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Solutions to Problems 

 

 

1.  Notation:  

 

 V1 = speed of comet immediately before collision. 

 V2 = speed of combined object immediately after collision, =  
k

V

+1

1 , because linear 

momentum is conserved. 

 

 q  = perihelion distance of original parabolic orbit, so that, at the end of the latus rectum 

(i.e. at the position of the collision) the heliocentric distance is 2q.  

 

       Then, using the formula for the speed in a parabolic orbit (equation 9.5.32), we have 

 

,2
1

q

GM
V =      (1) 

where M is the mass of the Sun. 

 

       a  = semi major axis the elliptic orbit of the combined object. 

 

      Then, using the formula for the speed in an elliptic orbit (equation 9.5.31), we have 

 

.
11

)1( 2

2
12

2 







−=

+
=

aq
GM

k

V
V     (2) 

 

From equations (1) and (2) we obtain 
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Also, the collision results in no change in the angular momentum of the system, so that, 

using the formulas for the angular momentum per unit mass in parabolic and elliptic 

orbits (equations 9.5.27a and 9.5.28a), we obtain  
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Equations (3) and (4) give us (by elimination of  a) 
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(a)   We are told that e = 0.8, which results in   k  =  1.06098, so the mass of the object 

was 1.06098m. 

 

(b)   Before embarking on a calculation, here are some preliminary qualitative thoughts. 

What happens if the mass of the object is very small, so that k is close to zero?  In that 

case the orbit of the comet is barely changed, and the eccentricity of the orbit remains e = 

1. 

       What happens if the object is very much more than that of the comet?  In that case 

the object barely notices the impact of the comet, and it (and the comet, which by now is 

stuck to it) falls straight towards the Sun in a straight line, again with e = 1. 

 

        So, since e is 1 in the extreme cases of a very massive object and a very light object, 

it may be deduced that, for a body of mass comparable with that of the comet, the 

eccentricity of its orbit will be less than 1, and that, for some particular value of its mass, 

the eccentricity of the orbit will go through a minimum. 

 

       Indeed if we plot e : k from equation (5), it looks like this: 
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   Now for some calculation. 

  

   We have to use equation (5), to find for what value of k is e
2
 least. 

Slightly tedious, but on setting the derivative to zero I find 
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,05841 5432 =−−−−+ kkkkk    (7) 

 

This has only one positive real root, which I found numerically, by Newton-Raphson 

iteration, to be 0.414214, which looked as though it might be 12 − .  I checked by 

substituting 12 −  back into equation (7) and found that indeed 12 −  really is a 

solution.  It was a bit tedious to do this. 

 

However, if you are better at algebra than I am, you might be able to factor equation (7) 

into 

 

0)21)(21)(1( 22 =++−−+ kkkkk ,     (8) 

  

which, indeed, has only one positive real root, namely .12 −=k  

 

Then, on substitution of this value into equation (5), you obtain, after some tedium, 

7071.02/1 ==e  . 
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2.    
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The trajectory is part of an ellipse, drawn in full above.   The energy of an elliptic orbit 

depends on its semi major axis a, so the least-energy orbit is the one that passes through 

both cities and has the least semi major axis, so the determining the size and shape of the 

ellipse is a problem one of pure geometry.    

 

Note that one focus, F1 of the ellipse is at the centre of Earth.  Let F2 be the other (empty) 

focus.  Then the semimajor axis of the ellipse is  )(
2
1 SRa += , and this is least when 

AF2 is perpendicular to the major axis of the ellipse, as  drawn.  But θ= sinRS , so the 

semi major axis of the least-energy ellipse is ).sin1(
2
1 θ+= Ra  

 

I have marked in some angles near to city A, from which I hope it will be agreed that 
oo 18090)(2 =θ−+θ+α , and so we find that the launch angle for the least-energy 

orbit is  θ−=α
2
1o45 . 

 

The launch speed V0 is the speed where r =  R, so, using equation 9.5.31 for the speed in 

an elliptic orbit, we obtain   
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Since we know the semi major axis, we can probably find the period. 

The semi major axis is 

 

km.75.4531)sin1(
2
1 =θ+= Ra  

 

Using equation 9.6.3, we see that the period is 

 

.s10036168.3
2 32/3 ×=

π
= a

GM
P  

 

 

The angle 180º −  θ is the true anomaly v1 at departure from A, and the angle 180º +  θ is 

the true anomaly v1 at arrival at B.  If we can find the mean anomaly at these two points, 

we should be able to find the time taken to get from A to B.   We’ll need to use Kepler’s 

equation, so we’ll need to know the eccentricity e of the ellipse. 

 

The distance between the foci is θ= cos2 Rae , from which we find that 

 

070637.0=e  
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To find the two eccentric anomalies, El and E2 we need one or more of equations  

2.3.17d-g.  Just make sure that you have the correct quadrant.  I make them 

 

4263.2305737.129 o
2

o
1 == EE  

 

Now, Kepler’s equation (equation 9.6.5), EeE sin−=M , gives us the mean anomalies.  

I make them 

 

5618.2584382.101 o
2

o
1 == MM  

 

The difference is 157º.1236.  The period of the entire orbit is s10036168.3 3× , so the 

duration of the journey is s10036168.3
360

1236.157 3××   =  22.1 minutes. 

 

 

One last question:  What is the maximum height above Earth reached by the vehicle?  

Since this is a relatively easy question, I’ll leave it to the reader. 
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3.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   

       

 

 

 

 

 

 

 

 

 

PQ is the major axis of the ellipse, of length 2a. 

The distance BC is also equal to 2a. 

FlF2 is the distance between the foci, which is .2ae  

 

I am going to try to find the vertical distance between P and Q.   I.e., the height of P 

above Q.  I.e. the distance QR. 

 

The lengths QB, QF2, PA, PF1, CT are all equal to ).1( ea −  

 

The distance QT =  BC − BQ − CT  =  .2)1()1(2 aeeaeaa =−−−−  

Hence the distance QR is αcos2ae .  But it is also equal to βcos2a . 

Hence  .
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I have drawn this for the case α>β  (ellipse).   You might also show that you get the 

same result for α=β  (parabola) and for α<β  (hyperbola).  If the cone is a cylinder 

)0( =α , the eccentricity of the elliptical cross section is cos β. 

 

 

Here is an alternative solution, for which I am indebted to Pal Achintya of India: 

 

        

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  The equation to the cone, referred to the axes OXYZ (the Y-axis directed away from the 

reader) is  

 

0tan2222 =α−+ ZYX  
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  We now refer to a second set of axes, Oxyz, as shown.   Coordinates in the two systems 

are related by   

 

β+β=

=

β−β=

sincos

cossin

zxZ

yY

zxX

 

 

   The equation to the cone referred to this system is therefore 

 

0tan)sincos()cossin( 2222 =αβ+β−+β−β zxyzx  

 

 

The equation to the plane is            dz =  

 

Thus the equation to intersection between the plane and the cone is 

 

0tan)sincos()cossin( 2222 =αβ+β−+β−β dxydx , 

 

which, on making use of trigonometric identities, can be written 

 

              0)secsin1()sec2sin()seccos1( 22222222 =αβ−++αβ−αβ− dydxx  

 

This can be cast in the form  
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which shows that the plane section of the cone (with )α>β  is an ellipse.  It may require 

some effort to obtain the constants a, b and x0 explicitly in terms of  α, β and d.  However, 

it is not necessary to do this, because it is almost immediately evident that the ratio 

2

2

a

b
must equal αβ− 22 seccos1 .   And since, for an ellipse, )1( 222 eab −= , where e 

is the eccentricity, it follows that  
α

β
=

cos

cos
e . 

 

 

 
 

 

 

 

 

 



 10 

 

 

4.  Notation: 

   

Speed of asteroid immediately before the explosion = V. 

 

Speed of part that moves in a circular orbit immediately after the explosion = V1. 

 

Speed of other part immediately after the explosion = V2. 

 

Semi major axis of the elliptic orbit of this part = a2 

 

Mass of Sun  = M.        Gravitational constant = G. 

 

 

Some relevant equations: 
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These should be enough to show that .
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