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CHAPTER 10 

COMPUTATION OF AN EPHEMERIS 

 

10.1   Introduction 

 

The entire enterprise of determining the orbits of planets, asteroids and comets is quite a 

large one, involving several stages.  New asteroids and comets have to be searched for 

and discovered.  Known bodies have to be found, which may be relatively easy if they 

have been frequently observed, or rather more difficult if they have not been observed for 

several years.  Once located, images have to be obtained, and these have to be measured 

and the measurements converted to usable data, namely right ascension and declination.  

From the available observations, the orbit of the body has to be determined; in particular 

we have to determine the orbital elements, a set of parameters that describe the orbit.  For 

a new body, one determines preliminary elements from the initial few observations that 

have been obtained.  As more observations are accumulated, so will the calculated 

preliminary elements.  After all observations (at least for a single opposition) have been 

obtained and no further observations are expected at that opposition, a definitive orbit can 

be computed.  Whether one uses the preliminary orbit or the definitive orbit, one then has 

to compute an ephemeris (plural: ephemerides); that is to say a day-to-day prediction of 

its position (right ascension and declination) in the sky.  Calculating an ephemeris from 

the orbital elements is the subject of this chapter.  Determining the orbital elements from 

the observations is a rather more difficult calculation, and will be the subject of a later 

chapter. 

 

 

10.2  Elements of an Elliptic Orbit 

 

Six numbers are necessary and sufficient to describe an elliptic orbit in three dimensions.  

These include the four (a, e, ω and T) that we described in section 9.9 for the two 

dimensional case.  Two additional angles, which will be given the symbols i and Ω, will 

be needed to complete the description of the orbit in 3-space. 

 

The six elements of an elliptic orbit, then, are as follows. 

 

a  the semi major axis, usually expressed in astronomical units (AU). 

e  the eccentricity 

i   the inclination 

Ω the longitude of the ascending node 

ω  the argument of perihelion 

T  the time of perihelion passage 

 

The three angles, i, Ω and ω must always be referred to the equinox and equator of a 

stated epoch.  For example, at present they are usually referred to the mean equinox and 

equator of J2000.0.  The meanings of the three angles are explained in figure X.1 and the 

following paragraphs. 
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In figure X.1 I have drawn a celestial sphere centred on the Sun.  The two great circles 

are intended to represent the plane of Earth’s orbit (i.e. the ecliptic) and the plane of a 

planet’s orbit – (i.e. not the orbit itself, but its projection on to the celestial sphere.)  The 

point P is the projection of the perihelion point of the orbit on to the celestial sphere, and 

the point X is the projection of the planet on to the celestial sphere at some time.  The two 

points where the plane of the ecliptic and the plane of the planet’s orbit intersect are 

called the nodes, and the point marked � is the ascending node.  The descending node, 

�, not shown in the figure, is on the far side of the sphere.  The symbol � is the First 

point of Aries (now in the constellation Pisces), where the ecliptic crosses the equator.  

As seen from the Sun, Earth is at � on or near September 22.  (For the benefit of 

personal computer users, I found the symbols �, � and � in Bookshelf Symbol 3.) 

 

The inclination i is the angle between the plane of the object’s orbit and the plane of the 

ecliptic (i.e. of Earth’s orbit). It lies in the range oo 1800 <≤ i .  An inclination greater 

than 90
o
 implies that the orbit is retrograde – i.e. that it is moving around the Sun in a 

direction opposite to that of Earth’s motion.   

 

The angle Ω, measured eastward from � to �, is the ecliptic longitude of the ascending 

node.  (The word “ecliptic” is usually omitted as understood.)  It goes from 0
o
 to 360

o
. 
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The angle ω, measured in the direction of the planet’s motion from � to P, is the 

argument of perihelion.  It goes from 0
o
 to 360

o
. 

 

There is no need to add the period P of the orbit to the list of elements, since P in sidereal 

years is related to a in AU by .32 aP =  

 

 

10.3   Some Additional Angles 

 

For a direct orbit, the sum of the two angles Ω and ω is often given the symbol ϖ (a form 

of the Greek letter pi), and is called (not entirely accurately) the longitude of perihelion.  

It is the sum of two angles measured in different planes. Thus, for a direct orbit, 

ω+Ω=ϖ .  For a retrograde orbit, however,  ω−Ω=ϖ . 

 

The angle v, measured from perihelion to the planet, is the true anomaly of the planet at 

some time.  We imagine, in addition to the true planet, a “mean” planet, which moves at 

constant angular speed 2π/P, so that the angle from perihelion to the mean planet at time t 

is 
P

Tt
M

)(2 −π
= , which is called the mean anomaly at time t.  The words “true” and 

“mean” preceding the word “anomaly” refer to the “true” planet and the “mean” planet. 

 

The angle θ = ω + v, measured from �, is the argument of latitude of the planet at time t. 

 

The angle l  =  Ω + θ   =   Ω + ω + v  =  ϖ + v  measured in two planes, is the true 

longitude of the planet.  This is a rather curious term, since, being measured in two 

planes, it is not really the true longitude at all.  The word “true” refers to the “true” planet 

rather than to the longitude. 

   

Likewise the angle L  = Ω + ω  + M  = ϖ + M is the mean longitude (i.e. the “longitude” 

of the “mean” planet.).  

 

 

10.4  Elements of a Circular or Near-circular Orbit 

 

For a near-circular orbit (such as the orbits of most of the major planets), the position of 

perihelion and the time of perihelion passage are ill-defined, and for a perfectly circular 

orbit they cannot be defined at all.  For a near-circular orbit, the argument of perihelion ω 

(or sometimes the “longitude of perihelion”, ϖ) is retained as an element, because there is 

really no other way of expressing the position of perihelion, though of course the more 

circular the orbit the less the precision to which ω can be determined.  However, rather 

than specify the time of perihelion passage T, we usually specify some instant of time 

called the epoch, which I denote by t0, and then we specify either the mean anomaly at the 

epoch, M0, or the mean longitude at the epoch, L0, or the true longitude at the epoch, l0.   

For the meanings of mean anomaly, mean longitude and true longitude, refer to section 3, 
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especially for the meanings of  “mean” and “true” in this context.  Of the three, only l0 

makes no reference whatever to perihelion. 

 

Note that you should not confuse the epoch for which you specify the mean anomaly or 

mean longitude or true longitude with the equinox and equator to which the angular 

elements i, Ω and ω are referred.  These may be the same, but they need not be (and 

usually are not).  Thus it is often convenient to refer i, Ω and ω to the standard epoch 

J2000.0, but to give the mean longitude for an epoch during the current year. 

 

10.5  Elements of a Parabolic Orbit 

 

The eccentricity, of course, is unity, so only five elements are necessary.  In place of the 

semi major axis, one usually specifies the parabola by the perihelion distance q.  

Presumably no orbit is ever exactly parabolic, which implies an eccentricity of exactly 

one.  However, many long-distance comets move in large and eccentric orbits, and we 

see them over such a short arc near to perihelion that it is not possible to calculate 

accurate elliptic orbits, and we usually then fit a parabolic orbit to the observations. 

 

 

10.6  Elements of a Hyperbolic Orbit 

 

In place of the semi major axis, we have the semi transverse axis, symbol a.  This 

amounts to just a name change, although some authors treat a for a hyperbola as a 

negative number, because some of the formulas, for example for the speed in an orbit,  









−=

ar
GMV

122 , are then identical for an ellipse and for a hyperbola. 

 

Although there is no fundamental reason why the solar system should not sometime 

receive a cometary visitor from interstellar space, as yet we know of no comet with an 

original hyperbolic orbit around the Sun.  Some comets, initially in elliptic orbits, are 

perturbed into hyperbolic orbits by a close passage past Jupiter, and are then lost from the 

solar system.  Such orbits are necessarily highly perturbed and one cannot in general 

compute a reliable ephemeris by treating it as a simple two-body problem; the 

instantaneous osculating elements will not predict a reliable ephemeris far in advance. 

 

 

10.7  Calculating the Position of a Comet or Asteroid 

 

We suppose that we are given the orbital elements of an asteroid or comet.  Our task is to 

be able to predict, from these, the right ascension and declination of the object in the sky 

at some specified future (or past) date.  If we can do it for one date, we can do it for many 

dates - e.g. every day for a year if need be.  In other words, we will have constructed an 

ephemeris.   Nowadays, of course, we can obtain ephemeris-generating programs and 

ephemerides with a few deft clicks on the Web, without knowing so much as the 

difference between a sine and a cosine; but that way of doing it is not the purpose of this 

section. 
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For example, according to the Minor Planet Center, the osculating elements for the minor 

planet (1) Ceres for the epoch of osculation t0 = 2002 May 6.0 TT are as follows: 

 

a = 2.766 412 2  AU  Ω  =  80
o
.486 32 

e = 0.079 115 8  ω  =   73º.984 40 

i  = 10
o
.583 47   M0 = 189

o
.275 00 

 

i, Ω and ω are referred to the equinox and equator of J2000.0. 

 

Calculate the right ascension and declination (referred to J2000.0) at 2002 July 15.0 TT. 

 

We have already learned how to achieve much of our aim from Chapter 9.  Thus, from 

the elements a, e, ω and T for an elliptic orbit (or the corresponding elements for a 

parabolic or hyperbolic orbit) we can already compute the true anomaly v and the 

heliocentric distance r as a function of time.  These are the heliocentric polar coordinates 

of the body (henceforth “asteroid”).  In order to find the right ascension and declination 

(i.e. geocentric coordinates with the celestial equator as xy-plane) all we have to do is to 

find the coordinates relative to the ecliptic, rotate the coordinate system from ecliptic to 

equatorial, and shift the origin of coordinates from Sun to Earth,.  We just have to do 

some straightforward geometry, and no further dynamics.  

 

Let’s start by doing what we already know how to do from Chapter 9, namely, we’ll 

calculate the true anomaly and the heliocentric distance. 

 

Mean anomaly at the epoch (t0 =  May 6.0) is M0 = 189
o
.275 00.  

Mean anomaly at time t  ( = July 15. which is 70 days later) is given by 

 

   ).(
2

00 tt
P

MM −
π

=−      10.7.1 

 

The quantity 2π/P is called the mean motion (actually the average orbital angular speed 

of the planet), usually given the symbol n.  We can calculate P in sidereal years from 
32 aP = , and, given that a sidereal year is 365

d
.25636 and that 2π radians is 360 degrees, 

we can calculate the mean motion in its usual units of degrees per day.  We find that n  =  

0.214 205  degrees per day.  In fact the Minor Planet Center, as well as giving the orbital 

elements, also lists, for our convenience, the mean motion, and they give n = 0.214 204 

57 degrees per day.  The small discrepancy between the n given by the Minor Planet 

Center and the value that we have calculated from the published value of a presumably 

arises because the published values of the elements have been rounded off for 

publication, and the Minor Planet Center presumably carries all digits in its calculations.  

I would recommend using the value of n published by the Minor Planet Center, and I do 

so here. By July 15, then, equation 10.7.1 tells us that the mean anomaly is M = 204
o
.269 

342.  (I’m carrying six decimal places, even though M0 is given only to five, just to be 

sure that I’m not accumulating rounding-off errors in the intermediate calculations.  I’ll 

round off properly when I reach the final result.) 
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We now have to find the eccentric anomaly from Kepler’s equation .sin EeEM −=   

Easy.  (See chapter 9 if you’ve forgotten how.)  We find E  =  202
o
.532 2784 and, from 

equations 2.3.16 and 17, we obtain the true anomaly v = 200
o
.854 0289.  The polar 

equation to an ellipse is ,
cos1

)1( 2

ve

ea
r

+

−
=  so we find that the heliocentric distance is r = 

2.968 5716 au.  (The Minor Planet Centre gives r, to four significant figures, as 2.969 

au.)  So much we could already do from Chapter 9.  Note also that ω + v, known as the 

argument of latitude and often given the symbol θ, is 274
o
.838 429. 

 

We are going to have to make use of three heliocentric coordinate systems and one 

geocentric coordinate system.    

 
 1.  Heliocentric plane-of-orbit.  ?xyz with the ?x axis directed towards 

perihelion.  The polar coordinates in the plane of the orbit are the heliocentric distance r 
and the true anomaly v. The z-component of the asteroid is necessarily zero, and x = r 

cos v  and .vsinry =  

 

 2.     Heliocentric ecliptic.    �XYZ with the �X  axis directed towards the First 

Point of Aries �, where Earth, as seen from the Sun, will be situated on or near 

September 22.  The spherical coordinates in this system are the heliocentric distance r, 

the ecliptic longitude λ, and the ecliptic latitude β, such that λβ= coscosrX  ,  

λβ= sincosrY  and .sin β= rZ  
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 3.   Heliocentric equatorial coordinates.    �ξηζ  with the �ξ  axis directed 

towards the First Point of Aries and therefore coincident with the �X  axis .  The angle 

between the �Z  axis and the �ζ  axis is ε, the obliquity of the ecliptic.  This is also the 

angle between the XY-plane (plane of the ecliptic, or of Earth’s orbit) and the ξη-plane 

(plane of Earth’s equator).  See figure X.4. 

 

 4.     Geocentric equatorial coordinates. ⊕xyz with the ⊕x axis directed 

towards the First Point of Aries.  The spherical coordinates in this system are the 

geocentric distance ∆, the right ascension α and the declination δ, such that 

.sinandsincos,coscos δ∆=αδ∆=αδ∆= zyx  

 

In figure X.2, the arc �N is the heliocentric ecliptic longitude λ of the asteroid, and so 

�N is λ − Ω.  The arc NX is the heliocentric ecliptic latitude β.  By two applications of 

equation 3.5.5 we find 

 

  o90cotsin)cot()sin(cos)cos( ii −+ωΩ−λ=Ω−λ v   10.7.2 

 

and  .cot90sincot)sin(90cos)cos( oo i−βΩ−λ=Ω−λ   10.7.3 

 

These reduce to     )tan(cos)tan( v+ω=Ω−λ i      10.7.4 

 

and   .tan)sin(tan iΩ−λ=β      10.7.5 

 

In our particular example, we obtain (if we are careful to watch the quadrants), 

 

 λ − Ω  =  274
o
.921 7550,     λ  =  355

o
.408 0750,     β  =  −10

o
.545 3234 

 

Now, we’ll take the X-axis for the heliocentric ecliptic coordinates through � and the Y-

axis 90
o
 east of this.  Then, by the usual formulas for converting between spherical and 

rectangular coordinates, that is, ,sinandsincos,coscos β=λβ=λβ= rZrYrX  we 

obtain 

X  =  +2.909 0661,     Y  =  −0.233 6453,    Z  =  −0.543 2880   au. 

 

(Check:  .2222 rZYX =++ ) 

____________________ 

 

Exercise:     Show, by elimination of  λ and β, or otherwise, that: 

 

  )cossinsincos(cos irX θΩ−θΩ=     10.7.6 

 

  )cossincoscos(sin irY θΩ+θΩ=      10.7.8 
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  .sinsin irZ θ=        10.7.9 

 

This will provide a more convenient way of calculating the coordinates.  Verify that these 

give the same numerical result as before.  Here are some suggestions for doing it 

“otherwise”. 

 

Refer to figure X.3, in which K is the pole of the ecliptic, and X is the asteroid.  The 

radius of the celestial sphere can be taken as equal to r, the heliocentric distance of the 

asteroid.  The rectangular heliocentric ecliptic coordinates are 

 

X  =   r cos ��X  Y  =   r cos R�X  Z  =   r cos K�X 

 

where � is the Sun (not drawn), at the centre of the sphere. To find expressions for X, Y 

and Z, solve the triangles ��X ,  R�X and K�X respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

____________________ 

 

 

The next step is to find the heliocentric equatorial coordinates.  The ecliptic is inclined to 

the equator at an angle ε, the obliquity of the ecliptic (see figure X.4)  If ?XYZ is the 

heliocentric ecliptic coordinate system and ?ξηζ is the heliocentric equatorial coordinate 

FIGURE X.3 
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system, the (X, Y, Z) coordinates of an asteroid are related to its (ξ , η, ζ) coordinates by 

the usual relation for rotation of coordinates: 

 

   .

cossin0

sincos0

001

































εε

ε−ε=
















ζ

η

ξ

Z

Y

X

    10.7.10 

 

 

Assuming that we are using coordinates referred to the ecliptic and equator of J2000.0, 

the obliquity of the ecliptic at J2000.0 was 23
o
.439 291.  We thus obtain, for the 

heliocentric equatorial coordinates of the asteroid, 

 

  ξ  =  +2.909 0661,     η  =  +0.001 7422,    ζ  =  −0.591 3957   au. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we move the origin of coordinates by a translational shift from Sun to Earth.   Let 

(x? , y? , z?) be the geocentric equatorial coordinates of the Sun, and (x , y , z) be the 

geocentric equatorial coordinates of the asteroid (which we want), then  

 

    x  =  x?    +   ξ      10.7.11 

η 

Y 

Z 

ζ 

X , ξ 
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     y  =  y?    +   η      10.7.12 

 

    z  =  z?    +   ζ .     10.7.13 

 

This looks like the easiest step of all, but in fact it is the most difficult.  How do we 

calculate the geocentric equatorial coordinates of the Sun? 

  

One answer might be to start from the elements of Earth’s orbit around the Sun, and just 

calculate the heliocentric coordinates of Earth in the same say that we have done for the 

asteroid.  The geocentric coordinates of the Sun are then just minus the heliocentric 

coordinates of Earth.  Unfortunately, for precise ephemerides, this does not work.  Earth 

does not move around the Sun in an ellipse.  What moves around the Sun approximately 

in an ellipse (neglecting planetary perturbations) is the barycentre of the Earth-Moon 

system.  The presence of the Moon makes a lot of difference in calculating the exact 

position of Earth.  What is needed is what is known as Newcomb’s complete theory of the 

Sun.  I am going to side-step that here.  Instead we shall find that the geocentric 

rectangular equatorial coordinates of the Sun, referred to the mean equator and equinox 

of J2000.0 (which we want), are published each year, for every day of the year, in The 

Astronomical Almanac. An alternative, then, to running Newcomb’s complete theory is to 

transfer the table of the Sun’s coordinates from  The Astronomical Almanac each year to 

your own computer.  If you do a month’s worth at a time, it will not be too tedious – but 

you will then want to check that you haven’t made any mistakes.  This can be done by 

writing a short program to compute the daily increment in the coordinates, and then use a 

graphics package to plot the increments as a function of date.  If you have made any 

mistakes, these will immediately become obvious. Alternatively (and I haven’t tried this) 

you might want to see if you can find The Astronomical Almanac on the Web, and see if 

you can transfer the table of the Sun’s coordinates to your own computer.  Either way, 

you will want to write a nonlinear interpolation program (see Chapter 1, Section 10) to 

calculate the Sun’s (x? , y? , z?) for times between the tabulated values. 

 

In our example, the solar coordinates for 2002 July 15, referred to the mean equator and 

equinox J2000.0 are 

   

x?  =  −0.386 1944,     y?  =  +0.862 6457,    z? =  +0.374 9996   au. 

 

The geocentric equatorial coordinates of the asteroid are therefore 

 

              x  =  +2.522 8717,       y  =  +0.864 3879,      z  =  −0.216 3961   au. 

 

These are the geocentric rectangular coordinates.  The geocentric distance ∆, the 

declination δ and the right ascension α are the corresponding spherical coordinates, and 

can be calculated in the usual way (see figure X.5). 
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Thus   ,sincos
22

1

22

1















+
=















+
=α −−

yx

y

yx

x
  10.7.14 

 

   
222

1sin
zyx

z

++
=δ −      10.7.15 

 

and   .222 zyx ++=∆      10.7.16 

 

In our example, α   =   18
o
.912 5181  =   01

h
  15

m
.7 

 

   δ   =   −4º.638 9995  =   −4º  '38  

 

   ∆   =   2.676  A.U. 

 

The Minor Planet Center gives 

 

   α   =   01
h
  15

m
.5 

 

   δ   =  −04ο 40' 

 

   ∆   =   2.676  au 

 

It is to be remembered that this result was obtained from the osculating elements (see 

Chapter 9, Section 10) for the epoch of osculation 2002 May 6.0 TT.  Because of 

planetary perturbations, the orbits are continuously changing.  Generally the orbits are 

adjusted for perturbations (and new observations, if any) every 200 days, when the orbital 

x (�) 
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y 
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elements of asteroids are published for a new epoch of osculation.  However, even 

without planetary perturbations, there are a few small refinements that need to be made in 

order to calculate a very precise ephemeris.  We shall deal with these later in this chapter, 

and with planetary perturbations in a later chapter. 

 

 

10.8   Quadrant Problems 

 

Any reader who has followed in detail thus far will be aware that there are quadrant 

problems.  That is, problems of the sort:  what is sin
−1

 0.5?  Is it 30
o
 or is it 150

o
?  

Quadrant problems can be among the most frustrating in celestial mechanics problems, 

unless one is always aware of them and takes the necessary precautions.  I made a 

quadrant mistake in preparing the first draft of section 10.7, and it took me a frustrating 

time to find it.  I can offer only a few general hints, which are as follows. 

 

 i.  If you find that the position you have calculated for your asteroid is way, way 

off, and you have calculated it to be in a quite different part of the sky from where it 

really is, the most likely cause of the problem is that you have made a quadrant mistake 

somewhere, and that would be the first place to look. 

 

 ii.  All inverse trigonometric functions have two solutions between 0
o
 and 360

o
, so 

you always have to be sure that you select the right one. 

 

 iii. To determine the correct quadrant, always check the signs of two 

trigonometric functions.  For example, check the signs of sin θ and of cos θ. 

 
 iv.   The FORTRAN function ATAN2  (DATAN2 in double precision) (there are 

doubtless similar functions in other computing languages and probably on some hand 

calculators) is very useful in determining the correct quadrant.  Learn how to use it. 

 

 v.   The little diagram,                 
 

 

 

 

which you may have learned in high school trigonometry classes, is very useful. 

 

 vi.   The mean, eccentric and true anomalies need not be in the same quadrant.  

For example, try e = 0.95, M = 80
o
, or e = 0.5, M = 50

o
, and work out E  and v in each 

case.  All three, however, at least are either together in the range 0
o
 to 180

o
 or 180

o
 to 

360
o
.  Another way of putting it is that all three have the same sign. 

 

 

 

 

 

C 

A S 

T 
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10.9    Computing an Ephemeris 

 

In section 7, we calculated the position in the sky of an asteroid on a single date, and we 

showed, step by step, the way that the calculation was done.  To construct an ephemeris, 

we just have to do the same calculation over and over again for as many days as we wish.  

However, there are efficient and inefficient ways of doing the calculation.  For example, 

there are many terms, such as cos Ω, which you don’t want to have to calculate over and 

over again each day.  The important thing is to calculate all the necessary terms that do 

not depend on the time before you begin the day-to-day ephemeris.  In FORTRAN 

language, make sure that anything that does not depend on the time is outside the DO-

loop.  I shall describe two methods that are fairly efficient. 

 

  Method i 

 

In this method we first calculate certain non-time-dependent functions of the elements 

and the obliquity, which I refer to as auxiliary constants.   These are as follows, in which 

I have also given the numerical values of these constants for our example of Section 10.7. 

 

 

ε= 2sina        +0.158 226 66           10.9.1  

ib 2sin=         +0.033 733 85           10.9.2 

Ω−= 2cos1 bc         +0.999 078 44           10.9.3 

Ωε= cos2sin2sin
2
1 id       +0.021 780 97           10.9.4 

ie coscosΩ=        +0.162 471 35           10.9.5 

Ω−= 2sin1 bf        +0.983 457 02           10.9.6 

)( cbag −=         −0.152 743 26           10.9.7 

dgh −=         −0.174 524 22           10.9.8 

hcj +=         +0.908 049 68           10.9.9 

hbk −=         +0.456 353 01           10.9.10 

)cossin,(cos2DATAN iA Ω−Ω+ω=     +4.263 999 28 rad     10.9.11  

)sinsincos,cos(sin2DATAN ε−εεΩ+ω= ieB             +2.778 267 50 rad     10.9.12 

)cossinsin,sin(sin2DATAN ε+εεΩ+ω= ieC            +2.325 865 55 rad      10.9.13 

 

        

The constants a, b and e are not, of course, the semi major and semi minor axes, and the 

eccentricity.  In particular, the e in equations 10.9.12 and 10.9.13 is the number 

calculated from equation 10.9.5.  That deals with the auxiliary constants.  They need not 

be calculated again.   

 

The only time-dependent quantities are the heliocentric distance (radius vector) r and the 

true anomaly v, and the geocentric equatorial coordinates of the Sun, (x? , y? , z?).  
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These may be calculated as in Chapter 9, Section 9.6, or looked up as in this Chapter, 

Section 10.7.   

 

In our example of Section 10.7, for July 15, these were 
 

r  =  2.968 572 AU and    v = 200
o
.854 029  =   3.505 565 87 rad 

 

x?  =  −0.386 1944,     y?  =  +0.862 6457,    z? =  +0.374 9996   au 

 

We can immediately calculate the rectangular heliocentric equatorial coordinates from 

 

  au0661909.2)sin( +=+=ξ Afr v      10.9.14 

  

    au7422001.0)sin( +=+=η Bjr v      10.9.15 

 

  au.3957591.0)sin( −=+=ζ Ckr v                   10.9.16 

 

This is exactly the result we obtained in Section 10.7.  From this point we calculate 

),,( zyx  and ∆, α and δ as in that section. 

 

Of course, you’ll probably want to know (or you ought to), where all of these equations 

come from.   I shan’t do it all;  I’ll start you off, and you can fill in the details yourself.   

 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 

 

In figure X.6, the cosine of the angle ��X is ξ/r, and by solution of the triangle ��X it 

is also .cossinsincoscos iθΩ−θΩ  Thus 

* * 

* 

� � 

X 

Ω 

θ 
i 

ξ 

r 

� 

Orbit 

Ecliptic 

Equator 

FIGURE X.6 
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    .)cossinsincos(cos ir θΩ−θΩ=ξ    10.9.17 

 

Now introduce two auxiliary constants f  and A' defined by 

 

   'sincos Af=Ω       10.9.18 

 

     'coscossin Afi =Ω−       10.9.19 

 

The equation 10.9.17 becomes 

 

 ).'sin()sin'coscos'sin( θ+=θ+θ=ξ ArfAfAfr    10.9.20 

 

Here, θ is the argument of latitude ω + v, and if we now let A  =  A'  +  ω, this becomes 

 

   .)sin( v+=ξ Afr       10.9.21 

 

Add x? to each side, and we arrive at the geocentric coordinate x of the asteroid (see 

equation 10.7.11). 

 

The formulas for η and ζ are a bit more difficult.  From equation 10.7.10, we have 

 

   ε−ε=η sincos ZY       10.9.22 

 

and   .cossin ε+ε=ζ ZY      10.9.23 

 

Now, just as we showed, by solving a triangle, that cos �?X = ξ/r =  

icossinsincoscos θΩ−θΩ ,  you need to show that  

 

   irY cossincoscossin/ θΩ+θΩ=     10.9.24 

 

and   .sinsin/ irZ θ=       10.9.25 

 

Then introduce auxiliary constants j ,  B ' ,  k and C '  defined by 

 

    'sincossin Bj=εΩ ,     10.9.26 

 

  'cossinsincoscoscos Bjii =ε−εΩ ,    10.9.27 

 

          'sinsinsin Ck=εΩ      10.9.28 

 

and  .'coscossinsincoscos Ckii =ε+εΩ     10.9.29 
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Proceed from there, slowly and carefully, in the same way as we did for ξ, and you 

should eventually arrive at equations 10.9.15 and 10.9.16. 

 

  Method ii  

 

This method is very useful for an elliptic orbit.  It uses auxiliary constants Px , Qy ,etc, 

which are functions of the angular elements and the obliquity and which have a simple 

and direct geometric interpretation, allow us to calculate the heliocentric equatorial 

coordinates ),,( ζηξ  as soon as we have calculated the eccentric anomaly E (without 

having the calculate the true anomaly v and the attendant quadrant trap) and, best of all, 

the Minor Planet Center publishes these auxiliary constants at the same time that it 

publishes the orbital elements. 

 

As in Method i, we discuss four coordinate systems: 

 

 Heliocentric plane-of-orbit.  ?xyz 

 Heliocentric ecliptic.             ?XYZ  

 Heliocentric equatorial.        ?ξηζ   
 Geocentric equatorial.          /xyz 

 

A review of Chapter 3 might be useful before proceeding. 

 

We need to establish the matrix of direction cosines of the three axes ?ξηζ with respect 

to the system ?xyz, which we can do in two stages.  The conversion between ?ξηζ and 

?XYZ is easy, since this involves merely a rotation by ε (the obliquity of the ecliptic) 

about the mutually coincident ?ξ and ?X axes: 

 

   

































εε

ε−ε=
















ζ

η

ξ

Z

Y

X

cossin0

sincos0

001

.    10.9.30 

 

The other conversion is a bit more lengthy.  Obviously one has 

 

  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 
































=
















z

y

x

zZyZxZ

zYyYxY

zXyXxX

Z

Y

X

,cos,cos,cos

,cos,cos,cos

,cos,cos,cos

,   10.9.31 

 

But then one has to find expressions for these direction cosines in terms of the orbital 

elements. 

 

Refer to figure X.2.   

 

The ?X axis is directed towards �. 

The ?x axis is directed towards P 
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The angle (X , x) is the angle between � and P. 

 

Solve the triangle ��P: 

 

  .cossinsincoscos),cos( ixX ωΩ−ωΩ=     10.9.32 

 

For ),cos( yX we just have to substitute ω + 90
o
 for ω in equation 10.9.32, to obtain 

 
  .coscossinsincos),cos( iyX ωΩ−ωΩ−=     10.9.33 

 

I leave it to the reader to identify and to solve the triangles necessary for the remaining 

cosines.  You should get: 

 

   .sinsin),cos( izX Ω=      10.9.34 

 

  .cossincoscossin),cos( ixY ωΩ+ωΩ=     10.9.35 

 

  .coscoscossinsin),cos( iyY ωΩ+ωΩ−=              10.9.36a 

 

            izY sincos),cos( Ω−=                                                      10.9.36b 

 

   .sinsin),cos( ixZ ω=      10.9.37 

 

   .sincos),cos( iyZ ω=      10.9.38 

 

   .cos),(cos izZ =       10.9.39 

 

One doesn’t really need to identify and solve nine triangles to obtain all nine cosines, for 

the matrix is orthogonal, and every element is equal to its own cofactor, so only six of the 

cosines are independent.  Work out six of them (and the last of them in particular is quite 

trivial), and you can work out the remainder by this orthogonal property.  However, this 

does not allow one an opportunity for detecting mistakes.  It is better to work out each of 

the cosines independently, and then check for mistakes by verifying that each element is 

equal to its cofactor. 

 

Now, by combining equations 10.9.30 and 10.9.31, we obtain 

 

   ,
































=
















ζ

η

ξ

z

y

x

RQP

RQP

RQP

zzz

yyy

xxx

     10.9.40 

 

where  Py, for example is cos(η, x), and the direction cosines are given explicitly by 
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  ,cossinsincoscos iPx ωΩ−ωΩ=      10.9.41 

 

  ,coscossinsincos iQx ωΩ−ωΩ−=     10.9.42 

 

  ,sinsinsincos)cossincoscos(sin εω−εωΩ+ωΩ= iiPy  10.9.43 

 

  ,sinsincoscos)coscoscossinsin( εω−εωΩ+ωΩ−= iiQy  10.9.44 

 

  ,cossinsinsin)cossincoscos(sin εω+εωΩ+ωΩ= iiPz  10.9.45 

 

  .cossincossin)coscoscossinsin( εω+εωΩ+ωΩ−= iiQz  10.9.46 

 

We don’t actually need Rx , Ry or Rz, and in any case they are not independent of the Ps 

and Qs, for each element is equal to its cofactor – for example, ,zxxzy QPQPR −=  but 

for the record, 

 

   ,sinsin iRx Ω=       10.9.47 

 

   ,sincoscossincos ε−εΩ−= iiRy     10.9.48 

 

and   .coscossinsincos ε+εΩ−= iiRz     10.9.49 

 

Let use recall our example of section 10.7: 

 

a = 2.766 412 2  au  Ω  =  80
o
.486 32 

e = 0.079 115 8  ω  =   73ο.984 40 
i  = 10

o
.583 47   M0 = 189

o
.275 00 

 

together with the obliquity ε = 23
o
.439 291.  We assume that we have carried out the 

calculation described in Section 10.7 as far as determining We find that the direction 

cosine matrix is 

 

















+−+

−−+

+−−

81798889.055756312.026327332.0

48862418.046772848.058706322.0

63141181.035343426.071238886.0

 

 
(You may note that these numbers are given to eight significant figures, in order to avoid rounding-off 

errors.  The matrix has been checked for orthogonality, which is an important check for numerical errors. In 

practice, you need not calculate the direction cosines, nor need you understand equations 10.9.41-49, for 

the direction cosines .)etc,( xx QP are generally published by the MPC in conjunction with the orbital 

elements.  ) 
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Having calculated (or looked up) the time-independent constants, we can now start on the 

time-dependent part of the calculation. 

 

The z-coordinate of a planet in its orbit is zero (which is why we have no need of Rx, Ry 

or Rz) so the heliocentric equatorial coordinates are 

 

    ,yxPx xQ+=ξ      10.9.50 

 

    ,yxP yy Q+=η      10.9.51 

   

    .yxP zz Q+=ζ      10.9.52 

 

Now the plane-of-orbit coordinates (x , y) are related to the radius vector r and true 

anomaly v by 

    ,cosvrx =       10.9.53 

 

and    ,sinvry =       10.9.54 

 

and from the geometry of the ellipse we have 

 

    )(coscos eEar −=v     10.9.55 

 

and    .sinsin Ebr =v      10.9.56 

 

(These equations are not given explicitly in section 2.3 of chapter 2, but they may readily 

be deduced from that section. The symbols a and b are the semi major and semi minor 

axes of the ellipse.) 

 

Hence we obtain 

   ,sin)(cos EbQeEaP xx +−=ξ     10.9.57 

 

   EbQeEaP yy sin)(cos +−=η     10.9.58 

 

and   .sin)(cos EbQeEaP zz +−=ζ     10.9.59 

 

Thus the procedure is first to work out (or look up!) the Ps and Qs, and then work out the 

eccentric anomalies for the dates required (by solving Kepler’s equation).  After that we 

just proceed as from equation 10.7.11, and we are on the home stretch.  The reader should 

try this method using the same data as we used for our numerical example.  The method 

has taken a little while to describe, but, once it has been set up, it is very quick and 

routine. 

 



 20 

In our numerical example, in the paragraph following equation 10.7.1, we had found that 

the eccentric anomaly at July 15.0 was E  =  202
o
.532 2784.  Equations 10.9.57-59 now 

yield: 

 

ξ  =  +2.909 0661,     η  =  +0.001 7422,    ζ  =  −0.591 3957   au, 

 

which agrees exactly with what we obtained in method i and in  Section 10.7 

 

We can also easily get the equatorial velocity components.   Thus 

 

   ,]cossin[ EEbQEaP xx
&& +−=ξ     10.9.60 

 

and similarly for the η and ζ components.  But PTtEeEM /)(2sin −π=−= and 

so ./2)cos1(
2/3

a

G
PEEeM

M
=π=−= &&   (Here M is the mean anomaly, and M is the 

mass of the Sun.) 

 

   ,
cos1

sincos
F

Ee

EaPEbQ xx










−

−
=ξ&         10.9.61 

 

where    .
2/3

a

G
F

M
=       10.9.62 

 

Here, if a is expressed in au,  and if F is expressed in au per mean solar day, MG  has 

the numerical value 0.017 202 098 95. 

 

The equations 10.9.50-54 are valid for any conic section.  Subsequent to these we 

examined an elliptic orbit.  However, we can carry out similar procedures for a parabola 

and for a hyperbola.  Thus for a parabola (see section 9.7) 

 

  
22

2

1

2
sin,

1

1
cos,

cos1

2

u

u

u

uq
r

+
=

+

−
=

+
= vv

v
                 10.9.63a,b,c 

 

so that   ( ) .2sin,1cos 2 quruqr =−= vv           10.9.64a,b 

 

From this we obtain 

 

           ,]2)1([ 2
uQuPq xx +−=ξ     10.9.65 

 

and similarly for η and ζ.  Computation of the geocentric ephemeris then proceeds as for 

the ellipse. The velocity components can be obtained as follows.  We have 
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    .)(2 xx QuPuq +−=ξ &&      10.9.66 

 

But  ( ) .)1(hence, 2
1

22
1

3

3
1

q

G
uuTt

q

G
uu

MM
=+−=+ &         10.9.67a,b 

 

From these we obtain 

 

    ,
1

)(
2

u

QuPF xx

+

+−
=ξ&      10.9.68 

 

where     qkF /2=       10.9.69 

 

and k has the same value as for the ellipse.  

 

 

 

 

 

For a hyperbola (see section 9.8): 

 

 ,)cos(1 sin,
)2(

]1)2([
cos,

cos1

)1( 1/22
2

vvv
v

−=
+−

+−−
=

+

−
=

eeuu

euu

e

ea
r      10.9.70a,b,c 

 

from which we obtain, after a little algebra, 

 

  .
2

)1()1(
sin,

2

]1)2([
cos

22/12

u

uea
r

u

euua
r

−−
=

+−−
= vv         10.9.71a,b 

 

From this we obtain 

 

   ,
2

)1()]1)2([ 2

u

ubQeuuaP xx −++−−
=ξ    10.9.72 

   

and similarly for η and ζ.  Here b is of course the semi transverse axis of the conjugate 

hyperbola, .12 −ea  

 

The velocity components can be obtained as follows.  We have 

 

   ,
2

)]1()1([
2

22

u

uubQuaP xx
&

&
++−−

=ξ     10.9.73 

 

or  .lnwhere,)coshsinh( uEEEbQEaP xx =+−=ξ &&   10.9.74 
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But .)1cosh(),(sinh
2/32/3

a

G
EEehenceTt

a

G
EEe

MM
=−−=− &         10.9.75a,b  

 

From these we obtain 

   ,
1cosh

sinhcosh
F

Ee

EaPEbQ xx










−

−
=ξ&     10.9.76 

 

where     ./ 2/3akF =       10.9.77 

 

Exercise.  While on the subject of velocity components, show that the radial velocity of a 

planet or comet with respect to the Sun is greatest at the end of a latus rectum. 

 

 

10.10   Orbital Elements and Velocity Vector 

 

In the two-dimensional problem of section 9.9, we saw how the four orbital elements 

could be obtained from the two positional coordinates and the two components of the 

velocity vector.  Likewise in three dimensions, the six orbital elements can be obtained 

from the three positional coordinates and the three components of the velocity vector.  An 

orbit is completely determined by the six numbers a, e, i, Ω, ω, T, or by the six numbers 

Px , Py , Pz , Qx , Qy , Qz  or by the six components of the position and velocity vectors.  If 

we know the heliocentric equatorial position ),,( ζηξ and velocity ,),,( ζηξ &&&  we can 

easily calculate the heliocentric ecliptic position (X, Y, Z) and velocity  ),,( ZYX &&& by 

inversion of equation 10.9.30 (which applies to the velocity components as well as to the 

coordinates), so we shall take as our task in this section:  given the heliocentric position 

),,( ZYX and velocity ,),,( ZYX &&&  calculate the orbital elements a, e, i, Ω, ω, T. 

 

As in the two-dimensional case (section 9.9), the semi major axis is determined if the 

heliocentric distance and speed are known, and we merely repeat here equation 9.9.2: 

 

    .au
2 2rV

r
a

−
=       10.10.1 

 

Here r is the heliocentric distance in au given by 

 

    2222 ZYXr ++=      10.10.2 

 

and V is the speed in units of 29.7846917 km s
−1

 given by 

 

    .2222 ZYXV &&& ++=      10.10.3 

 

That one was easy.  Now for the others. 
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Let the position and velocity of a planet at time t, in heliocentric ecliptic coordinates, be 

.),,(and),,( 111111 ZYXZYX &&& The plane of the orbit contains the three points (0, 0, 0), 

,),,(and),,( 111111 ZYXZYX &&& τττ where τ is an arbitrary constant of dimension T. I shall 

call these three points O, X and Q respectively.  To see that Q is on the orbit, consider 

that the vector V is, of course, confined to the orbital plane.  Translate the vector V to the 

origin, i.e to the Sun, and it will be clear that the line of the vector intersects the orbit.   

The equation to the orbital plane is therefore 

 

    0

111

111 =

ZYX

ZYX

ZYX

&&&

     10.10.4 

 

That is,      ,0=++ CZBYAX     10.10.5 

 

where  .,, 111111111111 XYYXCZXXZBYZZYA &&&&&& −=−=−=      10.10.6a,b,c 

 

A, B and C are the direction ratios of the normal to the plane of the orbit.  If we divide 

each by ,222
CBA ++  we obtain 

 

    aX  +  bY  +  cZ  =  0,    10.10.7 

 

where a,  b and c are the direction cosines of the normal to the plane, and the inclination 

is given by 

     cos i  =  c,     10.10.8 

 

with no quadrant ambiguity. 

 

. 

The next element to yield is the longitude of the ascending node, for the plane intersects 

the ecliptic at Z = 0 in the line aX  +  bY = 0, from which we see that 

 

  ,cosandsin
2222 ba

b

ba

a

+
−=Ω

+
=Ω          10.10.9a,b 

 

with no quadrant ambiguity. 

 

So far, we have found a, i and Ω.  We are going to have to work a little bit for the 

remaining elements.   

 

Let us first see if we can find the argument of latitude θ at time t.  Refer to figure X.2.  

The arc �X is the argument of latitude θ.  The arc XN is the ecliptic latitude β, given by  
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   .sin 1

2
1

2
1

2
1

1

r

Z

ZYX

Z
=

++
=β             10.10.10 

Apply the sine formula to triangle �XN: 

    .
sin

sin
sin

i

β
=θ               10.10.11 

This gives the argument of latitude except for a quadrant ambiguity, which must be 

resolved before we can continue.   The arc �N is the ecliptic longitude λ, given without 

quadrant ambiguity by 

   .cosandsin
2

1

2

1

1

2

1

2

1

1

YX

X

YX

Y

+
=λ

+
=λ        10.10.12a,b 

Apply the cotangent formula to triangle �XN: 

    .
cos

)tan(
tan

i

Ω−λ
=θ              10.10.13 

The argument of latitude of the planet at time t is now determined without quadrant 

ambiguity by equations 10.10.11 and 10.10.13. 

 

I draw in figure X.7, schematically,  the orbit and the position vector r and the velocity 

vector V.  I have drawn the vector V twice – once originating at the planet X, and again 

translated to the origin O, and you can see the point Q, whose coordinates are 

.),,( 111 ZYX &&& τττ   The angle ψ that V makes with the line of nodes can fairly be called the 

argument of latitude of the point Q. Let (β' , λ') be the ecliptic latitude and longitude of 

Q.  Then we can calculate ψ by exactly the same procedure by which we calculated 

θ from equations 10.10.10 to 10.10.13. 
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Thus:   .'sin
2

1

2

1

2

1

1

ZYX

Z

&&&

&

++
=β            10.10.14 

 

   .
sin

'sin
sin

i

β
=ψ              10.10.15 

 

 

  .'cosand'sin
2

1

2

1

1

2

1

2

1

1

YX

X

YX

Y

&&

&

&&

&

+
=λ

+
=λ                       10.10.16a,b 

 

 

   .
cos

)'tan(
tan

i

Ω−λ
=ψ                10.10.17 

 

The argument of latitude of the point Q at time t is now determined without quadrant 

ambiguity by equations 10.10.15 and 10.10.17. 

 

We are now going to find the semi latus rectum of the ellipse.   From equation 9.5.21 we 

recall that the angular momentum per unit mass is 

 

    lGh M= ,               10.10.18 

 

and from figure X.7 it is 

 

    .)sin( θ−ψ= rVh               10.10.19 

 

(In case you have forgotten your Euclid, the exterior angle of a triangle is equal to the 

sum of the two opposite interior angles.)  From these we obtain, provided that we express 

distances in au and speeds in units of  29.784 691 7 km s
−1

, 

 

    .)(sin 222 θ−ψ= Vrl               10.10.20 

 

But l  = a(1 – e
2
), so we now have the eccentricity from 

 

    ./1 ale −=                10.10.21 

 

Two more to go :−  ω  and T. 

 

The equation to the ellipse is ,)cos1/( velr +=  where v is the true anomaly, equal to 

θ + ω.  Therefore 
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    ,1
1

cos 







−=

r

l

e
v              10.10.22 

 

and, provided that we are careful with the quadrant in solving equation 10.10.22, we now 

have the argument of perihelion ω: 

 

    ω  =  v  −  θ .              10.10.23 

 

After that we calculate the eccentric anomaly E, the mean anomaly M and the time of 

perihelion passage T from equations 2.3.16, 9.6.5 and 9.6.4, and we are finished: 

 

    ,
cos1

cos
cos

v

v

e

e
E

+

+
=              10.10.24 

 

    ,sin EeEM −=                 10.10.25 

 

and                                           .
2π

−=
PM

tT               10.10.26  

 

 

 

Example.  Let us suppose that a comet at heliocentric ecliptic coordinates 

 

au)2.06.05.1()( 111 =ZYX  

 

has a velocity 

.skm)41020()( 1

111

−=ZYX &&&  

 

From these, we have r  =   1.627 882 060 AU   and V  =   0.762 661 357  in units of 

29.784 691 7 km s
−1

.   (I prefer to carry all the significant figures given by my calculator, 

and to round off only for the final answers, which I shall give to four significant figures 

or to one arcminute.)  From equation 10.10.1, I obtain 

 

a  =  1.545 743 444   ≅   1.546  au. 

 

From equations 10.10.6: 

 

  A  =  0.4 ,     B   =   −2.0 ,     C  =  3.0     au km s
−1

. 

 

The direction cosines are then 

 

a  =   0.110 263 569 3 ,    b   =   −0.551 317 846 4 ,   c   =   0.826 976 769 6 . 

 

From equation 10.10.8 we find 
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i  =  34
o
.210 579 85  ≅   34

o
 13'. 

 

There is no quadrant ambiguity, since i always lies between 0 and 180
o
. 

 

From equation 10.10.9: 

 

sin Ω   =   +0.196 116 135 1 ,     cos Ω  =  +0.980 580 675 7 

 
from which     

 

Ω  =  11
o
.309 932 47  ≅  11

o
 19'. 

 
From equations 10.10.10 and 10.10.11: 

 

sin θ   =   0.218 518 564 1 

 

and from equations 10.10.12 and 10.10.13: 

 

tan θ   =   0.223 930 335 2, 

 

from which             θ   =   12
o
.622 036 03. 

 

This is the argument of latitude of X.  Now for the argument of latitude of Q. 

 

From equations 10.10.14 and 10.10.15: 

 

    sin ψ   =   0.313 196 153 6 

 

and from equations 10.10.16 and 10.10.17: 

 

    tan ψ  =   0.329 788 311 8 

 
from which         ψ  =   18

o
.251 951 53. 

 

(It may be noted by those who are following the calculation in detail that calculating both 

sin ψ  and  tan ψ  not only eliminates any quadrant ambiguity, but it also serves as a 

check on the arithmetic.) 

 

Equation 10.10.20:         l  =  0.014 834 389 3  AU. 

 

Equation 10.10.21:               e =  0.995 189 967 6   ≅  0.9952. 

 

Equation 10.10.22       cos v  =  −0.995 676 543 6 , 
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    ∴        v  =  !174
o
.670 214 0. 

 

With θ  j  12
o
 and ψ  j 18

o
,  a quick sketch will convince us that the comet is past 

perihelion and is becoming more distant from the Sun, and therefore the true anomaly is 

 

     v  =  +174
o
.670 214 0. 

 

Equation 10.10.23:  ω  =  162º.048 178 0  ≅  162º 03'. 
 

 

Equation 10.10.24:                  cos E   =   −0.053 395 416 1 , 

 

           E   =   !93
o
.060 787 59. 

 

But E and v must have the same sign, and so 

 

           E   =   +93
o
.060 787 59. 

 

Equation 10.10.25:          M   =  +0.630 446 871 rad  =   36º.121 944 93. 

 

The period is P  =   a
3/2

 sidereal years  =   1.921 790 844 sidereal years =701.946 328 2 

solar days. 

 

Equation 10.10.26:      T   =   t  −  70.432 407 26  ≅   t  −  70.43 days.        

 
 
 
10.11   Hamiltonian Formulation of the Equations of Motion 

 

    This section will require some knowledge by the reader of hamiltonian dynamics and 

the Hamilton-Jacobi theorem.  The analysis will result in yet another set of six parameters 

for describing an orbit, which will be denoted by α1, α2, α3, β1, β2, β3.  These will of 

course be related to the familiar six elements, and an orbit can be described by either one 

set or another.  This section may be slightly more demanding than some previous 

sections, requiring as it does, knowledge of hamiltonian dynamics, and is not 

immediately essential.  However, results arising will be used in Chapter 14 on general 

perturbations. 

 

The Hamilton equations of motion (which will be familiar only to those who are 

acquainted with hamiltonian dynamics) are 

 

   ,and i

i

i

i

p
q

H
q

p

H
&& −=

∂

∂
=

∂

∂
          10.11.1a,b 

 

where, for a conservative system, H  =  T  +  V. 
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Now let us suppose that we know the hamiltonian for a system as a function of the 

generalized coordinates, generalized momenta and the time:  H(qi , pi , t).  We want to 

find some function of the coordinates and the time, S(qi , t), which is a solution to the 

hamiltonian equations of motion.  The Hamilton-Jacobi theorem says the following.  Let 

us set up the following equation, in which i goes from 1 to n, n being the number of 

required generalized coordinates for the system.  (In our orbital context, n will be six, 

since six elements are necessary to describe an orbit). 

 

    .0,, =
∂

∂
+









∂

∂

t

S
t

q

S
qH

i

i     10.11.2 

 

This is the Hamilton-Jacobi equation. 

 

If we can integrate this equation, there will be n + 1 constants of integration, which I call 

α0 , α1 ,  ...  αn.  Suppose that 0),,( α+α tqS ii  is any solution of equation 10.11.2  (not 

necessarily a solution to Hamilton’s equations; it could be quite a simple solution).  Then 

set up n additional equations of the form 

 

     ,i

i

S
β=

α∂

∂
  i = 1 to n  10.11.3 

 

where we have introduced n additional constants βi.  If we can solve these equations for 

S, according to the Hamilton-Jacobi theorem, these solutions are solutions of the 

hamiltonian equations of motion. 

 

Let us see if we can apply this theorem to the problem of a particle of mass m moving 

around a body of mass M  (m << M).  

The hamiltonian is 

  ( ) .
2

1
),,( 2

sin

1212
222

r

mG
ppp

m
tpqH

rrrii

M
−++= φθθ   10.11.4 

Here I have merely resolved the momentum into its components in spherical coordinates. 

We can now set up the Hamilton-Jacobi equation: 

  ( ) .0)()()( 2

sin

1212

2
1

222 =+−++
∂
∂

φ∂
∂

θθ∂
∂

∂
∂

t
S

r
GMmS

r

S

rr
S

m
  10.11.5 

Let us see if we can find any solution to this equation, for example a solution of the form 

.)()()()( tSSSrSS tr +φ+θ+= φθ    The equation 10.11.5 is then 
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( ) .)()()( 2

sin

1212

2
1

222 r
GMm

d

dS

rd

dS

rdr

dS

mdt

dS rt +++−=
φθθ

φθ

  10.11.6 

The left hand side is a function of t alone, and the right hand side is a function of r , θ  

and φ.  This is possible only if each side is a constant independent of  r , θ , φ and t. Let 

us call this constant α1.  Then integration of the left hand side gives 

    .)( 11 CttSt +α=      10.11.7 

In a similar manner we can isolate 
φ∂

∂ φS
 from equation 10.11.6, so that it is equal to a 

function of the other variables and therefore it, too, is a constant and independent of the 

other variables.  (This is a seeming contradiction – but “constant” is a special case of a 

function, and indeed is the only function that will satisfy the condition that a function of 

one variable equals a function of another.).   Therefore, on integrating with respect to φ, 
we obtain 

    .)( 22 CS +φα=φφ      10.11.8 

We are now left with 

  
( ) .)()( 2

2sin

1212

2
1

1 222 r
mG

rd

dS

rdr

dS

m
r M+α++−=α

θθ
θ

  10.11.9 

If we multiply through by r
2
, we can then separate r and θ.  Thus we find that  

θα+
θ
θ 22

2

2 csc)(
d

dS
 is equal to a function of r, and therefore both must be equal to a 

constant, which we’ll call ,2

3α  and so we get 

   .)csc()( 2/122

2
0

2

3 θθα−α=θ ∫
θ

θ dS              10.11.10 

We are now left with 

  
( ) .)( 2

3

22

2
12

1 GMmrrr
dr

dS

m
r +α+−=α

             10.11.11 

Thus we find that 

  .)22()( 2/12

3

2

1

21

1

drrmrGMmrS
r

r
rr α−α−= ∫             10.11.12 

Here r1 is a lower bound to r (perihelion) being the lower solution of 
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   .022 2
3

2
1

2 =α−α− rmrmGM              10.11.13 

 

Thus we have found a solution of the Hamilton-Jacobi equation 10.11.5, which contains 

four arbitrary constants α0 , α1 , α2 and α3 ,  where α0 incorporates C1 , C2 and r1.   

Now, in order to find the solution to the hamiltonian equations of motion, we need to 

solve the equations  1

1

β=
α∂

∂S
, 2

2

β=
α∂

∂S
and 3

3

β=
α∂

∂S
. 

i.    .)22( 2/12
3

2
1

21

11

1
1

drrmrmGt
S r

r r
α−α−∫

α∂

∂
+=

α∂

∂
=β M            10.11.14 

When r = r1, β1 = t.  Thus we immediately identify β1 with T, the time of perihelion 

passage. 

Now let us put )1(1 ear −= and )1(2 ear += , so that arr 221 =+ (definition of ellipse!) 

and .)1( 22

21 earr −=   But the sum and product of the roots of the quadratic equation 

10.11.13 are GMm/α1 and )2/( 1

2

3 αα m respectively.  Thus we can identify α1 and α3 with 

     
a

mG

2
1

M
=α              10.11.15 

and     .)1( 222
3 eamG −=α M                 10.11.16 

ii.         .)csc( 2/122
2

2
30

22

2 θθα−α∫
α∂

∂
+φ=

α∂

∂
=β θ

d
S

           10.11.17 

If we choose the direction of the x-axis such that φ = Ω when θ = 0, then we must identify 

β2 with Ω and θ with 90
o
 − i when the integrand is zero. 

Therefore we see that   .cos)1( 2222
2 ieamG −=α M            10.11.18 

There remains one more integration constant, which is quite arbitrary, and we can choose 

it such that β3  =  ω. 

The six parameters α1 , α2 , α3 , β1 , β2 , β3  that can be used to characterise an orbit are 

related, then, to the more familiar orbital elements by 

     
a

mG

2
1

M
=α              10.11.19 
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     ieamG 2222
2 cos)1( −=α M             10.11.20 

     )1( 222
3 eamG −=α M             10.11.21 

     β1   =   T              10.11.22 

     β2   =   Ω              10.11.23 

     β3   =   ω.              10.11.24 

 

Conversely:    
12α

=
mG

a
M

              10.11.25 

     
322

2
312

1
mG

e
M

αα
−=              10.11.26 

     )/(cos 32

1 αα= −
i              10.11.27 

     T  =   β1              10.11.28 

     Ω  =  β2              10.11.29 

     ω  =  β3              10.11.30

   

Thus an orbit can be characterized by stating the values of the αi and βi just as easily as 

by stating the conventional elements a, e, i, Ω, ω, T.  At this stage there may seem little 

point in doing so, though there is no actual difficulty in doing so.  In Chapter 14, 

however, we shall make good use of these parameters.   

Likewise, those who are familiar with hamiltonian mechanics are accustomed to 

describing a system in terms of the canonical variables (qi , pi) (generalized coordinates 

and momenta).  But we might also sometimes want to describe the system with some 

other choice of variables, which we’ll call (Qi , Pi).  These of course will be related to the 

canonical variables (qi , pi) by some sort of transformation.  A transformation of the form 

    ,,
i

i

i

i
Q

S
P

q

S
p

∂

∂
−=

∂

∂
=        10.11.31a,b 

 

where     ),,( tQqSS ii=              10.11.32 
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is a contact transformation. 

Now if the original (qi , pi) obey the hamiltonian equations 10.11.1a,b, then it is easy to 

see that the Qi , Pi satisfy the equations 

    ,and i

i

i

i

P
Q

K
Q

P

K
&& −=

∂

∂
=

∂

∂
       10.11.33a,b 

 

where     .
t

S
HK

∂

∂
+=              10.11.34 

The Hamilton-Jacobi theorem amounts to making a suitable (contact) transformation – 

that is, choosing a suitable combination of the elements and the coordinates − such that 

the hamiltonian is zero.  In fact, if we identify Qi with αi and Pi with −βi, the equation 

i

i
Q

S
P

∂

∂
−=  is just .

i

i

S

α∂

∂
=β  

 

 

 

 

 

 

     

 

     

    

    

     

 


