CHAPTER 10
COMPUTATION OF AN EPHEMERIS

10.1 Introduction

The entire enterprise of determining the orbits of planets, asteroids and comets is quite a
large one, involving several stages. New asteroids and comets have to be searched for
and discovered. Known bodies have to be found, which may be relatively easy if they
have been frequently observed, or rather more difficult if they have not been observed for
several years. Once located, images have to be obtained, and these have to be measured
and the measurements converted to usable data, namely right ascension and declination.
From the available observations, the orbit of the body has to be determined; in particular
we have to determine the orbital elements, a set of parameters that describe the orbit. For
a new body, one determines preliminary elements from the initial few observations that
have been obtained. As more observations are accumulated, so will the calculated
preliminary elements. After all observations (at least for a single opposition) have been
obtained and no further observations are expected at that opposition, a definitive orbit can
be computed. Whether one uses the preliminary orbit or the definitive orbit, one then has
to compute an ephemeris (plural: ephemerides); that is to say a day-to-day prediction of
its position (right ascension and declination) in the sky. Calculating an ephemeris from
the orbital elements is the subject of this chapter. Determining the orbital elements from
the observations is a rather more difficult calculation, and will be the subject of a later
chapter.

10.2 Elements of an Elliptic Orbit

Six numbers are necessary and sufficient to describe an elliptic orbit in three dimensions.
These include the four (a, e, ® and T) that we described in section 9.9 for the two
dimensional case. Two additional angles, which will be given the symbols i and €, will
be needed to complete the description of the orbit in 3-space.

The six elements of an elliptic orbit, then, are as follows.

a the semi major axis, usually expressed in astronomical units (AU).
e the eccentricity

i the inclination

Q) the longitude of the ascending node

o the argument of perihelion

T the time of perihelion passage

The three angles, i,  and ® must always be referred to the equinox and equator of a
stated epoch. For example, at present they are usually referred to the mean equinox and
equator of J2000.0. The meanings of the three angles are explained in figure X.1 and the
following paragraphs.
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FIGURE X.1

In figure X.1 I have drawn a celestial sphere centred on the Sun. The two great circles
are intended to represent the plane of Earth’s orbit (i.e. the ecliptic) and the plane of a
planet’s orbit — (i.e. not the orbit itself, but its projection on to the celestial sphere.) The
point P is the projection of the perihelion point of the orbit on to the celestial sphere, and
the point X is the projection of the planet on to the celestial sphere at some time. The two
points where the plane of the ecliptic and the plane of the planet’s orbit intersect are
called the nodes, and the point marked §2 is the ascending node. The descending node,
29, not shown in the figure, is on the far side of the sphere. The symbol @ is the First
point of Aries (now in the constellation Pisces), where the ecliptic crosses the equator.
As seen from the Sun, Earth is at @ on or near September 22. (For the benefit of
personal computer users, I found the symbols €9, £ and @ in Bookshelf Symbol 3.)

The inclination i is the angle between the plane of the object’s orbit and the plane of the
ecliptic (i.e. of Earth’s orbit). It lies in the range 0° < i < 180°. An inclination greater

than 90° implies that the orbit is retrograde — i.e. that it is moving around the Sun in a
direction opposite to that of Earth’s motion.

The angle Q, measured eastward from @ to &, is the ecliptic longitude of the ascending
node. (The word “ecliptic” is usually omitted as understood.) It goes from 0° to 360°.



The angle ®, measured in the direction of the planet’s motion from & to P, is the
argument of perihelion. Tt goes from 0° to 360°.

There is no need to add the period P of the orbit to the list of elements, since P in sidereal
years is related to a in AU by P? = a’.

10.3 Some Additional Angles

For a direct orbit, the sum of the two angles  and ® is often given the symbol @ (a form
of the Greek letter pi), and is called (not entirely accurately) the longitude of perihelion.
It is the sum of two angles measured in different planes. Thus, for a direct orbit,
® = Q + o. For a retrograde orbit, however, ® =Q — ®.

The angle v, measured from perihelion to the planet, is the true anomaly of the planet at
some time. We imagine, in addition to the true planet, a “mean” planet, which moves at
constant angular speed 27/P, so that the angle from perihelion to the mean planet at time ¢

_ 2n(t-T)

s M , which is called the mean anomaly at time ¢t. The words “true” and

“mean” preceding the word “anomaly” refer to the “true” planet and the “mean’ planet.
The angle 6 = ® + v, measured from &2, is the argument of latitude of the planet at time ¢.

The angle ] = Q+0 = Q+w0+ v = ®+ v measured in two planes, is the true
longitude of the planet. This is a rather curious term, since, being measured in two
planes, it is not really the true longitude at all. The word “true” refers to the “true” planet
rather than to the longitude.

Likewise the angle L = Q +® + M =® + M is the mean longitude (i.e. the “longitude”
of the “mean” planet.).

10.4 Elements of a Circular or Near-circular Orbit

For a near-circular orbit (such as the orbits of most of the major planets), the position of
perihelion and the time of perihelion passage are ill-defined, and for a perfectly circular
orbit they cannot be defined at all. For a near-circular orbit, the argument of perihelion ®
(or sometimes the “longitude of perihelion”, ®) is retained as an element, because there is
really no other way of expressing the position of perihelion, though of course the more
circular the orbit the less the precision to which ® can be determined. However, rather
than specify the time of perihelion passage 7, we usually specify some instant of time
called the epoch, which I denote by 7y and then we specify either the mean anomaly at the
epoch, My, or the mean longitude at the epoch, Ly, or the true longitude at the epoch, /.
For the meanings of mean anomaly, mean longitude and true longitude, refer to section 3,



especially for the meanings of “mean” and “true” in this context. Of the three, only [,
makes no reference whatever to perihelion.

Note that you should not confuse the epoch for which you specify the mean anomaly or
mean longitude or true longitude with the equinox and equator to which the angular
elements i, Q and o are referred. These may be the same, but they need not be (and
usually are not). Thus it is often convenient to refer i,  and ® to the standard epoch
J2000.0, but to give the mean longitude for an epoch during the current year.

10.5 Elements of a Parabolic Orbit

The eccentricity, of course, is unity, so only five elements are necessary. In place of the
semi major axis, one usually specifies the parabola by the perihelion distance gq.
Presumably no orbit is ever exactly parabolic, which implies an eccentricity of exactly
one. However, many long-distance comets move in large and eccentric orbits, and we
see them over such a short arc near to perihelion that it is not possible to calculate
accurate elliptic orbits, and we usually then fit a parabolic orbit to the observations.

10.6 Elements of a Hyperbolic Orbit

In place of the semi major axis, we have the semi transverse axis, symbol a. This
amounts to just a name change, although some authors treat a for a hyperbola as a
negative number, because some of the formulas, for example for the speed in an orbit,

V?=GM (g - lj, are then identical for an ellipse and for a hyperbola.

r a

Although there is no fundamental reason why the solar system should not sometime
receive a cometary visitor from interstellar space, as yet we know of no comet with an
original hyperbolic orbit around the Sun. Some comets, initially in elliptic orbits, are
perturbed into hyperbolic orbits by a close passage past Jupiter, and are then lost from the
solar system. Such orbits are necessarily highly perturbed and one cannot in general
compute a reliable ephemeris by treating it as a simple two-body problem; the
instantaneous osculating elements will not predict a reliable ephemeris far in advance.

10.7 Calculating the Position of a Comet or Asteroid

We suppose that we are given the orbital elements of an asteroid or comet. Our task is to
be able to predict, from these, the right ascension and declination of the object in the sky
at some specified future (or past) date. If we can do it for one date, we can do it for many
dates - e.g. every day for a year if need be. In other words, we will have constructed an
ephemeris. Nowadays, of course, we can obtain ephemeris-generating programs and
ephemerides with a few deft clicks on the Web, without knowing so much as the
difference between a sine and a cosine; but that way of doing it is not the purpose of this
section.



For example, according to the Minor Planet Center, the osculating elements for the minor
planet (1) Ceres for the epoch of osculation 7= 2002 May 6.0 TT are as follows:

a=2.7664122 AU Q = 80°.486 32
e=0.079 1158 o = 73°984 40
i =10°.583 47 M, =189°.275 00

i, Q and o are referred to the equinox and equator of J2000.0.
Calculate the right ascension and declination (referred to J2000.0) at 2002 July 15.0 TT.

We have already learned how to achieve much of our aim from Chapter 9. Thus, from
the elements a, e, ® and T for an elliptic orbit (or the corresponding elements for a
parabolic or hyperbolic orbit) we can already compute the true anomaly v and the
heliocentric distance r as a function of time. These are the heliocentric polar coordinates
of the body (henceforth “asteroid”). In order to find the right ascension and declination
(i.e. geocentric coordinates with the celestial equator as xy-plane) all we have to do is to
find the coordinates relative to the ecliptic, rotate the coordinate system from ecliptic to
equatorial, and shift the origin of coordinates from Sun to Earth,. We just have to do
some straightforward geometry, and no further dynamics.

Let’s start by doing what we already know how to do from Chapter 9, namely, we’ll
calculate the true anomaly and the heliocentric distance.

Mean anomaly at the epoch (o= May 6.0) is M, = 189°.275 00.
Mean anomaly at time ¢ ( = July 15. which is 70 days later) is given by

M-M,= 2—;(t—t0). 10.7.1

The quantity 27/P is called the mean motion (actually the average orbital angular speed
of the planet), usually given the symbol n. We can calculate P in sidereal years from

P? =4, and, given that a sidereal year is 365%.25636 and that 27 radians is 360 degrees,

we can calculate the mean motion in its usual units of degrees per day. We find that n =
0.214 205 degrees per day. In fact the Minor Planet Center, as well as giving the orbital
elements, also lists, for our convenience, the mean motion, and they give n = 0.214 204
57 degrees per day. The small discrepancy between the n given by the Minor Planet
Center and the value that we have calculated from the published value of a presumably
arises because the published values of the elements have been rounded off for
publication, and the Minor Planet Center presumably carries all digits in its calculations.
I would recommend using the value of n published by the Minor Planet Center, and I do
so here. By July 15, then, equation 10.7.1 tells us that the mean anomaly is M = 204°.269
342. (I'm carrying six decimal places, even though M, is given only to five, just to be
sure that I’'m not accumulating rounding-off errors in the intermediate calculations. T’ll
round off properly when I reach the final result.)



We now have to find the eccentric anomaly from Kepler’s equation M = E — esin E.

Easy. (See chapter 9 if you’ve forgotten how.) We find E = 202°.532 2784 and, from
equations 2.3.16 and 17, we obtain the true anomaly v = 200°.854 0289. The polar

a(l — %)
1+ ecosv

equation to an ellipse is r = » so we find that the heliocentric distance is r =

2.968 5716 au. (The Minor Planet Centre gives r, to four significant figures, as 2.969
au.) So much we could already do from Chapter 9. Note also that ® + v, known as the
argument of latitude and often given the symbol 0, is 274°.838 429.

We are going to have to make use of three heliocentric coordinate systems and one
geocentric coordinate system.

1. Heliocentric plane-of-orbit. ~©xyz with the Ox axis directed towards
perihelion. The polar coordinates in the plane of the orbit are the heliocentric distance r
and the true anomaly v. The z-component of the asteroid is necessarily zero, and x = r
cos v and y = rsinv.

2. Heliocentric eclipticc.  ®©XYZ with the ®X axis directed towards the First
Point of Aries @, where Earth, as seen from the Sun, will be situated on or near
September 22. The spherical coordinates in this system are the heliocentric distance r,

the ecliptic longitude A, and the ecliptic latitude P, such that X = rcosfcosA |,
Y = rcosPsinA and Z = rsinf.

P Ecliptic

Plane of orbit

FIGURE X.2



3. Heliocentric equatorial coordinates. ~ ©&nL with the ©f axis directed
towards the First Point of Aries and therefore coincident with the ®X axis . The angle
between the ©Z axis and the @ axis is €, the obliquity of the ecliptic. This is also the
angle between the XY-plane (plane of the ecliptic, or of Earth’s orbit) and the En-plane
(plane of Earth’s equator). See figure X.4.

4.  Geocentric equatorial coordinates. ®xyz with the ®©x axis directed
towards the First Point of Aries. The spherical coordinates in this system are the
geocentric distance A, the right ascension o and the declination o, such that
x =Acosdcosd, y =Acosdsinat and z = Asind.

In figure X.2, the arc ®PN is the heliocentric ecliptic longitude A of the asteroid, and so
QN is A — Q. The arc NX is the heliocentric ecliptic latitude 3. By two applications of
equation 3.5.5 we find

cos(A—Q)cosi = sin(A—Q) cot(w+v) — sinicot 90° 10.7.2
and cos(A—Q)cos90° = sin(A—Q)cotP — sin90° coti. 10.7.3
These reduce to tan(A—Q) = cositan(®w+v) 10.7.4
and tan} = sin(A—Q)tani. 10.7.5

In our particular example, we obtain (if we are careful to watch the quadrants),
A—Q = 274°921 7550, A = 355°.408 0750, P = —10°.5453234

Now, we’ll take the X-axis for the heliocentric ecliptic coordinates through @ and the Y-
axis 90° east of this. Then, by the usual formulas for converting between spherical and
rectangular coordinates, that is, X = rcosfcosA, Y = rcosPsinA and Z = rsinf3, we
obtain

X = 42909 0661, Y = —0.233 6453, Z = —0.543 2880 au.

(Check: X*+Y*+2Z>=r%)

Exercise:  Show, by elimination of A and [, or otherwise, that:

X = r(cosQcosO — sin QsinOcosi) 10.7.6

Y = r(sinQcos® + cosQsinBcosi) 10.7.8



Z = rsinOsini. 10.7.9

This will provide a more convenient way of calculating the coordinates. Verify that these
give the same numerical result as before. Here are some suggestions for doing it
“otherwise”.

Refer to figure X.3, in which K is the pole of the ecliptic, and X is the asteroid. The

radius of the celestial sphere can be taken as equal to r, the heliocentric distance of the
asteroid. The rectangular heliocentric ecliptic coordinates are

X = rcos PEOX Y = rcos R®X Z = rcos KOX

where © is the Sun (not drawn), at the centre of the sphere. To find expressions for X, Y
and Z, solve the triangles P X, ROX and KQX respectively.

K

R (A = 90°

Plane of orbit

FIGURE X.3

The next step is to find the heliocentric equatorial coordinates. The ecliptic is inclined to
the equator at an angle €, the obliquity of the ecliptic (see figure X.4) If ©XYZ is the
heliocentric ecliptic coordinate system and ®&N{ is the heliocentric equatorial coordinate



system, the (X, Y, Z) coordinates of an asteroid are related to its (§, 1, {) coordinates by
the usual relation for rotation of coordinates:

g 10 0 \(X
N|=|0 cose —sine|lY |. 10.7.10
¢ 0 sine  cose )\ Z

Assuming that we are using coordinates referred to the ecliptic and equator of J2000.0,
the obliquity of the ecliptic at J2000.0 was 23°.439 291. We thus obtain, for the
heliocentric equatorial coordinates of the asteroid,

§ = +2.909 0661, m = +0.001 7422, = —0.591 3957 au.

FIGURE X.4

Now we move the origin of coordinates by a translational shift from Sun to Earth. Let
(X5 > Yo » 25) be the geocentric equatorial coordinates of the Sun, and (x , y , 2) be the
geocentric equatorial coordinates of the asteroid (which we want), then

x = x, + & 10.7.11



10

y=1y, + 1N 10.7.12
z=12z, + C. 10.7.13

This looks like the easiest step of all, but in fact it is the most difficult. How do we
calculate the geocentric equatorial coordinates of the Sun?

One answer might be to start from the elements of Earth’s orbit around the Sun, and just
calculate the heliocentric coordinates of Earth in the same say that we have done for the
asteroid. The geocentric coordinates of the Sun are then just minus the heliocentric
coordinates of Earth. Unfortunately, for precise ephemerides, this does not work. Earth
does not move around the Sun in an ellipse. What moves around the Sun approximately
in an ellipse (neglecting planetary perturbations) is the barycentre of the Earth-Moon
system. The presence of the Moon makes a lot of difference in calculating the exact
position of Earth. What is needed is what is known as Newcomb’s complete theory of the
Sun. 1 am going to side-step that here. Instead we shall find that the geocentric
rectangular equatorial coordinates of the Sun, referred to the mean equator and equinox
of J2000.0 (which we want), are published each year, for every day of the year, in The
Astronomical Almanac. An alternative, then, to running Newcomb’s complete theory is to
transfer the table of the Sun’s coordinates from The Astronomical Almanac each year to
your own computer. If you do a month’s worth at a time, it will not be too tedious — but
you will then want to check that you haven’t made any mistakes. This can be done by
writing a short program to compute the daily increment in the coordinates, and then use a
graphics package to plot the increments as a function of date. If you have made any
mistakes, these will immediately become obvious. Alternatively (and I haven’t tried this)
you might want to see if you can find The Astronomical Almanac on the Web, and see if
you can transfer the table of the Sun’s coordinates to your own computer. Either way,
you will want to write a nonlinear interpolation program (see Chapter 1, Section 10) to
calculate the Sun’s (X, , Y, , Z,) for times between the tabulated values.

In our example, the solar coordinates for 2002 July 15, referred to the mean equator and
equinox J2000.0 are

x, = —0.386 1944, y, = +0.862 6457, 2z, = +0.3749996 au.
The geocentric equatorial coordinates of the asteroid are therefore
x = +2.5228717, y = +0.8643879, =z = —0.2163961 au.
These are the geocentric rectangular coordinates. The geocentric distance A, the

declination 0 and the right ascension o are the corresponding spherical coordinates, and
can be calculated in the usual way (see figure X.5).



FIGURE X.5
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Thus o =cos| ————— | =sin”| —2Z— |, 10.7.14

§ = sin™ z 10.7.15

\/x2 +y’ +2°

and A= x*+y’+2°. 10.7.16
In our example, o = 18°9125181 = 01" 15™7

0 = —4°6389995 = —4° 38

A = 2,676 A.U.

The Minor Planet Center gives

o = 01" 15™5
& = —04° 40’
A = 2676 au

It is to be remembered that this result was obtained from the osculating elements (see
Chapter 9, Section 10) for the epoch of osculation 2002 May 6.0 TT. Because of
planetary perturbations, the orbits are continuously changing. Generally the orbits are
adjusted for perturbations (and new observations, if any) every 200 days, when the orbital
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elements of asteroids are published for a new epoch of osculation. However, even
without planetary perturbations, there are a few small refinements that need to be made in
order to calculate a very precise ephemeris. We shall deal with these later in this chapter,
and with planetary perturbations in a later chapter.

10.8 Quadrant Problems

Any reader who has followed in detail thus far will be aware that there are quadrant
problems. That is, problems of the sort: what is sin”! 0.5? Is it 30° or is it 150°?
Quadrant problems can be among the most frustrating in celestial mechanics problems,
unless one is always aware of them and takes the necessary precautions. I made a
quadrant mistake in preparing the first draft of section 10.7, and it took me a frustrating
time to find it. I can offer only a few general hints, which are as follows.

i. If you find that the position you have calculated for your asteroid is way, way
off, and you have calculated it to be in a quite different part of the sky from where it
really is, the most likely cause of the problem is that you have made a quadrant mistake
somewhere, and that would be the first place to look.

ii. All inverse trigonometric functions have two solutions between 0° and 360°, so
you always have to be sure that you select the right one.

iii. To determine the correct quadrant, always check the signs of two
trigonometric functions. For example, check the signs of sin 0 and of cos 6.

iv. The FORTRAN function ATAN2 (DATAN?2 in double precision) (there are
doubtless similar functions in other computing languages and probably on some hand

calculators) is very useful in determining the correct quadrant. Learn how to use it.

v. The little diagram, S ‘ A

.

which you may have learned in high school trigonometry classes, is very useful.
vi. The mean, eccentric and true anomalies need not be in the same quadrant.
For example, try e = 0.95, M = 80°, or ¢ = 0.5, M = 50°, and work out E and v in each

case. All three, however, at least are either together in the range 0° to 180° or 180° to
360°. Another way of putting it is that all three have the same sign.
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10.9 Computing an Ephemeris

In section 7, we calculated the position in the sky of an asteroid on a single date, and we
showed, step by step, the way that the calculation was done. To construct an ephemeris,
we just have to do the same calculation over and over again for as many days as we wish.
However, there are efficient and inefficient ways of doing the calculation. For example,
there are many terms, such as cos €2, which you don’t want to have to calculate over and
over again each day. The important thing is to calculate all the necessary terms that do
not depend on the time before you begin the day-to-day ephemeris. In FORTRAN
language, make sure that anything that does not depend on the time is outside the DO-
loop. I shall describe two methods that are fairly efficient.

Method i

In this method we first calculate certain non-time-dependent functions of the elements
and the obliquity, which I refer to as auxiliary constants. These are as follows, in which
I have also given the numerical values of these constants for our example of Section 10.7.

a = sin’e +0.158 226 66 10.9.1
b = sin’i +0.033 733 85 10.9.2
c =1-bcos’Q +0.999 078 44 10.9.3
d = 3sin2esin 2icos +0.021 780 97 10.9.4
e = cosfcosi +0.162 471 35 10.9.5
f =4/l = bsin* Q +0.983 457 02 10.9.6
g = alb—c) —0.152 743 26 10.9.7
h =g—-d —0.174 524 22 10.9.8
j = Jcth +0.908 049 68 10.9.9
k = \b=h +0.456 353 01 10.9.10
A = ® + DATAN2(cosQ, —sin Qcosi) +4.263 999 28 rad 10.9.11
B = 0 + DATAN2(sinQcosS€, ecos€ — sinisine€) +2.778 267 50rad 10.9.12
C = @ + DATAN2(sin Qsin€, esin € + sinicos¢€) +2.32586555rad  10.9.13

The constants a, b and e are not, of course, the semi major and semi minor axes, and the
eccentricity. In particular, the e in equations 10.9.12 and 10.9.13 is the number
calculated from equation 10.9.5. That deals with the auxiliary constants. They need not
be calculated again.

The only time-dependent quantities are the heliocentric distance (radius vector) r and the
true anomaly v, and the geocentric equatorial coordinates of the Sun, (X, , Y, , 2,).
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These may be calculated as in Chapter 9, Section 9.6, or looked up as in this Chapter,
Section 10.7.

In our example of Section 10.7, for July 15, these were
r=2968572 AU and v =200°.854 029 = 3.505 565 87 rad
X, = —0.386 1944, 'y, = +0.862 6457, =z, = +0.374 9996 au

We can immediately calculate the rectangular heliocentric equatorial coordinates from

§ = rfsin(v + A) = +2.9090661 au 10.9.14
N = rjsin(v + B) = +0.001 7422 au 10.9.15
€ = rksin(v + C) = —0.5913957 au. 10.9.16

This is exactly the result we obtained in Section 10.7. From this point we calculate
(x, y,z) and A, o and d as in that section.

Of course, you’ll probably want to know (or you ought to), where all of these equations
come from. Ishan’tdo itall; I'll start you off, and you can fill in the details yourself.

Orbit
Equator

FIGURE X.6

In figure X.6, the cosine of the angle W®X is &/r, and by solution of the triangle PN X it
is also cosQcosO — sin QsinOcosi. Thus
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€ =r(cosQcos® — sinQsinOcosi). 10.9.17

Now introduce two auxiliary constants f and A' defined by
cos) = fsinA' 10.9.18
—sinQcosi = fcosA' 10.9.19
The equation 10.9.17 becomes
E = r(fsinA'cos® + fcosA'sin®) = rfsin(A' + 0). 10.9.20
Here, 6 is the argument of latitude ® + v, and if we now letA = A" + ®, this becomes
E = r fsin(A +v). 10.9.21

Add x, to each side, and we arrive at the geocentric coordinate x of the asteroid (see
equation 10.7.11).

The formulas for 1 and £ are a bit more difficult. From equation 10.7.10, we have

N = Ycos€ — Zsing 10.9.22
and € = Ysine + Zcose. 10.9.23

Now, just as we showed, by solving a triangle, that cos WEOX = &/r =
cosQcosO — sinQsinBcosi, you need to show that

Y/r=sinQcos0 + cos QsinOcosi 10.9.24
and Z/r =sin0Osini. 10.9.25

Then introduce auxiliary constants j, B', kand C"' defined by

sinQlcos€ = jsinB', 10.9.26
cos€2cosicos€ — sinisin€ = jcosB', 10.9.27
sinQsine = ksinC' 10.9.28

and cosQcosisin€ + sinicos€ = kcosC'. 10.9.29
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Proceed from there, slowly and carefully, in the same way as we did for &, and you
should eventually arrive at equations 10.9.15 and 10.9.16.

Method ii

This method is very useful for an elliptic orbit. It uses auxiliary constants P, , Qy ,etc,
which are functions of the angular elements and the obliquity and which have a simple
and direct geometric interpretation, allow us to calculate the heliocentric equatorial
coordinates (§,m,{) as soon as we have calculated the eccentric anomaly E (without
having the calculate the true anomaly v and the attendant quadrant trap) and, best of all,
the Minor Planet Center publishes these auxiliary constants at the same time that it
publishes the orbital elements.

As in Method i, we discuss four coordinate systems:

Heliocentric plane-of-orbit. ®xyz

Heliocentric ecliptic. OXYZ
Heliocentric equatorial. ol4114
Geocentric equatorial. dxyz

A review of Chapter 3 might be useful before proceeding.

We need to establish the matrix of direction cosines of the three axes ®ENE with respect
to the system ®xyz, which we can do in two stages. The conversion between ©®ENE and
OXYZ is easy, since this involves merely a rotation by € (the obliquity of the ecliptic)
about the mutually coincident © and ©X axes:

€ 1 0 0 X
N|=|0 cose —sine ||Y [. 10.9.30
€ 0 sine cose)\Z

The other conversion is a bit more lengthy. Obviously one has

X cos(X,x) cos(X,y) cos(X,z))(x
Y |= cos(Y,x) cos(Y,y) cos(Y,z) v, 10.9.31
Z cos(Z,x) cos(Z, y) cos(Z, z) Z

But then one has to find expressions for these direction cosines in terms of the orbital
elements.

Refer to figure X.2.

The ©X axis is directed towards P.
The Gx axis is directed towards P
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The angle (X, x) is the angle between @ and P.
Solve the triangle PLP:
cos(X ,x) = cosQ2cos®m — sinQ2 sinMcosi. 10.9.32
For cos(X , y) we just have to substitute ® + 90° for ® in equation 10.9.32, to obtain
cos(X ,y) = —cosQsin® — sin2 cos wcosi. 10.9.33

I leave it to the reader to identify and to solve the triangles necessary for the remaining
cosines. You should get:

cos(X,z) =sinQsini. 10.9.34
cos(Y,x) = sin Qcos®m + cos 2sin®cosi. 10.9.35
cos(Y,y) = —sin Qsin ® + cos 2 cos ®cosi. 10.9.36a

cos(Y,z) = —cosQsini 10.9.36b

cos(Z,x) = sinwsini. 10.9.37

cos(Z,y) = cos®sini. 10.9.38

cos(Z,z) = cosi. 10.9.39

One doesn’t really need to identify and solve nine triangles to obtain all nine cosines, for
the matrix is orthogonal, and every element is equal to its own cofactor, so only six of the
cosines are independent. Work out six of them (and the last of them in particular is quite
trivial), and you can work out the remainder by this orthogonal property. However, this
does not allow one an opportunity for detecting mistakes. It is better to work out each of
the cosines independently, and then check for mistakes by verifying that each element is
equal to its cofactor.

Now, by combining equations 10.9.30 and 10.9.31, we obtain

EJ Px Qx Rx X
ni=(P 0, R ||y], 10.9.40
&) (p o RNz

where Py, for example is cos(1, x), and the direction cosines are given explicitly by
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P = cosQcos® — sin Qsin ®cosi, 10.9.41
Q, = —cosQsin ® — sin L2 cos Wcos1, 10.9.42
P, = (sinQ2cos® + cos Qsin ®cosi)cos€ — sin ®sinising, 10.9.43
Q, = (—sinQsin ® + cos 2 cOS WCOsI)COSE — COSWSInising, 10.9.44
P, = (sinQcos® + cos Qsin Wcosi)sin € + sin Wsinicosg, 10.9.45
0, = (—sinQsin ® + cos oS WCOsi)SIN € + COSMSINi COSE. 10.9.46

We don’t actually need R, , R, or R;, and in any case they are not independent of the Ps
and Qs, for each element is equal to its cofactor — for example, R, = P,Q, — P, Q_, but

for the record,

R =sinQsini, 10.9.47
R, = —cos{ sinicos€ — cosisine€, 10.9.48
and R =—cosQ sinisin€ + coSiCcoOSE. 10.9.49

Z

Let use recall our example of section 10.7:

a=2.7664122 au Q = 80°.486 32
e=0.079 1158 ® = 73°.984 40
i =10°583 47 M, =189°.275 00

together with the obliquity € =23°.439 291. We assume that we have carried out the
calculation described in Section 10.7 as far as determining We find that the direction
cosine matrix is

—0.88623871 -0.426 34335 +0.181141 63
+0.32270658 —0.848 772 46 —0.418 862 48
+0.33232726 —0.312756 55 +0.889 798 81

(You may note that these numbers are given to eight significant figures, in order to avoid rounding-off
errors. The matrix has been checked for orthogonality, which is an important check for numerical errors. In
practice, you need not calculate the direction cosines, nor need you understand equations 10.9.41-49, for

the direction cosines (P,,Q, etc.) are generally published by the MPC in conjunction with the orbital

elements. )
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Having calculated (or looked up) the time-independent constants, we can now start on the
time-dependent part of the calculation.

The z-coordinate of a planet in its orbit is zero (which is why we have no need of R;, R,
or R;) so the heliocentric equatorial coordinates are

E=Px+0Q,y, 10.9.50
n=Px+0Q,y, 10.9.51
C=Px+Q.y. 10.9.52

Now the plane-of-orbit coordinates (x , y) are related to the radius vector r and true
anomaly v by
X = rcosv, 10.9.53

and y = rsinv, 10.9.54

and from the geometry of the ellipse we have

rcosv = a(cosE — e) 10.9.55
and rsinv = bsin E. 10.9.56
(These equations are not given explicitly in section 2.3 of chapter 2, but they may readily

be deduced from that section. The symbols a and b are the semi major and semi minor
axes of the ellipse.)

Hence we obtain

E=aP.(cosE—e) + bQ sinE, 10.9.57
N=aP (cosE-e) + b0 sinE 10.9.58
and C=aP (cosE—e) + bQ_sinE. 10.9.59

Thus the procedure is first to work out (or look up!) the Ps and Qs, and then work out the
eccentric anomalies for the dates required (by solving Kepler’s equation). After that we
just proceed as from equation 10.7.11, and we are on the home stretch. The reader should
try this method using the same data as we used for our numerical example. The method
has taken a little while to describe, but, once it has been set up, it is very quick and
routine.
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In our numerical example, in the paragraph following equation 10.7.1, we had found that
the eccentric anomaly at July 15.0 was E = 202°.532 2784. Equations 10.9.57-59 now
yield:

E = +2.909 0661, m = +0.001 7422, { = —0.5913957 au,
which agrees exactly with what we obtained in method i and in Section 10.7

We can also easily get the equatorial velocity components. Thus
£ =[-aP sinE + bQ, cosE]E, 10.9.60

and similarly for the 1 and { components. But M = E — esin E = 2n(t —T) /P and

JGM

soM = (I—ecosE)E = 21/P = ~—_—
a

. (Here M is the mean anomaly, and M is the

mass of the Sun.)

& _ bQ cosE — aP.sinE F. 10.9.61
1—ecosE
where F = GM . 10.9.62

Here, if a is expressed in au, and if F is expressed in au per mean solar day, vGM has
the numerical value 0.017 202 098 95.

The equations 10.9.50-54 are valid for any conic section. Subsequent to these we
examined an elliptic orbit. However, we can carry out similar procedures for a parabola
and for a hyperbola. Thus for a parabola (see section 9.7)

2q 1-u’ . 2u
r=———=——> COSU = >0 sinv = 5 10.9.63a,b,c
1+ cosv 1+u I+u
s0 that reosv = gll-u?), rsinv =2qu. 10.9.64a,b
From this we obtain
€ =qlP.(-u’) +20.ul, 10.9.65

and similarly for 1 and {. Computation of the geocentric ephemeris then proceeds as for
the ellipse. The velocity components can be obtained as follows. We have
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€ = 2qui(-uP, + Q,).

AL GM LGM
Z—(I—T), 2 .

hence (14 u?) =
q q

But u +§u3 =

From these we obtain

_F(-uP, +Q,)
1+u’

g

where F=k\2/q

and k has the same value as for the ellipse.

For a hyperbola (see section 9.8):

2
_ ae"—1) . cosy = —[u(u — 2e)+1]
1+ecosv uleu—2)+e

,» sinv = (1-cos’v)"?

from which we obtain, after a little algebra,

2 1/2 2
—a[u(u—26)+1], rsinp = ale"=1)""(u —1)_
2u 2u

rcosv =

From this we obtain

_ —aP[u-2e)+1)] + bQ.(u” 1)

S 2u

9

10.9.66

10.9.67a,b

10.9.68

10.9.69

10.9.70a,b,c

10.9.71a,b

10.9.72

and similarly for n and {. Here b is of course the semi transverse axis of the conjugate

hyperbola, a/e* 1.

The velocity components can be obtained as follows. We have

[—aP.(u® —1) + bQ, (u” +1)]i

2u*

¢ =

or €= (—aP.sinh E + bQ_cosh E)E, where E = Inu.

10.9.73

10.9.74
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JGM

3/2
a

(t=T), hence (ecoshE — )E = NGM 10.9.75a,b

But esinhE — E = i

From these we obtain

£ = bQ, coshE — aP sinh E F 10.9.76
ecoshE—1
where F =kla’* 10.9.77

Exercise. While on the subject of velocity components, show that the radial velocity of a
planet or comet with respect to the Sun is greatest at the end of a latus rectum.

10.10  Orbital Elements and Velocity Vector

In the two-dimensional problem of section 9.9, we saw how the four orbital elements
could be obtained from the two positional coordinates and the two components of the
velocity vector. Likewise in three dimensions, the six orbital elements can be obtained
from the three positional coordinates and the three components of the velocity vector. An
orbit is completely determined by the six numbers a, e, i, Q, ®, T, or by the six numbers
P.,P,,P,, 0, Qy, Q; orby the six components of the position and velocity vectors. If

we know the heliocentric equatorial position (§,m,{)and velocity (é,f],é), we can

easily calculate the heliocentric ecliptic position (X, Y, Z) and velocity (X,Y,Z)by

inversion of equation 10.9.30 (which applies to the velocity components as well as to the
coordinates), so we shall take as our task in this section: given the heliocentric position

(X ,Y,Z)and velocity (X Y.Z ), calculate the orbital elements a, e, i, Q, ®, T.

As in the two-dimensional case (section 9.9), the semi major axis is determined if the
heliocentric distance and speed are known, and we merely repeat here equation 9.9.2:

a=——"_  au. 10.10.1

2-rV?
Here r is the heliocentric distance in au given by
rr=X+Yv+2° 10.10.2
and V is the speed in units of 29.7846917 km s~ given by
V=X’ +Y*+Z7. 10.10.3

That one was easy. Now for the others.
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Let the position and velocity of a planet at time ¢, in heliocentric ecliptic coordinates, be
(X,,Y,,Z,) and (X,,Y;,Z,). The plane of the orbit contains the three points (0, 0, 0),
(X,,Y,,Z,) and (tX,,1Y,,7Z,),where 7 is an arbitrary constant of dimension T. T shall
call these three points O, X and Q respectively. To see that Q is on the orbit, consider
that the vector V is, of course, confined to the orbital plane. Translate the vector V to the

origin, i.e to the Sun, and it will be clear that the line of the vector intersects the orbit.
The equation to the orbital plane is therefore

X Y Z
X, Y Z|=0 10.10.4
X, Y Z

That is, AX + BY + CZ = 0, 10.10.5

where A=YZ-2Y, , B=2X-XZ , C=XY-YX,. 10.10.6a,b,c

A, B and C are the direction ratios of the normal to the plane of the orbit. If we divide

each by \/A® + B> + C*, we obtain
aX + bY + ¢Z = 0, 10.10.7
where a, b and c are the direction cosines of the normal to the plane, and the inclination
is given by
cosi = C, 10.10.8
with no quadrant ambiguity.

The next element to yield is the longitude of the ascending node, for the plane intersects
the ecliptic at Z = 0 in the line aX + bY = 0, from which we see that

b

__a and cosQ = ———
a*+b? Ja’+b?

with no quadrant ambiguity.

sin Q = ) 10.10.9a,b

So far, we have found a, i and Q. We are going to have to work a little bit for the
remaining elements.

Let us first see if we can find the argument of latitude 0 at time z. Refer to figure X.2.
The arc X is the argument of latitude 6. The arc XN is the ecliptic latitude [, given by
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sinp = Zi _ 4 10.10.10

JXZ+¥2+z2 T
Apply the sine formula to triangle XN:
sing = 5P 10.10.11
sini
This gives the argument of latitude except for a quadrant ambiguity, which must be

resolved before we can continue. The arc ®N is the ecliptic longitude A, given without
quadrant ambiguity by

Y, X
sinA\ = ——-— and cosA = ——L—. 10.10.12a,b
VXY VXY
Apply the cotangent formula to triangle &3XN:
tan = A=), 10.10.13
cosi

The argument of latitude of the planet at time 7 is now determined without quadrant
ambiguity by equations 10.10.11 and 10.10.13.

I draw in figure X.7, schematically, the orbit and the position vector r and the velocity
vector V. I have drawn the vector V twice — once originating at the planet X, and again
translated to the origin O, and you can see the point Q, whose coordinates are
(1X,,7Y,,7Z,). The angle y that V makes with the line of nodes can fairly be called the

argument of latitude of the point Q. Let (B', A') be the ecliptic latitude and longitude of
Q. Then we can calculate ¥ by exactly the same procedure by which we calculated
0 from equations 10.10.10 to 10.10.13.

FIGURE X.7
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Thus: sinf' = — — . 10.10.14
X2 +Y2 + 22
siny = 5P 10.10.15
Sini
Y X
sin\' = ——— and cosA' = —L—- 10.10.16a,b
X +Y’ VXI+Y?
tany = 2D 10.10.17
COS1

The argument of latitude of the point Q at time ¢ is now determined without quadrant
ambiguity by equations 10.10.15 and 10.10.17.

We are now going to find the semi latus rectum of the ellipse. From equation 9.5.21 we
recall that the angular momentum per unit mass is

h=~GMI , 10.10.18
and from figure X.7 it is

h = rVsin(y—0). 10.10.19
(In case you have forgotten your Euclid, the exterior angle of a triangle is equal to the
sum of the two opposite interior angles.) From these we obtain, provided that we express
distances in au and speeds in units of 29.784 691 7 km s™',

[ =r*V?sin’(y—0). 10.10.20

But [ =a(l - ez), so we now have the eccentricity from

e=.1-l/a. 10.10.21

Two more to go :(— ® and 7.

The equation to the ellipse is r =[/(1 + ecosv), where v is the true anomaly, equal to
0 + . Therefore



cosv = l[i — 1}, 10.10.22

and, provided that we are careful with the quadrant in solving equation 10.10.22, we now
have the argument of perihelion :

w=v-0. 10.10.23

After that we calculate the eccentric anomaly E, the mean anomaly M and the time of
perihelion passage T from equations 2.3.16, 9.6.5 and 9.6.4, and we are finished:

cosE = SOV 10.10.24
1+ ecosv
M= E - esinE, 10.10.25
and =, MP 10.10.26
27

Example. Let us suppose that a comet at heliocentric ecliptic coordinates
X, 1, Z) = (15 06 02)au

has a velocity
(X, Y, Z) = (20 10 4)kms™.

From these, we have r = 1.627 882 060 AU and V = 0.762 661 357 in units of
29.784 691 7 km s™. (I prefer to carry all the significant figures given by my calculator,
and to round off only for the final answers, which I shall give to four significant figures
or to one arcminute.) From equation 10.10.1, I obtain

a = 1545743444 = 1.546 au.

From equations 10.10.6:
A=04, B = -20, C=30 aukms
The direction cosines are then
a = 0.1102635693, b = -0.5513178464, c = 0.8269767696 .

From equation 10.10.8 we find
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i = 34°210579 85 = 34°13.

There is no quadrant ambiguity, since i always lies between 0 and 180°.
From equation 10.10.9:

sinQ = +0.196 116 1351, cos Q = +0.980 580 675 7
from which

Q = 11°30993247 = 11°19.

From equations 10.10.10 and 10.10.11:
sin® = 0.218518 564 1
and from equations 10.10.12 and 10.10.13:

tan O 0.223 930 335 2,

from which 0 = 12°.622 036 03.
This is the argument of latitude of X. Now for the argument of latitude of Q.
From equations 10.10.14 and 10.10.15:
siny = 0.313196 1536
and from equations 10.10.16 and 10.10.17:

tany = 0.329 788 311 8

from which v = 18°251951 53.

(It may be noted by those who are following the calculation in detail that calculating both
sin Yy and tan Yy not only eliminates any quadrant ambiguity, but it also serves as a

check on the arithmetic.)

Equation 10.10.20: [ =0.014 8343893 AU.

Equation 10.10.21: e= 0.995189 9676 = 0.9952.

Equation 10.10.22 cos v = —0.995 676 543 6,
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v = +174°.670 214 0.

With 6 ~ 12° and y =~ 18°, a quick sketch will convince us that the comet is past
perihelion and is becoming more distant from the Sun, and therefore the true anomaly is

v = +174°.670 214 0.

Equation 10.10.23: o = 162°.048 178 0 = 162°03".
Equation 10.10.24: cosE = —-0.0533954161,
E = 193°.060 787 59.

But E and v must have the same sign, and so

E +93°.060 787 59.

+0.630 446 871 rad = 36°.121 944 93.

Equation 10.10.25: M

The period is P =« sidereal years = 1.921 790 844 sidereal years =701.946 328 2
solar days.

Equation 10.10.26: T =t — 7043240726 = t — 70.43 days.

10.11 Hamiltonian Formulation of the Equations of Motion

This section will require some knowledge by the reader of hamiltonian dynamics and
the Hamilton-Jacobi theorem. The analysis will result in yet another set of six parameters
for describing an orbit, which will be denoted by oy, 0, 03, B1, B2, B3. These will of
course be related to the familiar six elements, and an orbit can be described by either one
set or another. This section may be slightly more demanding than some previous
sections, requiring as it does, knowledge of hamiltonian dynamics, and is not
immediately essential. However, results arising will be used in Chapter 14 on general
perturbations.

The Hamilton equations of motion (which will be familiar only to those who are
acquainted with hamiltonian dynamics) are

M _ o aa -, 10.11.1a,b
op, dq;

where, for a conservative system, H = T + V.
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Now let us suppose that we know the hamiltonian for a system as a function of the
generalized coordinates, generalized momenta and the time: H(g; , p; , t). We want to
find some function of the coordinates and the time, S(g; , 1), which is a solution to the
hamiltonian equations of motion. The Hamilton-Jacobi theorem says the following. Let
us set up the following equation, in which i goes from 1 to n, n being the number of
required generalized coordinates for the system. (In our orbital context, n will be six,
since six elements are necessary to describe an orbit).

a8 s

Hg .21+ =0. 10.11.2
dq ot

This is the Hamilton-Jacobi equation.

If we can integrate this equation, there will be n + 1 constants of integration, which I call
O , O, ... O, Suppose that S(q,,0,,t) + &, is any solution of equation 10.11.2 (not

necessarily a solution to Hamilton’s equations; it could be quite a simple solution). Then
set up n additional equations of the form

s

— =B, i=1ton 10.11.3
oo,

where we have introduced n additional constants ;. If we can solve these equations for
S, according to the Hamilton-Jacobi theorem, these solutions are solutions of the
hamiltonian equations of motion.

Let us see if we can apply this theorem to the problem of a particle of mass m moving
around a body of mass M (m << M).

The hamiltonian is

. 10.11.4

1 GMm
Hg.p) = —(p? + L p + L p?) -
2m : r

Here I have merely resolved the momentum into its components in spherical coordinates.

We can now set up the Hamilton-Jacobi equation:

1 95 \2 1 95 \2 1 98 \2 GM, J9S
L@y + L@ + oL @) - am 4 2 = g 10.11.5

Let us see if we can find any solution to this equation, for example a solution of the form
S = 8,(r) + 5(0) + S,(¢) + S,(r). The equation 10.11.5 is then



30

ds, dS, N2 ds ds,
i CR R R C PR

10.11.6

The left hand side is a function of ¢ alone, and the right hand side is a function of r , 6
and ¢. This is possible only if each side is a constant independent of r, 6, ¢ and 7. Let
us call this constant ;. Then integration of the left hand side gives

S.(t) = at + C,. 10.11.7

.. . °) . ., .
In a similar manner we can isolate a%“ from equation 10.11.6, so that it is equal to a

function of the other variables and therefore it, too, is a constant and independent of the
other variables. (This is a seeming contradiction — but “constant” is a special case of a
function, and indeed is the only function that will satisfy the condition that a function of
one variable equals a function of another.). Therefore, on integrating with respect to 0,
we obtain

S,(0) = 0,0 + C,. 10.11.8

We are now left with

- __1 ﬁ ds, ) GMm
o = 2m (( dr ( ) r?sin® 9a2 + )

10.11.9

If we multiply through by r, we can then separate r and 6. Thus we find that

(ds") + a3csc’ @ is equal to a function of r, and therefore both must be equal to a

constant, which we’ll call oc3 , and so we get

Sy(®) = [ (@2 - o esc? 0)"*d. 10.11.10
We are now left with
o’ = —#(rz %)2 + a§)+ GMmr . 10.11.11
Thus we find that
S (r) = J:%(ZGMmzr — 2mo,r? — o) dr. 10.11.12

Here r is a lower bound to r (perihelion) being the lower solution of
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2GMm*r — 2mayr® — o3 = 0. 10.11.13

Thus we have found a solution of the Hamilton-Jacobi equation 10.11.5, which contains
four arbitrary constants o , o; , 0 and 03, where o incorporates C; , C, and r;.

Now, in order to find the solution to the hamiltonian equations of motion, we need to

oS oS oS
solve the equations — =, , — =0, and— =3, .
q aal Bl aaz BZ aa3 B3
i. B, = 9 ij:i(ZGMmzr — 2mo,r® — o) 2dr. 10.11.14
a0, do, 7

When r = r, B; = t. Thus we immediately identify B; with 7, the time of perihelion
passage.

Now let us put r, = a(l-e)and r, = a(l+e), so that 1, + r, = 2a (definition of ellipse!)
and r,r, = a*(1-e”). But the sum and product of the roots of the quadratic equation
10.11.13 are GMm/o,; and oc§ /(2mao.,) respectively. Thus we can identify o; and o3 with

o = GMm 10.11.15
2a
and o3 = GMm*a(l-e*). 10.11.16
ii. B, = 95 o+ iyg(ag — a5 csc?0)2de. 10.11.17
oL, oo,

If we choose the direction of the x-axis such that ¢ = Q when 0 = 0, then we must identify
B> with Q and 6 with 90° — i when the integrand is zero.

Therefore we see that oc% = GMm2a(1 - e2)cos2 i. 10.11.18

There remains one more integration constant, which is quite arbitrary, and we can choose
it such that B; = .

The six parameters o , O, 03, B1, B2, B3 that can be used to characterise an orbit are
related, then, to the more familiar orbital elements by

_ GMm
2a

10.11.19

oy
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o5 = GMm*a(l — e*)cos? i 10.11.20
o3 = GMm*a(l - ¢*) 10.11.21
pr =T 10.11.22
B, = Q 10.11.23
B: = o 10.11.24
Conversely: a = Gsz 10.11.25
o
2
e =1 - % 10.11.26
m
i = cos™' (o, /0ty) 10.11.27
T =B 10.11.28
Q =B, 10.11.29
o = Bs 10.11.30

Thus an orbit can be characterized by stating the values of the o; and [3; just as easily as
by stating the conventional elements a, e, i, Q, ®, T. At this stage there may seem little
point in doing so, though there is no actual difficulty in doing so. In Chapter 14,
however, we shall make good use of these parameters.

Likewise, those who are familiar with hamiltonian mechanics are accustomed to
describing a system in terms of the canonical variables (g; , p;) (generalized coordinates
and momenta). But we might also sometimes want to describe the system with some
other choice of variables, which we’ll call (Q; , P;). These of course will be related to the
canonical variables (g; , p;) by some sort of transformation. A transformation of the form

_ 98 P =- oS , 10.11.31a,b

3, EY))

Pi

where S =3S8@4 , 0,1 10.11.32
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is a contact transformation.

Now if the original (¢; , p;) obey the hamiltonian equations 10.11.1a,b, then it is easy to
see that the Q; , P; satisfy the equations

K _o  aa K__p 10.11.33a,b
oP 90,

where K =H + B_S . 10.11.34

ot

The Hamilton-Jacobi theorem amounts to making a suitable (contact) transformation —
that is, choosing a suitable combination of the elements and the coordinates — such that

the hamiltonian is zero. In fact, if we identify Q; with o; and P; with —3;, the equation

as . . N
=30 isjust B, = — -

o0

i i

i



