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CHAPTER 15 

SPECIAL PERTURBATIONS 

 

   [This chapter is under development and it may be a rather long time before it is 

complete.  It is the intention that it may deal with special perturbations, differential 

corrections, and the computation of a definitive orbit.  However, it will probably proceed 

rather slowly and whenever the spirit moves me.] 

 

15.1  Introduction 

 

  Chapter 14 dealt with the subject of general perturbations.  That is, if the perturbation R 

can be expressed as an explicit algebraic function, the rates of change of the orbital 

elements with time can be calculated by explicit algebraic expressions known as 

Lagrange’s Planetary Equations.  By way of example we derived Lagrange’s equations 

for the case of a satellite in orbit around an oblate planet, in which the departure of the 

gravitational potential from that of a spherically symmetric planet could be expressed in 

simple algebraic form.   

 

  Lagrange’s equations are important and interesting from a theoretical point of view.  

However, in the practical matter of calculating the perturbations of the orbit of an 

asteroid or a comet resulting from the gravitational field of the other planets in the solar 

system, that is not how it is done.  The perturbing forces are functions of time which must 

be computed numerically rather than from a simple formula. Such perturbations are 

generally referred to as special perturbations.  While long-established computer 

programs, such as RADAU15, may be available to carry out the necessary rather long 

computations without the user having to understand the details, it is the intention in this 

chapter to indicate in principle how such a program may be developed from scratch.  

 

  Jupiter is by far the greatest perturber, but for high-precision work it may be necessary 

to include perturbations from the other major planets, Mercury to Neptune.  Pluto may 

also be considered.  However, it is now known that Pluto is a good deal less massive than 

it was once estimated to be, so it is a nice question as to whether or not to include Pluto.  

Besides, Pluto is probably not the most massive of the transneptunian objects  - Eris is 

believed to be a little larger and hence possibly more massive.  The main belt object 

Ceres may be more important than either of these. The total mass of the remaining 

asteroids is usually considered negligible in this context. 

 

  It will be evident that any computer program intended to compute special perturbations 

will have to include, as subroutines, programs for calculating, day-by-day, the positions 

and distances of each of the perturbing planets to be included in the computation.  

Computer programs are available to provide these.  In what follows, it will be assumed 

that the reader has access to such a program (I do!) or is otherwise able to compute the 

planetary positions, and we move on from there to see how we calculate the planetary 

perturbations. 
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15.2  Orbital elements and the position and velocity vector 

 

   The six elements used to describe the orbit of an asteroid are the familiar 

 

Tiea ,,,,, ωΩ  

 

   Because of the precession and nutation of Earth, the angular elements must, of course, 

be referred to a particular equinox and equator, usually chosen to be that of the standard 

epoch J2000.0, which means 12h 00m TT on 2000 January 01.   (The “J” stands for 

“Julian Year”.) 

 

   The element T is the instant of perihelion passage.  If the orbit is nearly circular, the 

instant of perihelion passage is ill-defined, and if the orbit is exactly circular, it is not 

defined at all.  In such cases, instead of T, we may give either the mean anomaly M0 or 

the mean longitude L0 at a specified epoch (see Chapter 10).  This epoch need not be (and 

usually is not) the same as the standard epoch referred to in the previous paragraph. 

 

      Suppose that, at some instant of time (to be known, for reasons to be explained later, 

as the epoch of osculation), the heliocentric ecliptic coordinates of an asteroid or comet in 

an elliptic orbit are ),,( ZYX  and the components of the velocity vector are ),,( ZYX &&& .  

We have shown in Chapter 10, Section 10.10) how to calculate, from these, the six 

elements Tiea ,,,,, ωΩ  of the orbit at that instant.  Conversely, given the orbital 

elements, we could reverse the calculation and calculate the components of the position 

and velocity vectors.   Thus an orbit may equally well be described by the six numbers 

 

ZYXZYX &&& ,,,,, . 

 

That is to say the components, at some specified instant of time, of the position and 

velocity vector in heliocentric ecliptic coordinates. 

 

    We could equally well give the components, at some instant of time, of the position 

and velocity vectors in heliocentric equatorial coordinates: 

 

ζηξζηξ &&& ,,,,,  

 

    We saw in Section 10.9 that yet another set of six numbers,  

 

zzyyxx QPQPQP ,,,,,  

 

will also suffice to describe an orbit. 

 

   It is assumed here that the reader is familiar with all four of these alternative sets of 

elements, and can convert between them.   Indeed, before reading on, it may be a useful 

exercise to prepare a computer program that will convert instantly between them.  This 
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may not be a trivial task, but I strongly recommend doing so before reading further. The 

facility to convert instantly between one set and another is an enormous help.  To convert 

between ecliptic and equatorial coordinates, you will need, of course, the obliquity of the 

ecliptic at that instant - it varies, of course, with time.) 

 

  The reader will have noticed the frequent occurrence of the phrase “at that instant” in 

the previous paragraphs.    If the asteroid were not subject to perturbations from the other 

planets, it would retain its orbital elements forever.  However, because of the planetary 

perturbations, the elements Tiea ,,,,, ωΩ  computed from ZYXZYX &&& ,,,,, or from 

ζηξζηξ &&& ,,,,,  at a particular instant of time are valid only for that instant.  The 

elements will change with time.  Therefore in quoting the elements of an asteroidal orbit, 

it is entirely necessary to state clearly and without ambiguity the instant of time to which 

these elements are referred.  The unperturbed orbit, and the real perturbed orbit, will 

coincide in position and velocity at that instant. The real and unperturbed orbits will 

“kiss” or osculate at that instant, which is therefore known as the epoch of osculation. 

 

  The elements Tiea ,,,,, ωΩ  calculated for a particular epoch of osculation may suffice 

for the computation of an ephemeris for weeks to come.  But after months the observed 

position of the object will start to deviate from its calculated ephemeris position.  It is 

then necessary to calculate a new set of elements for a later epoch of osculation.  

Depending on circumstances, orbital elements may be recalculated every year, or every 

200 days or every 40 days or every 10 days, or at some other convenient interval. 

 

  It will be the purpose in what follows to do the following.  Given that at some instant 

(i.e. at some epoch of osculation) the elements are Tiea ,,,,, ωΩ  (or the position and 

velocity vectors are ζηξζηξ &&& ,,,,, ), how do we calculate the elements at some 

subsequent epoch, taking into account planetary perturbations? 

 

   As pointed out at the end of Section 15.1, we shall need to know the positions and 

distances of the major planets as a function of time.  We suppose that we have 

subroutines in our program that we can call upon to calculate these data at any date.  As 

mentioned above, the equations of motion can be written in equatorial or ecliptic 

coordinates, though it is more likely that, for the positions of the major planets, we shall 

have available their positions in equatorial coordinates. 

 

15.3  The equations of motion 

 

    First let us consider the motion of an asteroid under the gravitational influence of the 

Sun alone, ignoring perturbations from the other planets. We take the mass of the Sun to 

be M and the mass of the asteroid to be m.  The force on the asteroid − and, of course, by 

Newton’s third law, the force on the Sun − is 
2r

GMm
, where r is the distance between the 

two bodies.  The two bodies are, of course, in motion around their common centre of 

mass, which, in the case of an asteroid, is very close to the centre of the Sun. 
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   The acceleration of the asteroid towards the centre of mass is 
2r

GM
, and the 

acceleration of the Sun towards the centre of mass is 
2r

Gm
.  If we refer the motion to the 

Sun as origin, we see that the acceleration of the asteroid towards the Sun is  
2

)(

r

mMG +
.  

In vector form we may write this as 

 

rr
3

)(

r

mMG +
−=&& ,     15.3.1 

 

where r is a vector directed from the Sun towards the asteroid, with heliocentric 

rectangular components ),,( zyx .  These heliocentric coordinates could be either ecliptic 

coordinates, for which we have hitherto used the symbols ),,( ZYX  ;  or they could be 

equatorial coordinates, for which we have hitherto used the symbols ),,( ζηξ .  The 

symbols ),,( zyx  will be understood here to refer to either, at our convenience.   It is 

more likely that we shall have available the equatorial rather than the ecliptic 

coordinates. The direction cosines of r are 








r

z

r

y

r

x
,,  , and consequently the 

rectangular components of equation 15.3.1 are 
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−=&&      15.3.2 
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−=&&      15.3.4 

 

These are the equations of motion of the asteroid with respect to the Sun as origin.  The 

quantities )(,,, 222
zyxrzyx ++=  are, of course, functions of time.   The solution 

of these equations describe the elliptical (or other conic section) orbits of the asteroid and 

all the other properties that we have discussed in previous chapters.  

 

   If we are using ecliptic coordinates ),,( ZYX , the X-axis is directed towards the First 

Point of Aries, the Y-axis is directed along the direction of increasing ecliptic longitude, 

and the Z-axis is directed towards the north pole of the ecliptic. 

 

   If we are using equatorial coordinates ),,( ζηξ , the ξ-axis is directed towards the First 

Point of Aries, the η-axis is directed along the direction of 6 hours right ascension, and 
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the ζ-axis is directed towards the north celestial pole.  The Earth will be on the X- or ξ- 

axis in September (not March). 

 

 

  Now let us introduce a third body, a perturbing planet, such as, perhaps, Jupiter.  We’ll 

suppose that its mass is m1, that its distance from the Sun is r1 and its distance from the 

asteroid is ρ1 (see figure XV.I, in which S is the Sun, A is the asteroid, and P is the 

perturbing planet).   This is now a three-body problem and a general solution in terms of 

algebraic functions is not possible, and it has to be solved by numerical computation. 

 

         

 

 

   

 

 

   

 

 

 

 

 

 

 

   

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   In addition to the accelerations of the asteroid towards the Sun and the Sun towards the 

asteroid described on page 3, used in developing equations 15.3.1-4, we now have also to 

consider the accelerations of the asteroid and the Sun towards the perturbing planet, as 

indicated in figure XV.II. 
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The x-components of these are  
1

1

2
1

1

ρ

−
×

ρ

xxGm
     and    

1

1

2
1

1

r

x

r

Gm
× , and so the additional 

acceleration of A, relative to the Sun, in the X-direction is 









−

ρ

−
3

1

1

3
1

1
1

r

xxx
Gm , and this 

has now to be added to the right hand side of equation 15.3.2: 

 











−

ρ

−
+

+
−=

3
1

1

3
1

1
13

)(

r

xxx
Gmx

r

mMG
x&&                     15.3.5 

 

Neither G nor M are known to great precision, but the product GM is known to very great 

precision.  Indeed in computational practice we make use of the Gaussian constant 

0a

GM
k =  , where a0 is the astronomical unit of length.  This constant has dimension 

T
−1

 and is equal to the angular velocity of a particle of negligible mass in circular orbit of 

radius 1 au around the Sun, which is 0.017 202 098 95 radians per mean solar day.  

Therefore in computational practice, equation 15.3.5 is generally written as 
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in which the units of mass, length and time are, respectively, solar mass, astronomical 

unit, and mean solar day.   Recall that m is the mass of the asteroid whose orbit we are 

computing, and m1 is the mass of the perturbing planet, and that the origin of coordinates 

is the centre of the Sun.   Similar equations apply to the y- and z-components: 

 











−

ρ

−
+

+
−=

3
1

1

3
1

1
1

2

3

2 )1(

r

yyy
mky

r

mk
y&& ,                                 15.3.7 

 











−

ρ

−
+

+
−=

3
1

1

3
1

1
1

2

3

2 )1(

r

zzz
mkz

r

mk
z&& .                                   15.3.8 

 

If we add the perturbations from all the major planets from Mercury (M) to Neptune (N), 

these equations become, of course, 

 

∑
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and similar equations in y and z. 
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   In the case of an asteroid or a comet, it may be permissible to neglect m in this equation 

(i.e. set m = 0), but not, of course, m1.  We shall do that here, so the equation of motion in 

x becomes 
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with similar equations in y and z. 

 

   The x,  xi. ρi, ri, etc., are numerical data, which have to be supplied by independent 

computations (subroutines) for all the planets.  As stated at the end of the previous 

Section, we suppose that we have subroutines in our program that we can call upon to 

calculate these data at any date.  We also pointed out that the equations of motion are 

valid for either ecliptic or equatorial coordinates, although the coordinates of the planets 

are more likely to be available is equatorial rather than ecliptic coordinates.   They are all 

functions of time, so that, in effect, we have to develop numerical methods for integrating 

equations of the form, where )(tf  is not an algebraic expression, but rather a table of 

numerical values. 

 

            ).(tfx =&&            15.3.11 

 

That is to say                                     )(tf
dt

xd
=

&
.                                                 15.3.12 

 

We suppose that we know x&  at the epoch of osculation.   Then we can find x&  at any 

subsequent date by any standard technique of numerical integration, such as Simpson’s or 

Weddle’s Rules, or Gaussian quadrature, or by a Runge-Kutta process.  Thus we now 

have a table of x&  as a function of time: 

 

                                                          )(tgx =&            15.3.13. 

 

That is to say                                   )(tg
dt

dx
= .                                                   15.3.14 

 

We integrate a second time, until we arrive at both x and x& at some subsequent epoch of 

osculation (perhaps 200, or 40, days into the future).  Repeat with the y and z 

components, so we eventually have a new set of  ),,,,,( zyxzyx &&& for a later epoch, and 

hence also of  Tiea ,,,,, ωΩ . 

 

 

 


