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CHAPTER 18 
SPECTROSCOPIC BINARY STARS 

 
 
 

18.1   Introduction 
 
There are many binary stars whose angular separation is so small that we cannot 
distinguish the two components even with a large telescope – but we can detect the fact 
that there are two stars from their spectra.  In favourable circumstances, two distinct 
spectra can be seen.  It might be that the spectral types of the two components are very 
different – perhaps a hot A-type star and a cool K-type star, and it is easy to recognize 
that there must be two stars there.  But it is not necessary that the two spectral types 
should be different; a system consisting of two stars of identical spectral type can still be 
recognized as a binary pair.  As the two components orbit around each other (or, rather, 
around their mutual centre of mass) the radial components of their velocities with respect 
to the observer periodically change.  This results in a periodic change in the measured 
wavelengths of the spectra of the two components.  By measuring the change in 
wavelengths of the two sets of spectrum lines over a period of time, we can construct a 
radial velocity curve (i.e. a graph of radial velocity versus time) and from this it is 
possible to deduce some of the orbital characteristics.  Often one component may be 
significantly brighter than the other, with the consequence that we can see only one 
spectrum, but the periodic Doppler shift of that one spectrum tells us that we are 
observing one component of a spectroscopic binary system.  Thus we have to distinguish 
between a double-lined spectroscopic binary system and a single-lined spectroscopic 
binary system. 
 
As with all topics in this series of notes, there has accumulated over centuries a vast body 
of experience, knowledge and technical facility, and this chapter is intended only as a 
first introduction to the basic principles.  But all of us, whether beginners or experienced 
practitioners, have to know these! 
 
The orbital elements of a binary star system are described in Chapter 17, and are a, e , i , 
Ω , ω and Τ.  However, on thinking about the meaning of the element Ω, the position 
angle of the ascending node, the reader will probably agree that we cannot tell the 
position angle of either node from radial velocity measurements of an unresolved binary 
star.  We have no difficulty, however, in determining which component is receding from 
the observer and which is approaching, and therefore we can determine which node is 
ascending and which is descending, and the sign of the inclination.  Thus we can 
determine some things for a spectroscopic binary that we cannot determine for a visual 
binary, and vice versâ.  If a binary star is both spectroscopic and visual (by which I mean 
that we can see the two components separately, and we can detect the periodic changes in 
radial velocity from the spectra of each), then we can determine almost anything we wish 
about the orbits without ambiguity.  But such systems are rare – and valuable.  Usually 
(unless the system is very close to us) the linear separation between the pairs of a visual 
binary is very large (that’s why we can see them separately) and so the speeds of the stars 
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in their orbits are too slow for us to measure the changes in radial velocity.  Typically, 
orbital periods of visual binary stars are of the order of years – perhaps many years.  Stars 
whose binarity is detected spectroscopically are necessarily moving fast (typically their 
orbital periods are of the order of days), which means they are close together – too close 
to be detected as visual binaries. 
 
Of course, in addition to the periodic variations in radial velocity, which give rise to 
periodic Doppler shifts in the spectra, the system as a whole may have a radial velocity 
towards or away from the Sun.  The radial velocity of the system – or its centre of mass – 
relative to the Sun is called, naturally, the systemic velocity, and is one of the things we 
should be able to determine from spectroscopic observations.  I shall be using the symbol 
V0 for the systemic velocity, though I have seen some authors use the symbol γ and even 
refer to it as the “gamma velocity”.  [By the way have you noticed the annoying tendency 
of the semi-educated these days to use technical words that they don’t know the meaning 
of?  An annoying example is that people often talk of “systemic discrimination”, 
presumably because they think that the word “systemic” sounds scientific, when they 
really mean “systematic discrimination”.]  We must also bear in mind that the actual 
observations of the star are made not from the Sun, but from Earth, and therefore 
corrections must be made to the observed radial velocity for the motion of Earth around 
the Sun as well as for the rotation of Earth around its axis.   
 
 
18.2   The Velocity Curve from the Elements 
 
In this section, we calculate the velocity curve (i.e. how the radial velocity varies with 
time) to be expected from a star with given orbital elements.  Of course, the practical 
situation is quite the opposite: we observe the velocity curve, and from it, we wish to 
determine the elements.  We’ll deal with that later. 
 
I’m going to use the convenient phrase “plane of the sky” to mean a plane tangent to the 
celestial sphere, or normal to the line of sight from observer to the centre of mass of the 
system.  The centre of mass C of the system, then, is stationary in the plane of the sky. 
The plane of the orbits of the two stars around their centre of mass is inclined at an angle 
i to the plane of the sky.  I am going to follow the adventures of star 1 about the centre of 
mass C.  And I am going to assume that Chapter 9 is all fresh in your mind! 
 
The semi major axis of the orbit of star 1 about C is a1, and the semi latus rectum 
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In figure XVIII.1 we see the star 1 (labelled S) in orbit around C, and at some time the 
argument of  latitude of S is θ, and its distance from C is r1.  Its distance above the plane 
of the sky is z, and .sin1 β= rz   The inclination of the plane of the orbit to the plane of 
the sky is i, and, in order to find an expression for β  in terms of the argument of latitude 
and the inclination, I’m just going to draw, in figure VIII.2, these angles on the surface of 
a sphere.  The sphere is centred at C, and is of arbitrary radius. 
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We see from this triangle that .sinsinsin θ=β i   Also, the argument of latitude 

v+ω=θ , (ω  =  argument of periastron, v = true anomaly), and so 
 
    .)sin(sin1 v+ω= irz     18.2.2 
 
At this moment, the radial velocity V of star 1 relative to the Sun is given by 
 
    ,0 zVV &+=       18.2.3 
 
where V0 is the radial velocity of the centre of mass C, or the systemic velocity.  
Differentiation of equation 18.2.1 with respect to time gives 
 
         [ ].)cos()sin(sin 11 vvv +ω++ω= &&& rriz    18.2.4 
 
I would like to express this entirely in terms of the true anomaly v instead of v and r1.  
The equation to the ellipse is 
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where l1 is the semi latus rectum, and so 
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which helps a bit.  Thus we have 
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We can also make use of equation 18.2.1, and, with some help from equation 18.2.5, we 
obtain 
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K1, so that 
 
   ( ),cos)cos(1 ω++ω= eKz v&     18.2.11 
 
and so the radial velocity (including the systemic velocity) as a function of the true 
anomaly and the elements is given by 
 
   ( ).cos)cos(10 ω++ω+= eKVV v    18.2.12 
 
You can see that z& varies between ,)cos1()cos1( 11 ω−−ω+ eKeK and and that K1 is 
the semi-amplitude of the radial velocity curve. 
 
Equation 18.2.12 gives the radial velocity as a function of the true anomaly.  But we 
really want the radial velocity as a function of the time.  This is easy, or at least 
straightforward, because we already know how to calculate the true anomaly as a 
function of time.  I give here the relevant equations.  I have retained their original  
numbering, so that you can locate them in the earlier chapters.  
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I show in figures XIII.3 and XIII.4 two examples of velocity curves.  Figure XIII.3 is 
computed for e = 0.5, ω = 0o.  Figure XIII.4 is computed for e = 0.75, ω = 90o.  
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FIGURE XVIII.3

e = 0.5   ω = 0
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FIGURE XVIII.4

e = 0.75   ω = 90o

 
 
In order to draw these two figures, it will correctly be guessed that I have written a 
computer program that will calculate equations 9.6.4, 9.6.5, 2.3.16 and 18.2.12 in order, 
for the chosen values of e and ω.  This is perfectly straightforward except that equation 
9.6.5, Kepler’s equation, requires some iteration.  The solution of Kepler’s equation was 
discussed in Section 9.6.  If I were seriously going to be interested in computing the 
orbits of spectroscopic binary stars I would at this stage use this program to generate and 
print out 360 radial velocity curves for 36 values of ω going from 0o to 350o and ten 
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value of e going from 0.0 to 0.9.   Then, when I had a real radial velocity curve of a real 
spectroscopic binary star to analyse, I would be able to compare it with my set of 
theoretical curves and hence be able to get a least a rough first approximation to the 
eccentricity and argument of periastron. 
 
I have drawn figures XVIII.3 and 4 for a systemic velocity V0 of zero.  A real star will not 
have a zero systemic velocity and indeed one of the aims must be to determine the 
systemic velocity.    
 
Thus in figure XVIII.5 I have drawn a radial velocity curve (I’m not saying what the 
values of ω and e are), but this time I have not assumed a zero systemic radial velocity.  It 
will be noticed that the observed star spends much longer moving towards us than away 
from us.  If we draw a horizontal line Radial Velocity = V0 across the figure, this line 
must be drawn such that the area between it and the radial velocity curve above it is equal 
to the area between it and the radial velocity curve below it. How to position this line?  
That is a good question.  If nothing else, you can count squares on graph paper.  That at 
least will give you a first rough idea of what the systemic velocity is.   
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If you have a double-lined binary, you will have two radial velocity curves.  They are not 
quite mirror images of each other; the semiamplitude of each component is inversely 
proportional to its mass.  But the systemic velocity is then easy, because the two curves 
cross when the radial velocity of each is equal to the radial velocity of the system. 
 
 
18.3    Preliminary Elements from the Velocity Curve 
 
We have seen in the previous section how to calculate the velocity curve given the 
elements.  The more practical problem is the inverse:  In this section, we assume that we 
have obtained a velocity curve observationally, and we want to determine the elements.  
The assumption that we have obtained a precise radial velocity curve is, of course, rather 
a large one; but, for the present, let us assume that this has been done and we are trying to 
determine what we can about the orbit.  We limit ourselves in this section to determining 
from the curve only very rough first estimates of the elements.  This will also serve the 
purpose of establishing what information is obtainable in principle from the velocity 
curve.  A later section will deal with refining our estimates and obtaining precise values. 
 
The assumption that we have already obtained the radial velocity curve implies that we 
already know the period P of the orbit. 
 
The radial velocity curve is given by equation 18.2.12: 
 
   ( ).cos)cos(10 ω++ω+= eKVV v    18.2.12 
 
Here ),,( eTtvv = .  Thus, from the radial velocity curve, we should be able to 
determine V0 ,  K1, e, ω and T.  We shall remind ourselves a little later of the meaning of 
K1, but in the meantime we can note that the radial velocity varies between a maximum 
of  )1cos(10max +ω+= eKVV and a minimum of .)1cos(10min −ω+= eKVV   The 
difference between these two is 2K1.  Thus K1 is the semiamplitude of the radial velocity 
curve, regardless of the shape of the curve and the values of ω and e, and so (again 
assuming that we have a well-determined radial velocity curve) K1 can be readily 
determined. 
 
The systemic ve locity V0 is such that the area under the radial velocity curve above it is 
equal to the area above the radial velocity curve below it.  Thus at least a rough 
preliminary estimate can be made of V0, regardless of the shape of the curve and of the 
values of ω and e. 
 
The shape of the radial velocity curve (as distinct from its amplitude and phase) is 
determined by ω and e.  As suggested in the previous section, we can prepare a set of, 
say, 360 theoretical curves covering 36 values of ω from 0 to 350o and 10 values of e 
from 0.0 to 0.9.  (By making use of symmetries, one need cover ω only from 0 to 90o, but 
computers are so fast today that one might as well go from 0 to 350o)  By comparing the 
observed curve with these theoretical curves, we get a first estimate of ω and e.  We 
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could then I suppose, take advantage of today’s fast computers and prepare a set of 
velocity curves with much finer intervals around one’s first estimate.  This would not, of 
course, allow us to calculate definitive precise values of ω and e, but it would give us a 
pretty good first guess. 
 
I have already pointed out that  
 
    )1cos(10max +ω+= eKVV    18.3.1 
 
and    .)1cos(10min −ω+= eKVV    18.3.2 
 
From these we see that 
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This allows us to determine ωcose without reference to the slightly uncertain V0, and we 
will want to see that our estimates of e and ω from the shape of the curve are consistent 
with equation 18.3.3. 
 
The velocity curve also allows us to determine T, the time of periastron passage.  For 
example, the sample theoretical velocity curves I have drawn in figures XIII.3, 4 and 5 all 
start at periastron at the left hand limit of each curve. 
 

Note that we have been able to determine K1, which is 
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1
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and n, which is 2π/P.  This means that we can determine a1sin i, but that is as far as we 
can go without additional information;  we cannot separate a1 from i. 
 
 
18.4   Masses 
 
In Section 18.3 we saw that we could obtain approximate values of  P, V0, K1, e, ω and T.  
But, apart from its being the semi-amplitude of the velocity curve, we have forgotten the 
meaning of K1.  We remind ourselves.  It was defined just after equation 18.2.10 as 
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Here n is the mean motion 2π/P.   Thus, since we know P (hence n), e and K1, we can 
determine a1 sin i – but we cannot determine a1 or i separately. 
 
Now the mean motion n is given just before equation 18.2.1 as  
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(A reminder:  The subscript 1 refers, for a single- lined binary, to the star whose spectrum 
we can observe, and the subscript 2 refers to the star that we cannot observe.)   All of this 
put together amounts to 
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Thus we can determine the mass function .
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separate masses, or their ratio or sum, or the inclination. 
 
In recent years, it has become possible to measure very small radial velocities of the order 
of a few metres per second, and a number of single- lined binary stars have been detected 
with very small values of K1; that is to say, very small radial velocity amplitudes.  These 
could, of course, refer to stars with small orbital inclinations, so that the plane of the orbit 
is almost perpendicular to the line of sight.  It has been held, however, (on grounds that 
are not entirely clear to me) that many of these single-lined binary stars with small radial 
velocity variations are actually single stars with a planet (or planets) in orbit around them.  
The mass of the star that we can observe (m1) is very much larger than the mass of the 
planet, which we cannot observe (m2).  To emphasize this, I shall use the symbol M 
instead of m1 for the star, and m instead of m2 for the planet.  The mass function that can 
be determined is, then 
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If m (the mass of the unseen body – the supposed planet) is very much smaller than the 
star (of mass M) whose radial velocity curve has been determined, then the mass function 
(which we can determine) is just 
    

     .sin
2
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And if, further, we have a reasonable idea of the mass M of the star (we know its spectral 
type and luminosity class from its spectrum, and we can suppose that it obeys the well-
established relation between mass and luminosity of main-sequence stars), then we can 
determine m3sin3i and hence, of course m sini.  It is generally recognized that we cannot 
determine i for a spectroscopic binary star, and so it is conceded that the mass of the 
unseen body (the supposed planet) is uncertain by the unknown factor sin i. 
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However, the entire argument, it seems to me, is fundamentally and rather blatantly 
unsound, since, in order to arrive at m sin i and to hence to claim that m is of typically 
planetary rather than stellar mass, the assumption that m is small and i isn’t has already 

been made in approximating the mass function by .sin
2

33

M
im

  Unless there is additional 

evidence of a different kind, the observation of a velocity curve of small amplitude is not 
sufficient to indicate the presence of an unseen companion of planetary mass.  Equally 
well (without additional evidence) the unseen companion could be of stellar mass and the 
orbital inclination could be small. 
 
If the system is a double-lined spectroscopic binary system, we can determine the mass 

function for each component.  That is, we can determine 2
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The reader should now convince him- or herself that, since we now know these two mass 
functions, we can determine the mass ratio and we can also determine im 3

1 sin and 
im 3

2 sin separately.  But we cannot determine m1 , m2 or i. 
 
 
18.5   Refinement of the Orbital Elements 
 
By finding the best fit of the observational values of radial velocity to a set of theoretical 
radial velocity curves, we have by now determined, if only graphically, a preliminary 
estimate of the orbital elements.  We now have to refine these estimates in order to obtain 
the best set of elements that we can from the data. 
 
Let us remind ourselves of the theoretical equa tion (equation 18.2.12) that we developed 
for the radial velocity: 
 
   ( ).cos)cos(10 ω++ω+= eKVV v    18.5.1  
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and    ./2 Pn π=       18.5.3 
 
Also v is a function of the time and the elements T and e, through equations 9.6.4, 9.6.5 
and 2.3.16 cited in Section 18.2.  Thus equation 18.5.1 expresses the radial velocity as a 
function of the time (hence true anomaly) and of the orbital elements V0 , K1 , ω , e , n 
and T: 
 
   ).,,,,,;( 10 TneKVtVV ω=     18.5.4 
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For each observation (i.e for each time t), we can use our preliminary elements to 
calculate what the radial velocity should be at that time, and compare it with the observed 
radial velocity at that time.  Our aim is going to be to adjust the orbital elements so that 
the sum of the squares of the differences Vobs −  Vcalc is least. 
 
If we were to change each of the elements of equation 18.4.4 by a little, the 
corresponding change in V would be, to first order, 
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When the differentiations have been performed, this becomes 
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In this equation, δV is Vobs −  Vcalc.   There will be one such equation for each observation, 
and hence, if there are N  ( > 6) observations there will be N equations of condition.  
From these, six normal equations will be formed in the manner described in Section 1.8 
and solved for the increments in the orbital elements.  These are then subtracted from the 
preliminary elements to form an improved set of elements, and the process can be 
repeated until there is no significant change. 
 
This process can be highly automated by computer, but in practice the calculation is best 
overseen by an experienced human orbit computer.  While a computer may produce a 
formal solution, there are a number of situations that may result in a solution that is 
unrealistic or even quite wrong.  Much depends on the distribution of the observations, 
and on whether the observational errors are normally distributed.  Also, if the system has 
been observed for a long time over many orbital periods, the period may be known to 
great precision, and the investigator may prefer to keep P (hence n) as a fixed, known 
constant during the calculation.  Or again, if the period is short, the investigator may wish 
(perhaps on the basis of additional knowledge) to suppose that the two stars are close 
together and that the orbits of the components are circular, and hence fix e = 0 throughout 
the calculation.  I am always a little uneasy about making an assumption that some 
element has some desired value; it seems to me that, once one starts this, one might as 
well assume values for all of the elements.  This would have the advantage that one need 
not make any observations or do any calculations and can just assume all the results 
according to personal taste.  Whether an assumption that P or e can be held as fixed and 
known, or whether one should let the computer do the entire calculation without any 
intervention, is something that requires the experience of someone who has been 
calculating orbits for years.  
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18.6   Finding the Period 
 
The first five sections of this chapter have dealt with calculating the relations between the 
orbital elements and the radial velocity curve, and that really completes what is necessary 
in a book whose primary focus is on celestial mechanics.  In practice, the celestial 
mechanics part is the least of the difficulties.  The equations may look forbidding at first 
sight, but at least the equations are unambiguous and clear cut.  There are lots of 
problems of one sort of another that in practice occupy much more of the investigator’s 
time than merely the computation of the orbit, which nowadays is done in the blink of an 
eye.  I mention a few of these only briefly in the remaining sections, partly because they 
are not particularly concerned with celestial mechanics, and partly because my personal 
practical experience with them is limited. 
 
If you were able to measure the radial velocity every five minutes throughout a complete 
period, there would be no difficulty in obtaining a nice velocity curve.  In practice, 
however, you measure a radial velocity “every so often” – with perhaps many orbital 
periods between consecutive observations.  Finding the period, then, is obviously a bit of 
a problem.  (That there is an initial difficulty in finding the period is ultimately 
compensated for in that, once a preliminary value for the period is found, it can often be 
calculated to great precision, if the star has been observed over many decades.)    
 
If you have a large number of observations spread out over a long time, it may be 
possible to identify several observations in which the radial velocity is a maximum, and 
you might then assume that the least time between consecutive maxima is an integral 
number of orbital periods.  Of course you don’t know what this integral number is, but 
you might be able to do a little better.  For example, you might find that there are 100 
days between two consecutive maxima, so that there are an integral number of periods in 
100 days.  You might also find that two other maxima are separated by 110 days.  You 
now know that there are an integral number of periods in 10 days – which is a great 
improvement. 
 
A difficulty arises if you observe the star at regular and equal intervals.  While there is an 
obvious answer to this – i.e. don’t do it – it may not in practice be so easy to avoid.  For 
example: if you always observe the star when it is highest in the sky, on the meridian, 
then you are always observing it at an integral number of sidereal days.  You then get a 
stroboscopic effect.  Thus, if you have a piece of machinery that is cycling many times 
per second, you can illuminate it stroboscopically with a light that flashes periodically, 
and you can then see the machinery moving apparently much more slowly than it really 
is. The same thing happens if you observe a spectroscopic binary star at precisely regular 
intervals – it will appear to have a much longer period that is really the case. 
 
It is easier to understand the effect if we work in terms of frequency (reciprocal of the 
period) rather than period.  Thus let ν  ( = 1/P) be the orbital frequency of the star and let 

)'/1(' Tn = be the frequency of observation (the frequency of the stroboscope flash, to 
recall the analogy).  Then the apparent orbital frequency 'ν  of the star is given by 
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    ,|'| mn=ν−ν      18.6.1 
 
where m is an integer.  Returning to periods, this means that you can be deceived into 
deducing a spurious period 'P given by 
 

    .11
'

1
mnPP

±=      18.6.2 

 
You don’t have to make an observation every single sidereal day to experience this 
stroboscopic effect.  If your stroboscope is defective and it misses a few flashes, the 
machinery will still appear to slow down.  Likewise, if you miss a few observations, you 
may still get a spurious period. 
 
Once you have overcome these difficulties and have determined the period, in order to 
construct a radial velocity curve you will have to subtract an integral number of periods 
from the time of each observation in order to bring all observations on to a single velocity 
curve covering just one period. 
 
 
18.7   Measuring the Radial Velocity 
 
In a text primarily concerned with celestial mechanics, I shan’t attempt to do justice to 
the practical details of measuring a spectrum, but one or two points are worth mentioning, 
if only to draw the reader’s attention to them. 
 
To measure the radial velocity, you obtain a spectrum of the star and you measure the 
wavelength of a number of spectrum lines (i.e. your measure their positions along the 
length of the spectrum) and you compare the wavelengths with the wavelengths of a 
comparison laboratory spectrum, such as an arc or a discharge tube, adjacent to the stellar 
spectrum.  If the spectra are obtained on a photographic plate, the measurement is done 
with a measuring microscope.  If they are obtained on a CCD, there is really no 
“measurement” in the traditional sense to be done – a computer will read the pixels on 
which the lines fall.   If the stellar lines are displaced by ∆λ from their laboratory 
values λ, then the radial velocity v is given simply by 
 

     .
λ
λ∆

=
c
v

     18.7.1 

 
Note that this formula, in which c is the speed of light, is valid only  if v << c.  This is 
certainly the case in the present context, though it is not correct for measuring the radial 
velocities of distant galaxies.  (The z in the galaxy context is the measured ∆λ/λ, and 
knowledge of both relativity and cosmology is necessary to translate that correctly into 
radial velocity.) 
 
The accurate measurement of wavelengths in stellar spectra has its own set of difficulties.  
For example, the spectrum lines of early type stars are broad and diffuse as a result of the 
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high temperatures and quadratic Stark broadening of the lines, as well as the rapid 
rotation of early type stars.  The lines of late-type stars are numerous, closely crowded 
together and blended.  Thus there are difficulties at both ends of the spectral sequence. 
 
One very nice technique for measuring radial velocities involves making use of the entire 
spectrum rather than the laborious process of measuring the wavelengths of individual 
lines.  Suppose that you are, for example observing a G-type star.  You will prepare an 
opaque mask on which are inscribed, in their correct positions, transparent lines 
corresponding to the lines expected of a G-type star.  During observation, the spectrum of 
the star is allowed to fall on this mask.  Some light gets through the transparent inscribed 
lines on the mask, and this light is detected by a photoelectric cell behind the mask.  The 
mask is moved parallel to the spectrum until the dark absorption lines in the stellar 
spectrum fall on the transparent inscribed lines on the mask, and at this moment the 
amount of light passing through the mask and reaching the photoelectric cell reaches a 
sharp minimum.  Not only does this technique make use of the whole spectrum, but the 
radial velocity is obtained immediately, in situ, at the telescope.  
 
I end by briefly mentioning two little problems that are well known to observers, known 
as the rotation effect and the blending effect. 
 
If the orbital inclination is close to 90o, the system, as well as being a spectroscopic 
binary, might also be an eclipsing binary.  In this case, we can in principle get a great 
deal of information about the system – but there is a danger that the information might 
not be correct.  For example, suppose that the system is a single-lined binary, and that the 
bright star (the one whose spectrum can be seen) is a rapid rotator and is being partially 
eclipsed by the secondary.  In that case we can see only part of the surface of the primary 
star – perhaps that part of the star that is (by rotation) moving towards us.  This will give 
us a wrong measurement of the radial velocity. 
 
Or again, suppose that we have a double- lined binary.  For much of the orbital period, the 
lines from one star may be well separated from those of the other.  However, there comes 
a time when the two sets of lines approach each other and become partially blended.   I 
show in figure XVIII.6 two partially blended gaussian profiles.  You will see that the 
minima of the blended profile, shown as a dashed curve, occur closer together than the 
true minima of the individual lines.  If you measure the minima of the blended profile, 
this will obviously give the wrong radial velocity and will result in a distortion of the 
velocity curve and corresponding errors in the orbital elements.  Many years ago I made 
some calculations on the amount of the blending effect for gaussian and lorentzian 
profiles for various separations and relative intensities.  These calculations were 
published in Monthly Notices of the Royal Astronomical Society, 141, 43 (1968). 
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FIGURE XVIII.6

  


