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CHAPTER 9 

THE TWO BODY PROBLEM IN TWO DIMENSIONS 

 

9.1   Introduction 

 

In this chapter we show how Kepler’s laws can be derived from Newton’s laws of motion 

and gravitation, and conservation of angular momentum, and we derive formulas for the 

energy and angular momentum in an orbit.  We show also how to calculate the position 

of a planet in its orbit as a function of time.  It would be foolish to embark upon this 

chapter without familiarity with much of the material covered in Chapter 2. The 

discussion here is limited to two dimensions.  The corresponding problem in three 

dimensions, and how to calculate an ephemeris of a planet or comet in the sky, will be 

treated in Chapter 10. 

 

 

9.2    Kepler’s Laws 

 

Kepler’s law of planetary motion (the first two announced in 1609, the third in 1619) are 

as follows: 

 

1. Every planet moves around the Sun in an orbit that is an ellipse with the Sun 

at a focus. 

2. The radius vector from Sun to planet sweeps out equal areas in equal times. 

3. The squares of the periods of the planets are proportional to the cubes of 

their semi major axes. 

 

The first law is a consequence of the inverse square law of gravitation.  An inverse square 

law of attraction will actually result in a path that is a conic section – that is, an ellipse, a 

parabola or a hyperbola, although only an ellipse, of course, is a closed orbit.  An inverse 

square law of repulsion (for example, -particles being deflected by gold nuclei in the 

famous Geiger-Marsden experiment) will result in a hyperbolic path.  An attractive force 

that is directly proportional to the first power of the distance also results in an elliptical 

path (a Lissajous ellipse) - for example a mass whirled at the end of a Hooke’s law elastic 

spring - but in that case the centre of attraction is at the centre of the ellipse, rather than at 

a focus. 

 

We shall derive, in section 9.5, Kepler’s first and third laws from an assumed inverse 

square law of attraction.  The problem facing Newton was the opposite:  Starting from 

Kepler’s laws, what is the law of attraction governing the motions of the planets?  To 

start with, he had to invent the differential and integral calculus.  This is a far cry from 

the popular notion that he “discovered” gravity by seeing an apple fall from a tree. 

 

The second law is a consequence of conservation of angular momentum, and would be 

valid for any law of attraction (or repulsion) as long as the force was entirely radial with 

no transverse component.  We derive it in section 9.3. 
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Although a full treatment of the first and third laws awaits section 9.5, the third law is 

trivially easy to derive in the case of a circular orbit.  For example, if we suppose that a 

planet of mass m is in a circular orbit of radius a around a Sun of mass M, M being 

supposed to be so much larger than m that the Sun can be regarded as stationary, we can 

just equate the product of mass and centripetal acceleration of the planet, ma
2
, to the 

gravitational force between planet and Sun, GMm/a
2
; and, with the period being given by 

P = 2, we immediately obtain the third law: 

 

    .
4 3

2
2 a

GM
P


       9.2.1 

 

The reader might like to show that, if the mass of the Sun is not so high that the Sun’s 

motion can be neglected, and that planet and Sun move in circular orbits around their 

mutual centre of mass, the period is 
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P



      9.2.2 

 

Here a is the distance between Sun and planet. 

 

Exercise.  Express the period in terms of a1, the radius of the planet’s circular orbit 

around the centre of mass. 

 

 

9.3  Kepler’s Second Law from Conservation of Angular Momentum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure IX.1, a particle of mass m is moving in some sort of trajectory in which the only 

force on it is directed towards or away from the point O.  At some time, its polar 

coordinates are (r, At a time t later these coordinates have increased by r and .  

 r 

r 

r

FIGURE IX.1

  

O 
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Using the formula one half base times height for the area of a triangle, we see that the 

area swept out by the radius vector is approximately 

 

    .
2
12

2
1 rrrA      9.3.1 

 

On dividing both sides by t and taking the limit as t  0, we see that the rate at which 

the radius vector sweeps out area is 

 

    .2

2
1   rA       9.3.2 

 

But the angular momentum is ,2mr  and since this is constant, the areal speed is also 

constant.  The areal speed, in fact, is half the angular momentum per unit mass. 

 

 

9.4   Some Functions of the Masses 

 

In section 9.5 I am going to consider the motion of two masses, M and m around their 

mutual centre of mass under the influence of their gravitational attraction.  I shall 

probably want to make use of several functions of the masses, which I shall define here, 

as follows: 

 

Total mass of the system:  .mM M      9.4.1 

 

 

 “Reduced mass”    .
mM

Mm


m      9.4.2 

 

 

“Mass function”:   
 

.
2

3

mM

M


M     9.4.3 

 

No particular name:   .1 









M

m
mm     9.4.4 

 

 

Mass ratio:    ./Mmq       9.4.5 

 

 

Mass fraction:    .)/( mMm      9.4.6 

 

The first four are of dimension M; the last two are dimensionless.  When m << M, 

m  m, M  M and m+  m . 
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(For those who may be interested, the fonts I have used are:  

M Arial bold     m Century Gothic  M  French script MT) 

 

 

9.5   Kepler’s First and Third Laws from Newton’s Law of Gravitation 

 

 

 

 

 

 

 

 

 

In figure IX.2 I illustrate two masses (they needn’t be point masses – as long as they are 

spherically symmetric, they act gravitationally as if they were point masses) revolving 

about their common centre of mass C.  At some time they are a distance r apart, where 

 

   
mM

Mr
r

mM

mr
rrrr





 2121

,,     9.5.1 

 

The equations of motion of m in polar coordinates (with C as pole) are 

 

Radial:    ./ 22

22 rGMrr       9.5.2 

 

Transverse:   .02 22   rr      9.5.3 

 

Elimination of t between these equations will in principle give us the equation, in polar 

coordinates, of the path. 

 

A slightly easier approach is to write down expressions for the angular momentum and 

the energy.  The angular momentum per unit mass of m with respect to C is 

 

    .2

22  rh       9.5.4 

 

The speed of m is ,22

2

2

2   rr  and the speed of M is m/M times this.  Some effort will be 

required of the reader to determine that the total energy E of the system is 

 

     .

2

2
22

2

2

22
1

r

GM
rrmE


 

     9.5.5 

 

[It is possible that you may have found this line quite difficult.  The reason for the 

difficulty is that we are not making the approximation of a planet of negligible mass 

moving around a stationary Sun, but we are allowing both bodies to have comparable 

 

M m 
C 

FIGURE IX.2 

r1 r2 
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masses and the move around their common centre of mass.  You might first like to try the 

simpler problem of a planet of negligible mass moving around a stationary Sun.  In that 

case r1 = 0 and r = r2 and m  m, M  M and m+  m .] 

 

It is easy to eliminate the time between equations 9.5.4 and 9.5.5.  Thus you can write  









d

dr

dt

d

d

dr

dt

dr
r 222

2
.   and then use equation 9.5.4 to eliminate  .  You should 

eventually obtain 

 

   .2
2

2

2
2

2

2

2

4

2

2

2

r

GM
Er

d

dr

r

hm 

























    9.5.6 

 

This is the differential equation, in polar coordinates, for the path of m.  All that is now 

required is to integrate it to obtain r2 as a function of 


At first, integration looks hopelessly difficult, but it proceeds by making one tentative 

substitution after another to see if we can’t make it look a little easier.  For example, we 

have (if we multiply out the square bracket) r2 in the denominator three times in the 

equation.  Let’s at least try the substitution w = 1/r2.  That will surely make it look a little 

easier.  You will have to use ,1
2

22







 d

dw

wd

dw

dw

dr

d

dr
 and after a little algebra you 

should obtain 

 

   .2
4

2

2

242

2

2

2

2

2

22

hm

MG

hm

E

hm

GM
w

d

dw












 











  9.5.7 

 

This may at first sight not look like much of an improvement, but the right hand side is 

just a lot of constants, and, since it is positive, let’s call the right hand side H
2
.  (In case 

you doubt that the right hand side is positive, the left hand side certainly is!)  Also, make 

the obvious substitution 

 

 

    ,
2

2

2

hm

GM
wu




      9.5.8 

 

and the equation becomes almost trivial:     

 

 

    ,22

2

Hu
d

du











     9.5.9 

    

from which we proceed to 
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    .
22 uH

du
d


      9.5.10 

 

At this stage you can choose either the + or the and you can choose to make the next 

substitution u = H sin or u = H cos you'll get the same result in the end. I'll choose 

the plus sign and I’ll let  u  = H cos and I get    dd and hence 

 

    ,     9.5.11 

 

where  is the arbitrary constant of integration.  Now you have to go back and remember 

what  was, what u was and what w was and what H was.  Thus cos 

(cos () = cos =  u/H = ...and so on.  Your aim is to get it in the form r2  =  

function  of , and, if you persist, you should eventually get 

    

   

 

.

cos
2

11

)/(
2/1

242

2

2

22

2
2




















MG

mEh

GMhm
r    9.5.12 

 

You’ll immediately recognize this from equation 2.3.37 or 2.4.16 or 2.5.18: 

    

                                           
 


cos1 e

l
r                        2.3.37 

 

as being the polar equation to a conic section (ellipse, parabola or hyperbola).  Equation 

9.5.12 is the equation of the path of the mass m about the centre of mass of the two 

bodies. The eccentricity is 

    

        ,
2

1

2/1

242

2

2











 

MG

mEh
e      9.5.13 

 

or, if you now recall what are meant by  and m+, 

 

   .
)(.2

1

2/1

5

3

2

2
2













 


mM

mM

G

Eh
e     9.5.14 

 

(Check the dimensions of this!)    

 

The eccentricity is less than 1, equal to 1, or greater than 1 (i.e. the path is an ellipse, a 

parabola or a hyperbola) according to whether the total energy E is negative, zero or 

positive. 
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The semi latus rectum of the path of m relative to the centre of mass is of length 

 

    ,
2

2

2
2


 

GM

hm
l       9.5.15 

 

or, if you now recall what are meant by m+ and  (see equations 9.3.4 and 9.3.6), 

 

    .)(.
3

22
2

2
M

mM

G

h
l


      9.5.16 

 

(Check the dimensions of this!)    

 

We can also write equations 9.5.15 or 9.5.16 as 

 

    .2
2
2 lGh M      9.5.17 

 

At this point it is useful to recall what we mean by M and by h2.   M is the mass function, 

given by equation 9.4.3: 

 

    
 

.
2

3

mM

M


M      9.4.3 

 

Let us suppose that the total energy is negative, so that the orbits are elliptical.  The two 

masses are revolving in similar elliptic orbits around the centre of masses;  the semi latus 

rectum of the orbit of m is l2, and the semi latus rectum of the orbit of M is l1, where 

    

    .

1

2

m

M

l

l
       9.5.18 

 

Relative to M the mass m is revolving in a larger but still similar ellipse with semi latus 

rectum l given by 

 

    .2l
M

mM
l


      9.5.19 

 

I am now going to define h as the angular momentum per unit mass of m relative to M.  

In other words, we are working in a frame in which M is stationary and m is moving 

around M in an elliptic orbit of semi latus rectum l.  Now angular momentum per unit 

mass is proportional to the areal speed, and therefore it is proportional to the square of the 

semi latus rectum.  Thus we have 
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22

22








 











M

mM

l

l

h

h
    9.5.20 

 

Combining equations 9.5.18, 9.4.3, 9.5.19,  9.5.20 and 9.4.1 we obtain 

 

    ,2 lGh M       9.5.21 

 

where M is the total mass of the system. 

 

Once again:  

 

 The angular momentum per unit mass of m relative to the centre of mass is 

,2lGM where l2 is the semi latus rectum of the orbit of m relative to the centre of mass, 

and it is lGM relative to M, where l is the semi latus rectum of the orbit of m relative to 

M.    

 

 If you were to start this analysis with the assumption that m << M, and that M 

remains stationary, and that the centre of mass coincides with M, you would find that 

either equation 9.5.17 or 9.5.21 reduces to 

 

    .2 lMGh        9.5.22 

 

  

The period of the elliptic orbit is area  areal speed.  The area of an ellipse is 

,1 22 eaab   and the areal speed is half the angular momentum per unit mass (see 

section 9.3) =  .1 2

2
1

2
1

2
1 eaGlGh  MM   Therefore the period is 

,
2 2/3a
G

P
M


 or 

 

    ,
4 3

2
2 a

G
P

M


       9.5.23 

 

which is Kepler’s third law. 

 

We might also, while we are at it, express the eccentricity (equation) in terms of h rather 

than h2, using equation 9.5.20.  We obtain: 

 

   .
)(

2
1

2/1

2

2













mMMmG

Eh
e     9.5.24 
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If we now substitute for h
2
 from equation 9.5.21, and invert equation 9.5.24, we obtain, 

for the energy of the system 

 

   ,
2

)1( 2

l

eGmM
E


       9.5.25 

or for the energy or the system per unit mass of m: 

 

   
  .
2

)12

l

eMG 
E        9.5.26 

 

E in equation 9.5.25 is the total energy of the system, which includes the kinetic energy 

of both masses as well as the mutual potential energy of the two, while E in equation 

9.5.26 is merely E/m.  That is, it is, as stated, the energy of the system per unit mass of m. 

  

 

Equations 9.5.21 and 9.5.26  apply to any conic section.  For the different types of conic 

section they can be written: 

 

For an ellipse: 

 

  
a

G
eaGh

2
,)1( 2 M

M  E             9.5.27a,b 

 

For a parabola: 

 

  0,2  EqGh M                                   9.5.28a,b 

 

For a hyperbola: 

 

  
a

G
eaGh

2
,)1( 2 M

M  E            9.5.29a,b 

 

We see that the energy of an elliptic orbit is determined by the semi major axis, whereas 

the angular momentum is determined by the semi major axis and by the eccentricity.  For 

a given semi major axis, the angular momentum is greatest when the orbit is circular. 

 

Still referring the orbit of m with respect to M, we can find the speed V of m by noting 

that 

 

    ,2

2
1

r

G
V

M
E      9.5.30 

 

and, by making use of the b-parts of equations 9.5.27-29, we find the following relations 

between speed of m in an orbit versus distance from M: 
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Ellipse:   .
122










ar
GV M                 9.5.31  

 

Parabola:   .22

r

G
V

M
       9.5.32 

 

Hyperbola:   .
122










ar
GV M      9.5.33 

 

 

 

Circle:    .2

a

G
V

M
       9.5.34 

 

 

Exercise:  Show that in an elliptic orbit, the speeds at perihelion and aphelion are, 

respectively, 
























e

e

a

GM

e

e

a

GM

1

1
and

1

1
and that the ratio of perihelion  to  

aphelion speed is, therefore, .
1

1

e

e




   

 

It might be noted at this point, from the definition of the astronomical unit (Chapter 8, 

section 8.1), that if distances are expressed in astronomical units, periods and time 

intervals in sidereal years, GM (where M is the mass of the Sun) has the value 4

The 

mass of a comet or asteroidis much smaller than the mass of the Sun, so that M = M + m 

is approximately M.  Thus, using these units, and to this approximation, equation 9.5.23 

becomes merely .32 aP   

 

 

A Delightful Construction 

 

I am much indebted to an e-correspondent, Dr Bob Rimmer, for the following delightful 

construction.  Dr Rimmer found it in the recent book Feynman’s Lost Lecture, The 

Motion of the Planets Around the Sun, by D.L. and J.R. Goodstein, and Feynman in his 

turn ascribed it to a passage (Section IV, Lemma XV) in the Principia of Sir Isaac 

Newton.  It has no doubt changed slightly with each telling, and I present it here as 

follows. 

 

C is a circle of radius 2a (Figure IX.3).   F is the centre of the circle, and F' is a point 

inside the circle such that the distance FF' =  2ae, where e < 1.    Join F and F' to a point 

Q on the circle.  MP' is the perpendicular bisector of F'Q, meeting FQ at P. 
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The reader is invited to show that, as the point Q moves round the circle, the point P 

describes an ellipse of eccentricity e, with F and F' as foci, and that 'MP  is tangent to the 

ellipse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

Hint:  It is very easy – no math required!  Draw the line F'P, and let the lengths of FP and 

F'P be r and r' respectively.  It will then become very obvious that r  +  r' is always equal 

to 2a, and hence P describes an ellipse.  By looking at an isosceles triangle, it will also be 

clear that the angles F'PM and FPP' are equal, thus satisfying the focus-to-focus reflection 

property of an ellipse, so that MP' is tangent to the ellipse. 

 

But there is better to come.  You are asked to find the length QF' in terms of a, e and r', or 

a, e and r. 

 

An easy way to do it is as follows.  Let QF' = 2p, so that QM = p.  From the right-angled 

triangle QMP we see that cos / '.  p r    Apply the cosine rule to triangle QFF' to find 

another expression for cos , and eliminate cos  from your two equations.  You should 

quickly arrive at 

 

p a e
r

a r

2 2 21
2

  


( )
'

'
.    9.5.35  

And, since r a r' , 2  this becomes 

 

F 

 

F' 

M 
P 

Q 

C 

P' 



FIGURE IX.3 
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     p a e
a r

r
a e

r a
  


   ( ) ( ) ./1

2
1

2 12 3 2 2             9.5.36 

 

Now the speed at a point P on an elliptic orbit, in which a planet of negligible mass is in 

orbit around a star of mass M is given by  

 

.
12










ar
GMV      9.5.37 

 

Thus we arrive at the result that the length of F'Q  (or of F'M) is proportional to the speed 

of a planet P moving around the Sun F in an elliptic orbit, and of course the direction 

MP', being tangent to the ellipse, is the direction of motion of the planet.  Figure IX.4 

shows the ellipse. 

 

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is left to the reader to investigate what happens it F' is outside, or on, the circle. 

 

 

 

 

 

 

 

F 

 

F' 

M 
P 

Q 

C 

P' 



FIGURE IX.4 
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How to speed a planet up by slowing it down 
 

   In 2022 a spacecraft crashed headlong into a minor planet, thus slowing it down and 

hence reducing its orbital period.  On first reading, this seems to be wrong.  Surely if you 

slow a planet down, will its orbital period not lengthen?  It is not wrong, and the 

following few paragraphs will show why.  

 

  Let us take it (to the degree of approximation that is needed here) that Earth moves 

around the centre of the Sun in a circular orbit of radius one astronomical unit (au) at a 

speed of 30 km s
1

 and it takes one year or 365 days.  This orbit is shown in the left hand 

of the two drawings below.  The dot is the Sun; the circle is Earth’s orbit. If we are 

looking down upon it from the ecliptic north pole, Earth is moving counterclockwise 

along the orbit. 

 

  Now suppose that a stray asteroid crashes headlong into Earth, and reduces Earth’s 

speed to 28 km s
1

.   Earth does not, of course, merely continue in the same circular orbit 

with the new, slower speed of 28 km s
1

.  Rather, it starts to drop in towards the Sun, 

entering a new, elliptic orbit, as shown at the right below.  This figure shows the old 

circular orbit as a dashed curve, and the new elliptic orbit as a continuous curve. To the 

eye, the new orbit doesn’t look very elliptical – the ratio of the minor to major axes is 

0.992 – but it is indeed an ellipse, with the Sun at a focus. 

 

 

 

 

 

 
 

 

 

 

 

 

    Refer to equations 9.5.34 and 9.5.32.  Equation 9.5.34 refers to Earth’s original orbit, 

with V = 30 km s
1

 and a = 1 au.   Equation 9.5.32 refers to the new, elliptic orbit, in 

which a is now its semi major axis, and, at what is now aphelion, V = 28 km s
1

 and r = 1 

au.   From this, we find that the semi major axis of the new orbit is a = 225/254 = 0.8858 

au.  The aphelion distance a(1 + e) is 1 au, so the orbital eccentricity is e = 29/225 = 

0.0289.  The perihelion distance a(1  e) is 98/127 = 0.7717 au.  The orbital period is P = 

a
3/2

, which is 304 days.  We know that the aphelion speed is 28 km s
1

, so we now find 

the the perihelion speed is a rapid 254/7 = 36.29 km s
1

.  The semi minor axis 

  is 0.8784 au.  What is the average speed around the orbit?  We know the 

period, so to find the average speed we would need to know the circumference of the 

elliptic orbit.  This is a headache (it is treated in Chapter 2) but it must be less than 2a 
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and greater than 2b , so, since a and b are almost equal, a very good approximation for 

the circumference in this case would be a + b), from which we find the the average 

speed is 31.74 km s
1

, which is a little faster than the original speed of 30 km s
1

 that it 

had before the collision slowed it down.  Of course, the Earth-Sun system has lost a little 

of its gravitational potential energy. 

 

   Here’s a summary of the new orbit: 

 

Aphelion distance:      1 au 

Perihelion distance:    0.772 au 

Aphelion speed:         28 km/s 

Perihelion speed:       36.29 km/s 

Average speed:             31.74 km/s 

Period of orbit:             304 d 

 

  For another example, let us start again with Earth travelling at 30 km s
1

 in its original 

circular orbit of radius 1 au, but this time we’ll give it a push from behind to increase tis 

speed to32 km s
1

.  Show that it moves to a new orbit with the following characteristics: 

 

Perihelion distance:      1 au 

Aphelion distance:        1.319 au 

Perihelion speed:          32 km/s 

Aphelion speed:            24.25 km/s 

Average speed:             27.70  km/s 

Period of orbit:             456 d 

 

 

9.6   Position in an Elliptic Orbit 
 

The reader might like to refer back to Chapter 2, section 2.3, especially the part that deals 

with the polar equation to an ellipse, to be reminded of the meanings of the angles 

and v, which, in an astronomical context, are called, respectively, the argument of 

latitude, the argument of perihelion and the true anomaly.   In this section I shall choose 

the initial line of polar coordinates to coincide with the major axis of the ellipse, so that  

is zero and v.  The equation to the ellipse is then 

     

    .
cos1 ve

l
r


      9.6.1 
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 I’ll suppose that a planet is at perihelion at time t = T, and the aim of this section 

will be to find v as a function of t.  The semi major axis of the ellipse is a, related to the 

semi latus rectum by  

 

    )1( 2eal        9.6.2 

 

and the period is given by 

 

    .
4 3

2
2 a

G
P

M


       9.6.3 

 

Here the planet, of mass m is supposed to be in orbit around the Sun of mass M, and the 

origin, or pole, of the polar coordinates described by equation 9.6.1 is the Sun, rather than 

the centre of mass of the system.  As usual, M = M  +  m. 

 

The radius vector from Sun to planet does not move at constant speed (indeed Kepler’s 

second law states how it moves), but we can say that, over a complete orbit, it moves at 

an average angular speed of 2/P.  The angle  Tt
P


2

 is called the mean anomaly of 

the planet at a time t T after perihelion passage.  It is generally denoted by the letter M, 

which is already overworked in this chapter for various masses and functions of the 

masses.  For mean anomaly, I’ll try Copperplate Gothic Bold italic font, M .  Thus 

 

      Tt
P





2

M .    9.6.4 

 

The first step in our effort to find v as a function of t is to calculate the eccentric anomaly 

E from the mean anomaly.   This was defined in figure II.11 of Chapter 2, and it is 

reproduced below as figure IX.6.   

 

 

r 

v FIGURE IX.5 
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In time t T, the area swept out by the radius vector is the area FBP, and, because the 

radius vector sweeps out equal areas in equal times, this area is equal to the fraction 

PTt /)(   of the area of the ellipse.  In other words, this area is .)(

P

abTt 
  Now look at 

the area FBP'.  Every ordinate of that area is equal to a/b times the corresponding 

ordinate of FBP, and therefore the area of FBP' is .)( 2

P

aTt 
  The area FBP' is also 

equal to the sector OP'B minus the triangle OP'F.  The area of the sector OP'B is 

,
2

2

2
12 Eaa

E



 and the area of the triangle OP'F is .sinsin 2

2
1

2
1 EeaEaae   

 

     
P

aTt 2)( 
 =      .sin2

2
12

2
1 EeaEa   

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiply both sides by 2/a
2
, and recall equation 9.6.4, and we arrive at the required 

relation between the mean anomaly M and the eccentric anomaly E: 

 

    .sin EeE M      9.6.5 

 

This is Kepler’s equation.   

 

The first step, then, is to calculate the mean anomaly M from equation 9.6.4, and then 

calculate the eccentric anomaly E from equation 9.6.5.  This is a transcendental equation, 

so I’ll say a word or two about solving it in a moment, but let’s press on for the time 

FIGURE IX.6 

v E 

F 

 
P' 

P 

r 

O 
 

B 
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being.  We now have to calculate the true anomaly v from the eccentric anomaly.  This is 

done from the geometry of the ellipse, with no dynamics, and the relation is given in 

Chapter 2, equations 2.3.16 and 2.3.17c, which are reproduced here: 

 

 

    cos
cos

cos
.v 





E e

e E1
     2.3.16 

    

 

From trigonometric identities, this can also be written 

 

    ,
cos1

sin1
sin

2

Ee

Ee




v     2.3.17a 

 

or    
eE

Ee






cos

sin1
tan

2

v     2.3.17b 

 

or    tan tan .1
2

1
2

1

1
v 





e

e
E     2.3.17c 

 

If we can just solve equation 9.6.5 (Kepler’s equation), we shall have done what we want 

– namely, find the true anomaly as a function of the time. 

 

The solution of Kepler’s equation is in fact very easy. We write  it as  

 

    M EeEEf sin)(     9.6.6 

 

from which    ,cos1)(' EeEf       9.6.7 

 

and then, by the usual Newton-Raphson process: 

 

    
  .

cos1

sincos

Ee

EEEe
E






M
    9.6.8 

 

The computation is then extraordinarily rapid (especially if you store cos E and don’t 

calculate it twice!).  

 

Example: 

 

Suppose e = 0.95 and that M = 245
o
.  Calculate E.  Since the eccentricity is very large, 

one might expect the convergence to be slow, and also E is likely to be very different 

from M, so it is not easy to make a first guess for E.  You might as well try 245
o
 for a 

first guess for E.  You should find that it converges to ten significant figures in a mere 
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four iterations.  Even if you make a mindlessly stupid first guess of E = 0
o
, it converges 

to ten significant figures in only nine iterations.   

 

There are a few exceptional occasions, hardly ever encountered in practice, and only for 

eccentricities greater than about 0.99, when the Newton-Raphson method will not 

converge when you make your first guess for E equal to M.  Charles and Tatum 

(CelestialMechanics and Dynamical Astronomy 69, 357 (1998)) have shown that the 

Newton-Raphson method will always converge if you make your first guess E = 

Nevertheless, the situations where Newton-Raphson will not converge with a first 

guess of E = M are unlikely to be encountered except in almost parabolic orbits, and 

usually a first guess of E = M is faster than a first guess of E = .   he chaotic behaviour 

of Kepler’s equation on these exceptional occasions is discussed in the above paper and 

also by Stumpf  (Cel. Mechs. and Dyn. Astron. 74, 95 (1999)) and references therein. 

 

Exercise:   Show that a good first guess for E is  

 

    ),1( 2

2
1 xxE  M     9.6.9 

 

where    .
cos1

sin

M

M

e

e
x


      9.6.10 

 

Exercise:  Write a computer program in the language of your choice for solving Kepler’s 

equation.  The program should accept e and M as input, and return E as output.  The 

Newton-Raphson iteration should be terminated when |/)(| oldoldnew EEE   is less than 

some small fraction to be determined by you. 

 

Exercise:  An asteroid is moving in an elliptic orbit of semi major axis 3 AU and 

eccentricity 0.6.  It is at perihelion at time = 0.  Calculate its distance from the Sun and its 

true anomaly one sidereal year later.  You may take the mass of the asteroid and the mass 

of Earth to be negligible compared with the mass of  the Sun.  In that case, equation 9.6.3 

is merely 



    ,
4 3

2
2 a

MG
P


   

 

where M  is the mass of the Sun, and, if P is expressed in sidereal years and a in AU, this 

becomes just P
2
  =  a

3
.  Thus you can immediately calculate the period in years and 

hence, from equation 9.6.4 you can find the mean anomaly.  From there, you have to 

solve Kepler’s equation to get the eccentric anomaly, and the true anomaly from equation 

2.3.16 or 17.  Just make sure that you get the quadrant right.  

 

Exercise:  Write a computer program that will give you the true anomaly and heliocentric 

distance as a function of time since perihelion passage for an asteroid whose elliptic orbit 
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is characterized by a, e. Run the program for the asteroid of the previous exercise for 

every day for a complete period. 

 

You are now making some real progress towards ephemeris computation! 

 

 

9.7   Position in a Parabolic Orbit 

 

When a “long-period” comet comes in from the Oort belt, it typically comes in on a 

highly eccentric orbit, of which we can observe only a very short arc.  Consequently, it is 

often impossible to determine the period or semi major axis with any degree of reliability 

or to distinguish the orbit from a parabola.  There is therefore frequent occasion to have 

to understand the dynamics of a parabolic orbit. 

 

We have no mean or eccentric anomalies.  We must try to get v directly as a function of t 

without going through these intermediaries. 

 

The angular momentum per unit mass is given by equation 9.5.28a: 

 

    ,22 qGrh M v      9.7.1 

 

where v is the true anomaly and q is the perihelion distance. 

 

But the equation to the parabola (see equation 2.4.16)  is 

 

    
vcos1

2




q
r ,      9.7.2 

 

or (see section 3.8 of Chapter 3), by making use of the identity 

 

   ,tanwhere,
1

1
cos

2
1

2

2

vv 



 u

u

u
         9.7.3a,b 

 

the equation to the parabola can be written 

    

           .sec
2
12 vqr        9.7.4 

 

Thus, by substitution of equation 9.7.4 into 9.7.1 and integrating, we obtain 

 

      
t

T
dtqGdq .2sec

0 2
142

v

vv M     9.7.5 

 

Upon integration (drop me an email if you get stuck!) this becomes 

 



 20 

    .
2/3

2
1

3

3
1 Tt

q

G
uu 

M
     9.7.6 

 

This equation, when solved for u (which, remember, is v
2
1tan ), gives us v as a function 

of t.  As explained at the end of section 9.5, if q is in astronomical units and t  T is in 

sidereal years, and if the mass of the comet is negligible compared with the mass of the 

Sun, this becomes 

 

   
 

2/3

3

3
1

2

q

Tt
uu


      9.7.7 

 

or   .)(18
where,03

2/3

3

q

Tt
CCuu


                       9.7.8a,b 

 

This cubic equation has just one real root for u.  It is positive if (t T) is positive  

(postperihelion), and negative if (t T) is negative (preperihelion). It is of course zero at  

perihelion. 

 

There is a choice of methods available for solving equation 9.7.8a, so it might be that the 

only difficulty is to decide which of the several methods you want to use!   The constant 

C
3
1  is sometimes called the “parabolic mean anomaly”. 

 

Method 1:  Just solve it by Newton-Raphson iteration.  Thus f  =  3u  +  u
3
   C  =  0 and  

f '  =  3(1 + u
2
), so that the Newton-Raphson u =  u f / f ' becomes 

 

    ,
)1(3

2
2

3

u

Cu
u




      9.7.9 

 

which should converge quickly.  For economy, calculate u
2
 only once per iteration. 

 

 

Method 2:   

  

Let   ./1and/1 ccCxxu                      9.7.10a,b 

 

Then equation 9.7.8a becomes 

 

    x  =   c 
1/ 3

.      9.7.11 

 

Thus, as soon as c is found, x, u and v can be calculated from equations 9.7.11, 10a, and 

3a or b, and the problem is finished – as soon as c is found! 

 

So, how do we find c?  We have to solve equation 9.7.10b. 
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Method 2a: 

 

Equation 9.7.10b can be written as a quadratic equation: 

 

    .012  Ccc      9.7.12 

 

Whether C is negative (preperihelion) or positive (postperihelion), this quadratic equation 

in c has two real roots, one positive and one negative, such that their product is 1.  The 

question is:  Which value of c do we use for the subsequent calculation of the true 

anomaly?  I am much indebted to Adam Jenkins for pointing out that either solution for c 

will ultimately arrive at the same value for u (equations 9.7.11 and10a). Finally, equation 

9.7.3b gives one solution for the true anomaly v in the range 0 to 360 degrees. 

 

 

Method 2b:   

 

Let    C  =  2 cot 2      9.7.13 



and calculateBut by a trigonometric identity,   

 

   2 cot 2cot 1/ cot      9.7.14 


so that, by comparison with equation 9.7.10b, we see that 

 

          c  =  cot  .     9.7.15 

 

For a given C, equation 9.7.13 gives two values of  between 0 and 360°.  Consequently 

equation 9.7.15 results in two possible values for c (the same two, of course, as in method 

2a).  Again, as pointed out by Jenkins, either of these values ultimately results in the 

correct, unique true anomaly. 

 

Method 3: 

 

Equation 9.7.8 has an exact analytic solution.  If you substitute 

 

3
1

3
1

2
2
1 

 wwu      9.7.16 

 

into equation 9.7.8, you will arrive at a quadratic equation in w, with solutions 

 
 

                             9.7.17 
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Once again we have to ask:  Which of these two solutions do we choose?  And once 

again, as Jenkins pointed out, either will result in the same unique value of u, and 

equation 9.7.3b then gives one value between 0 and 360 degrees for the  true anomaly. 
 

  

Example:  Solve the equation 3u  +  u
3
  = 1.6 by all four methods.  (Methods 1, 2a, 2b and 

3.) 

  
Example:   A comet is moving in a parabolic orbit with perihelion distance 0.9 AU.  

Calculate the true anomaly and heliocentric distance 20 days after perihelion passage.  (A 

sidereal year is 365.25636 days.)  Do the same for 20 days preperihelion. 

 

Exercise:   Write a computer program that will return the true anomaly as a function of 

time, given the perihelion distance of a parabolic orbit.  Test it with your answer for the 

previous example. 

 

 

9.8   Position in a Hyperbolic Orbit 

 

If an interstellar object were to encounter the solar system from interstellar space, it 

would pursue a hyperbolic orbit around the Sun.  The first known such object with an 

original hyperbolic orbit was detected in 2017, and was given the name Oumuamua.    

However, a comet with a near-parabolic orbit from the Oort belt may approach Jupiter on 

its way in to the inner solar system, and its orbit may be perturbed into a hyperbolic orbit.  

This will result in its ultimate loss from the solar system.  Several examples of such 

cometary orbits are known.   There is evidence, from radar studies of meteors, of 

meteoroidal dust encountering Earth at speeds that are hyperbolic with respect to the Sun, 

although whether these are on orbits that are originally hyperbolic (and are therefore from 

interstellar space) or whether they are of solar system origin and have been perturbed by 

Jupiter into hyperbolic orbits is not known.   

 

I must admit to not having actually carried out a calculation for a hyperbolic orbit, but I 

think we can just proceed in a manner similar to an ellipse or a parabola.   Thus we can 

start with the angular momentum per unit mass: 

 

    ,2 lGrh M v      9.8.1 

 

where    
vcos1 e

l
r


      9.8.2 

 

and    .)1( 2  eal      9.8.3 

 

If we use astronomical units for distance and mass, we obtain 
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   

.
1

2

cos1
2/322/320

dt
eae

d t

T







v

v

v
   9.8.4 

 

Here I am using astronomical units of distance and mass and have therefore substituted 

4
2
for G M. 

 

 I’m going to write this as 

 

  ,
)1()1(

)(2

)cos1( 2/322/322/320 










e

Q

ea

Tt

e

d

v

vv
   9.8.5 

 

where .)(2
2/3a

Tt
Q


    Now we have to integrate this. 

 

Method 1.     

 

Guided by the elliptical case, but bearing in mind that we are now dealing with a 

hyperbola, I’m going to try the substitution 

 

    .
1cosh

cosh
cos






Ee

Ee
v      9.8.6 

 

If you try this, I think you’ll end up with 

 

    QEEe sinh .     9.8.7 

 

This is just the analogy of Kepler’s equation.    

 

The procedure, then, would be to calculate Q from equation 9.8.5.  Then calculate E from 

equation 9.8.7.  This could be done, for example, by a Newton-Raphson iteration in quite 

the same way as was done for Kepler’s equation in the elliptic case, the iteration now 

taking the form 

 

   
  .

1cosh

sinhcosh






Ee

EEEeQ
E     9.8.8 

 

Then v is found from equation 9.8.6, and the heliocentric distance is found from the polar 

equation to a hyperbola: 

 

    .
cos1

)1( 2

ve

ea
r




      9.8.9 

 

 



 24 

Method 2. 

 

Method 1 should work all right, but it has the disadvantage that you may not be as 

familiar with sinh and cosh as you are with sin and cos, or there may not be a sinh or cosh 

button your calculator.  I believe there are SINH and COSH functions in FORTRAN, and 

there may well be in other computing languages. Try it and see.  But maybe we’d like to 

try to avoid hyperbolic functions, so let’s try the brilliant substitution 

 

   .
)2(

1)2(
cos

eeuu

euu




v      9.8.10 

 

You may have noticed, when you were learning calculus, that often the professor would 

make a brilliant substitution, and you could see that it worked, but you could never 

understand what made the professor think of the substitution.  I don’t want to tell you 

what made me think of this substitution, because, when I do, you’ll see that it isn’t really 

very brilliant at all.  I remembered that  

 

    EEE  ee
2
1cosh      9.8.11 

 

and then I let eE
 = u, so  

 

   ,)/1(cosh
2
1 uuE       9.8.12 

 

and I just substituted this into equation 9.8.6 and I got equation 9.8.10.  Now if you put 

the expression 9.8.10 for cos v into equation 9.8.5, you eventually, after a few lines, get 

something that you can integrate.  Please do work through it.  In the end, on integration of 

equation 9.8.5, you should get 

 

   .ln)/1(
2
1 Quuue       9.8.13 

 

You already know from Chapter 1 how to solve the equation f (x)  =  0, so there is no 

difficulty in solving equation 9.8.13 for u.  Newton-Raphson iteration results in 

 

   
 ,

2)2(

)ln1(2






euu

uQueu
u      9.8.14 

 

and this should converge in the usual rapid fashion. 

 

So the procedure in method 2 is to calculate Q from equation 9.8.5, then calculate u from 

equation 9.8.14,  and finally v from equation 9.8.10 – all very straightforward. 

 

Exercise:  Set yourself a problem to make sure that you can carry through the calculation.  

Then write a computer program that will generate v and r as a function of t. 
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9.9   Orbital Elements and Velocity Vector 

 

In two dimensions, an orbit can be completely specified by four orbital elements.  Three 

of them give the size, shape and orientation of the orbit.  They are, respectively, a, e and 

  We are familiar with the semi major axis a and the eccentricity e.  The angle , the 

argument of perihelion, was illustrated in figure II.19, which is reproduced here as figure 

IX.7.  It is the angle that the major axis makes with the initial line of the polar 

coordinates.  Figure II.19 reminds us of the relation between the argument of perihelion 

, the argument of latitude and the true anomalyv.  We remind ourselves here of the 

equation to a conic section 

    ,
)cos(1cos1 





e

l

e

l
r

v
   9.9.1 

where the semi latus rectum l is a(1   e
2
) for an ellipse, and a(e

2
  1) for a hyperbola. 

For a hyperbola, the parameter a is usually called the semi transverse axis.  For a 

parabola, the size is generally described by the perihelion distance q, and l = 2q. 

 

The fourth element is needed to give information about where the planet is in its orbit at a 

particular time.  Usually this is T, the time of perihelion passage.  In the case of a circular 

orbit this cannot be used.  One could instead give the time when or the value of  at 

some specified time. 

 

 

 

 

 

  

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Refer now to figure IX.8. 
 

v 


 = v + 

FIGURE IX.7 
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We’ll suppose that at some time t we know the coordinates (x , y) or (r , ) of the planet, 

and also the velocity – that is to say the speed and direction, or the x- and y- or the radial 

and transverse components of the velocity.  That is, we know four quantities.  The 

subsequent path of the planet is then determined.  In other words, given the four 

quantities (two components of the position vector and two components of the velocity 

vector), we should be able to determine the four elements a, e,  and T.  Let us try. 
 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

The semi major axis is easy.   It’s determined from equation 9.5.31: 
 

    .
122










ar
GV M                 9.5.31  

 

If distances are expressed in AU and if the speed is expressed in units of  29.7846917 km 

s
1

,  G M = 1, so that the semi major axis in AU is given by 

 

    .
2 2rV

r
a


      9.9.2 

 

In other words, if we know the speed and the heliocentric distance, the semi major axis is 

known.  If  a turns out to be infinite – in other words, if  V
2 

= 2/r  –  the orbit is a 

parabola;  and if a is negative, it is a hyperbola.  For an ellipse, of course, the period in 

sidereal years is given by .32 aP   

 

From the geometry of figure IX.8, the transverse component of V is V sin (, which 

is known, the magnitude and direction of V being presumed known.  Therefore the 

FIGURE IX.8 

V 

(x , y)  or (r , ) 

r 

 
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angular momentum per unit mass is r times this, and, for an elliptic orbit, this is related to 

a and e by equation 9.5.27a: 

 

    .)1( 2eaGh  M      9.5.27a 

 

 

   r V sin (  =  .)1( 2eaG M     9.9.3 

 

Again, if distances are expressed  in AU and V in units of  29.7846917 km s
1

, G M = 1, 

and so 

 

   r V sin (  =  .)1( 2ea      9.9.4 

 

Thus e is determined. 

    

The equation to an ellipse is 

 

   ,
)cos(1

)1( 2






e

ea
r      9.9.5 

 

so, provided the usual care is take in choosing the quadrant, is now known.   

 

From there we proceed: 

 ),(
2

sin,
cos1

cos
cos, Tt

P
EeE

e

e
E 







 M

v

v
v  

and T is found.  The procedure for a parabola or a hyperbola is similar. 

 

Example: 

   At time t = 0, a comet is at x = +3.0,   y = +6.0 AU and it has a velocity with 

components 4.0,2.0  yx   times 29.7846917 km s
1

.  Find the orbital elements 

a, e,  and T.   (In case you are wondering, a particle of negligible mass moving around 

the Sun in an unperturbed circular orbit of radius one astronomical unit, moves with a 

speed of  29.7846917 km s
1

.  This follows from the definition of the astronomical unit of 

length.) 

 

Solution: 

Note in what follows that, although I am quoting numbers to only a few significant 

figures, the calculation at all times carries all ten figures that my hand calculator allows.  

You will not get exactly the same results unless you do likewise.  Do not prematurely 

round off.  But please let me know if you think I have made any actual mistakes.  I am 

using astronomical units of distance, sidereal years for time and speed in units of 29.8 km 

s
1

. 



 28 

  '34116,4472.0,'2663,708.6 oo  Vr  

Be sure to get the quadrants right! 

 

a = 10.19 AU      P  =  32.5       e = 0.6593         cos ()  =  0.21439 

 

And now we are faced with a dilemma.    =  102
o
 23'  or  257

o
 37'.  Which is it?  

This is a typical “quadrant problem”, and it cannot be ignored.  The two possible 

solutions give  =  321
o
 03'  or  165

o
 49', and we have to decide which is correct. 

  

    

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The two solutions are drawn in figure IX.9.  The continuous curve is the ellipse for = 

321
o
 03'  and the dashed curve is the curve for =  165

o
 49'.  I have also drawn in the 

velocity vector at (r , ), and it is clear from the drawing that the continuous curve with 

= 321
o
 03'  is the correct ellipse. We now have 

 

     = 321
o
 03'   

 

Is there a way of deducing this from the equations rather than going to the trouble of 

drawing the ellipses?  I offer the following.  I am going to find the slope (gradient) of 

each ellipse at the point P. The correct ellipse is the one for which '34116o , i.e. 

dy/dx =  2.  The equation to the ellipse is 

 


 

r 

FIGURE IX.9 

V 

P 

'18190and'34116slopes oo  

'03321o  

'49165o  
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                           ,
)cos(1

)1(

)cos(1

2









e

ea

e

l
r    9.9.6 

 

from which                   .
)]cos(1[(

)sin(
2




 e

le

d

dr
                                                 9.9.7 

 

The expression for )tan( 
dx

dy
 in polar coordinates is  

 

    









tan

tan

r

r

dx

dy

d
dr

d
dr

,     9.9.8 

 

and of course                            .22 yxr       9.9.9 

 

From these, I obtain, in our numerical example, 

 

for =  165
o
 49' ,    =  190º '18  ,    and  for =  321

o
 03' ,    =  116º '34 ,      

 

so clearly the latter is correct. 

 

From this point we go: 

 

   0.51817,  cos, 23' 102o  Ev  

 

and again we are presented with a dilemma, for this gives E  =   58
o
 47'  or  301

o
 13', and 

we have to decide which one is correct.  From the geometrical meaning of v and E, we 

can understand that they are equal when each of them is either 0
o
 or 180

o
.  Since v < 

180
o
,  E must also be less than 180

o
, so the correct choice is E  =   58

o
 47' = 1.0261 rad.  

From there, we have  

 
 

M  =  26
o
 29' =  0.46218 rad ,  T  =  2.392 sidereal years, 

 

and the elements are now completely determined. 

 

 

Problem:  Write a computer program, in the language of your choice, in which the input 

data are ,,,, yxyx    and the output is a, e,  and T.  You will probably want to keep it 

simple at first, and deal only with ellipses.  Therefore, if the program calculates that a is 

not positive, exit the program then. I’m not sure how you will solve the quadrant 

problems.  That will be up to your ingenuity.  Don’t forget that many languages have an 

ARCTAN2 function. Later, you will want to expand the program and deal with any set of 

,,,, yxyx   with a resulting orbit that may be any of the conic sections.  Particularly 

annoying cases may be those in which the planet is heading straight for the Sun, with no 
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transverse component of velocity, so that it is moving in a straight line, or a circular orbit, 

in which case T is undefined.   

 

Notice that the problem we have dealt with in this section is the opposite of the problem 

we dealt with in sections 9.6, 9.7 and 9.8.  In the latter, we were given the elements, and 

we calculated the position of the planet as a function of time.  That is, we calculated an 

ephemeris.  In the present section, we are given the position and velocity at some time 

and are asked to calculate the elements.  Both problems are of comparable difficulty.  

Perhaps the latter is slightly easier than the former, since we don’t have to solve Kepler’s 

equation.  This might give the impression that calculating the orbital elements of a planet 

is of comparable difficulty to, or even slightly easier than, calculating an ephemeris from 

the elements.  This is, in practice, very far from the case, and in fact calculating the 

elements from the observations is very much more difficult than generating an ephemeris.  

In this section, we have calculated the elements, given the position and velocity vectors.  

In real life, when a new planet swims into our ken, we have no idea of the distance or of 

the speed or the direction of motion.  All we have is a set of positions against the starry 

background, and the most difficult part of the problem of determining the elements is to 

determine the distance.   

 

The next chapter will deal with generating an ephemeris (right ascension and declination 

as a function of time) from the orbital elements in the real three-dimensional situation.  

Calculating the elements from the observations will come much later. 

 

9.10    Osculating Elements 

 

We have seen that, if we know the position and velocity vectors at a particular instant of 

time, we can calculate the orbital elements of a planet with respect to the Sun.  If the Sun 

and one planet (or asteroid or comet) are the only two bodies involved, and if the Sun is 

spherically symmetric and if we can ignore the refinements of general relativity, the 

planet will pursue that orbit indefinitely.  In practice, however, the orbit is subject to 

perturbations.  In the case of most planets moving around the Sun, the perturbations are 

caused mostly by the gravitational attractions of the other planets.  For Mercury, the 

refinements of general relativity are important.  The asphericity of the Sun is 

unimportant, although for satellites in orbit around aspherical planets, the asphericity of 

the planet becomes important.  In any case, for one reason or another, in practice, an orbit 

is subject to perturbations, and the planet does not move indefinitely in the orbit that is 

calculated from the position and velocity vectors at a particular time.  The orbit that is 

calculated from the position and velocity vectors at a particular instant of time is called 

the osculating orbit, and the corresponding orbital elements are the osculating elements. 

The instant of time at which the position and velocity vectors are specified is the epoch of 

osculation.  The osculating orbit touches (“kisses”) the real, perturbed orbit at the epoch 

of osculation.  The verb “to osculate”, from the Latin osculare, means “to kiss”. 

 

For the time being, then, we shall be satisfied with calculating an osculating orbit, and 

with generating an ephemeris from the osculating elements.  In computing practice, for 

asteroid work, people compute elements for an epoch of osculation that is announced by 
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and changed by the Minor Planet Center of the International Astronomical Union every 

200 days. 

 

 

9.11   Mean Distance in an Elliptic Orbit 

 

It is sometimes said that “a” in an elliptic orbit is the “mean distance” of a planet from 

the Sun.  In  fact a is the semi major axis of the orbit.  Whether and in what sense it might 

also be the “mean distance” is worth a moment of thought. 

It was the late Professor C. E. M Joad whose familiar answer to the weighty questions of 

the day was “It all depends what you mean by...”  And the “mean distance” depends on 

whether you mean the distance averaged over the true anomaly v or over the time.  The 

mean distance averaged over the true anomaly is 


 0

1 vdr , where .)cos1/( velr   If 

you are looking for some nice substitution to help you to integrate this, equation 2.3.16 

does very nicely, and you soon find the unexpected result that the mean distance, 

averaged over the mean anomaly, is b, the semi minor axis.   

 

On the other hand, the mean distance averaged over the time is rdt
P

P

0

2
   This one is 

slightly more tricky, but, following the hint for evaluating  


 0

1 vdr , you could try 

expressing r and v in terms of the eccentric anomaly.  It will take you a moment or so, 

but you should eventually find that the mean distance averaged over the time is 

).1( 2

2
1 ea   

 

It is often pointed out that, because of Kepler’s second law, a planet spends more time far 

from the Sun that it does near to the Sun, which is why we have longer summers than 

winters in the northern hemisphere.  An easy exercise would be to ask you what fraction 

of its orbital period does a planet spend on the sunny side of a latus rectum.  A slightly 

more difficult exercise would be to ask:  What fraction of its orbital period does a planet 

spend closer to the Sun than its mean (time-averaged) distance?   You’d first have to ask, 

what is the true anomaly when r  =  ?)1( 2

2
1 ea    Then you need to calculate the fraction 

of the area of the orbit.  Area in polar coordinates is .2

2
1 vdr  I haven’t tried this, but, if 

it proves difficult, I’d try and write r and v in terms of the eccentric anomaly E and see if 

that helps. 

 

 

9.12  The Astronomical Unit and the Gaussian Constant 

 

   The exact definition of the astronomical unit (of length or distance) has changed from 

time to time during its long history.  It was long thought of as the mean distance between 

Earth and Sun, though, as we have seen in Section 9.11, that depends a great deal on what 

one means by the “mean” distance. 
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  It has been a long time since there has been any mention of planet Earth in the definition 

of the astronomical unit.  When I first started putting these notes on the Web a few years 

ago, an astronomical unit was the radius of a circular orbit in which a body of negligible 

mass would orbit the Sun at an angular speed of 0.017 202 098 95 radians per mean solar 

day. 

 

   Since then (in 2012), the definition of the astronomical unit has changed so that 1 

astronomical unit is defined as 1.495 978 707 × 10
11

 .  The angular speed of a particle in 

a radius of 1 au is now very close to (but not by definition exactly equal to) 0.017 202 

098 95 radians per mean solar day. 

   This change in the definition should in principle require re-writing some sections of 

these notes.  I have not done so, so there may possibly be some inconsistencies in some 

places, but none, I think, of very great practical consequences.   

 

   The official abbreviation of astronomical unit is now (since 2012) au, not AU.  I cannot 

say that I am overjoyed by this.  In any case, the reader of these notes will find that 

sometimes I have used AU, and sometimes au.   I have not gone through the entire notes 

trying to make the change from AU to au. 

 

  Of all the fundamental physical constants, the universal constant of gravitation, G, is the 

one that has been measured to least precision.  When I last heard it was 6.67408 × 10
11

 

m
3
 kg

1
 s
2

, with an uncertainty of 0.00031 × 10
11

 m
3
 kg

1
 s
2

.  Thus G is known only to 

five significant figures.  Consequently the mass of the Sun (about 1.989 × 10
30

 kg) is 

known to no higher precision.  However, the product GM is known to very high precision 

]10)/()([ 10 GMGM .

 

  The angular speed of a body of negligible mass moving around the Sun in a circular 

orbit of radius 1 au would be 
0a

GM
, where a0 is the length of the au.  This quantity is 

(or was!) known as the Gaussian constant and is (or was!)given the symbol k. From the 

time of Gauss its value was believed to be about 0.017 202 098 95 radians per mean solar 

day. Between 1938 and 2012 this was its exact defined value. It has been used 

extensively in celestial mechanics, and is used frequently in these notes.  However, since 

a0 has (from 2012) had a defined value, k would appear to be redundant.  Indeed its 

continued use is now officially “deprecated” and removed from the official system of 

astronomical constants.   Nevertheless, you will still find it, from time to time, in these 

notes.     

 

  

 
 

 

 

 


