is possible to 

measure it, and then see how it transforms between frames in such a manner that the laws 

of physics – in particular Maxwell’s equations - are the same in each.  One such 

transformation that is found, for example, is ),(' BuEE ×+γ=  so that what appears in 

one frame as an electric field appears in another at least in part as a magnetic field.  The 

Coulomb force transforms to a Lorentz force; Coulomb’s law transforms to Ampères law. 

 

Although I do no more than mention this topic here, I owe it to the reader to say just a 

little bit more about the speedometer that I designed in section 15.4.  It is indeed true that, 

as the train moves forward, the net repulsive force between the two rods does diminish, 

although not quite as I have indicated, for one has to make the correct transformations 

between frames for force, current, electric field, magnetic field, and so on.  But it turns 

out that the weights of the rods – i.e. the downward forces on them – also diminish in 

exactly the same ratio, and the angle between the strings remains stubbornly the same.  

Our trip to the patent office will be in vain.  The speedometer will not work, and it 

remains impossible to determine the absolute motion of the train.   

 

 


