
A User’s Guide to Fortran Programming in IRAF
The IMFORT Interface

Doug Tody

National Optical Astronomy Observatories*
September 1986

ABSTRACT

The IMFORT interface is a Fortran programming environment suitable for
general Fortran programming, with special emphasis on batch image processing.
IMFORT is intended for use primarily by the scientist/user who occasionally
needs to write a program for their own personal use, but who does not program
often enough to make it worthwhile learning a larger, more complex but fully
featured programming environment. IMFORT is therefore a small interface
which is easy to learn and use, and which relies heavily upon host system
(non-IRAF) facilities which the user is assumed to already be familiar with.
Facilities are provided for accessing command line arguments, reading and writ-
ing IRAF images, and returning output to the CL. Provisions are made for edit-
ing, compiling, linking, and debugging programs without need to leave the
IRAF environment, making use of familiar host system editing and debugging
tools wherever possible.

333333333333333333

*Operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the
National Science Foundation.



Contents

1. Introduction ................................................................................................................ 1
1.1. Who Should Use IMFORT ............................................................................. 1

2. Getting Started ........................................................................................................... 3
2.1. Example 1: Plotting a function ...................................................................... 3
2.2. Example 2: Compute the range of pixel values in an image ......................... 6
2.3. Example 3: Copy an image............................................................................ 7

3. The IMFORT Programming Environment ............................................................. 9
3.1. The FC Compile/Link Utility ......................................................................... 9
3.2. Host Level Linking to the IMFORT Libraries................................................ 11
3.3. Calling Host Programs from the CL............................................................... 11

3.3.1. Example 1 Revisited........................................................................ 13
3.4. Debugging IMFORT Programs....................................................................... 14
3.5. Calling IMFORT from Languages other than Fortran .................................... 14
3.6. Avoiding Library Name Collisions ................................................................. 14

4. The IMFORT Library ............................................................................................... 16
4.1. Command Line Access ................................................................................... 17
4.2. Image Access .................................................................................................. 17

4.2.1. General Image Access Procedures................................................... 17
4.2.2. Image Header Keyword Access....................................................... 19
4.2.3. Image Pixel Access.......................................................................... 20

4.3. Error Handling ................................................................................................ 21
4.4. Vector Operators ............................................................................................. 21
4.5. Binary File I/O (BFIO) ................................................................................... 25

Appendix A: Manual Pages for the IMFORT Procedures......................................... 27



A User’s Guide to Fortran Programming in IRAF
The IMFORT Interface

Doug Tody

National Optical Astronomy Observatories*
September 1986

1. Introduction
The IMFORT interface is a library of Fortran callable subroutines which can be called

from a host system Fortran program to perform such operations as fetching the arguments given
on the command line when the task was invoked, or accessing the header or pixel information in
an IRAF image (bulk data frame). Since the result is a host program rather than an IRAF pro-
gram, only limited access to the facilities provided by the runtime IRAF system is possible, but
on the other hand one has full access to the facilities provided by the host system. Programs
which use IMFORT may be run as ordinary host system programs outside of IRAF, or may be
interfaced to the IRAF command language (CL) as CL callable tasks. Within the IRAF
environment these user written, non-IRAF tasks behave much like ordinary IRAF tasks, allow-
ing background execution, use of i/o redirection and pipes, evaluation of expressions on the
command line, programmed execution in scripts, and so on.

1.1. Who Should Use IMFORT
The most significant feature of the IMFORT interface is that it is designed for use by host

Fortran programs. The scientist/user will often already be using such programs when IRAF
becomes available. IMFORT allows these pre-existing programs to be modified to work within
the IRAF environment with a minimum of effort and with minimum changes to the existing
program. The only alternative is to rework these programs as IRAF programs, but few existing
Fortran programs could (or should) survive such a transition without being completely rewritten.
If the program in question is useful enough such a rewrite might be warranted, but in most cases
this will not be practical, hence something like the IMFORT interface is clearly needed to keep
these old programs alive until they are no longer needed.

The second goal of the IMFORT interface is to provide a way for the user to add their
own programs to IRAF without having to invest a lot of time learning the full blown IRAF pro-
gramming environment. IMFORT makes it possible for the user to begin writing useful pro-
grams within hours of their first exposure to the system. It is possible that the IMFORT inter-
face will provide all the capability that some users will ever need, especially when supple-
mented by other (non-IRAF) Fortran callable libraries available on the local host machine. Pro-
grams developed in this way are bound to have portability and other problems, but it should be
up to the developer and user of the software to decide whether these problems are worth worry-
ing about. IMFORT is simply a tool, to be used as one sees fit; there is no attempt to dictate to
the user how they should write their programs.

The alternative to IMFORT, if applications programming within IRAF is the goal, is the
IRAF SPP/VOS programming environment. The SPP/VOS programming environment is a
fully featured scientific programming environment which carefully addresses all the software
engineering issues avoided by IMFORT. The VOS is a large and complex environment and
therefore takes longer to learn than IMFORT, but it provides all the facilities needed by large
applications hence is easier to use than simpler interfaces like IMFORT, if one is faced with the
already difficult task of coding a large program or package. Furthermore, the SPP/VOS
3333333333333333

*Operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement
with the National Science Foundation.



- 2 -

environment fully addresses the problems of portability and device independence, critical issues
for applications which must be supported and used simultaneously on a range of machines over
a period of years, during which time the software is likely to be continually evolving. An over-
view of the SPP/VOS programming environment is given in The IRAF Data Reduction and
Analysis System, February 1986, by the author.

In summary, IMFORT is intended for use to interface old Fortran programs to IRAF with
a minimum of effort, and as an entry level programming environment which new users can learn
to use in a few hours. Experienced users, professional programmers, and developers of large
applications will find that they can accomplish more with less effort once they have learned to
use the more fully featured SPP/VOS programming environment.



- 3 -

2. Getting Started
Although programs which use IMFORT can and often will be invoked from the host sys-

tem command interpreter, it is likely that such programs will also be used interactively in com-
bination with the tasks provided by the standard IRAF system. For example, the IRAF graphics
and image display facilities are likely to be used to examine the results of an image operation
performed by a user written Fortran/IMFORT program. Indeed, the standard IRAF tasks are
likely to be used for testing new IMFORT programs as well as reducing data with old ones, so
we shall assume that software development will take place from within the IRAF environment.
Since IRAF provides full access to the facilities of the host system at all times, there is little
reason not to work from within the IRAF environment.

As a first step, let’s see what is required to enter, compile, link, and execute a small For-
tran program which does nothing more than print the message hello, world! on the termi-
nal. We shall assume that the reader has read the CL User’s Guide and is already familiar with
basic CL command entry, the OS escape facility, the editor interface and so on. The first step is
to call up the editor to enter the program into a file:

cl> edit hello.f

Note that the filename extension is ".f", which is what IRAF uses for Fortran files. The exten-
sion will be mapped into the local host system equivalent when IRAF communicates with the
host system, but when working in the IRAF environment the IRAF name should be used.

Once in the editor, enter the following program text:

program hello
write (*,*) ’hello, world!’
stop
end

The next step is to compile and link the hello program. This is done by the command fc
(fortran-compile), which produces an object file hello.o and an executable program file
hello.e. Note that the fc task is defined in the default user package in your LOGIN.CL file,
hence a mkiraf may be required to regenerate the LOGIN.CL file if the file is old or has been
modified.

cl> fc hello.f

Since the hello program is a host Fortran program, it can be executed immediately with an
OS escape, e.g., !hello.e on UNIX, or !run hello on VMS. A better approach if the
task has command line arguments is to use the IRAF foreign task facility to define the program
as a new IRAF task, as we shall see in the next section.

2.1. Example 1: Plotting a function
As a slightly more complicated example, let’s construct a program to compute and plot a

function using command line arguments to input the function parameters, with output consisting
of a simple ASCII table sampling the computed function. Our example computes the Planck
function, which gives the emissivity of a blackbody as a function of wavelength and tempera-
ture. The sample program is shown in Figure 1. Source code for this and all other examples in
this paper may be found in the IRAF directory imfort$tasks.



- 4 -

c PLANCK -- Compute the Planck blackbody radiation distribution for a
c given temperature and wavelength region.
c
c usage: planck temperature lambda1 lambda2
c
c The temperature is specified in degrees Kelvin and the wavelength
c region in microns (1u=10000A). 100 [x,y] data points defining the
c curve are output.
c ----------------------------------------------------------------------

program planck

character*80 errmsg
integer nargs, ier, i
real w1, w2, dw, cm, t
real xv(100), yv(100)

c --- Get the temperature in degrees kelvin.
call clargr (1, t, ier)
if (ier .ne. 0) then

write (*, ’(’’ temperature (degrees kelvin): ’’,$)’)
read (*,*) t

endif

c --- Get the wavelength region to be computed.
call clnarg (nargs)
if (nargs .ge. 3) then

call clargr (2, w1, ier)
if (ier .ne. 0) goto 91
call clargr (3, w2, ier)
if (ier .ne. 0) goto 91

else
write (*, ’(’’ start wavelength (microns): ’’,$)’)
read (*,*) w1
write (*, ’(’’ end wavelength (microns): ’’,$)’)
read (*,*) w2

endif

c --- Compute the blackbody curve.
dw = (w2 - w1) / 99.0
do 10 i = 1, 100

xv(i) = ((i-1) * dw) + w1
cm = xv(i) * 1.0E-4
yv(i) = (3.74185E-5 * (cm ** -5)) /

* (2.71828 ** (1.43883 / (cm * t)) - 1.0)
10 continue

c --- Print the curve as a table.
do 20 i = 1, 100

write (*, ’(f7.4, g12.4)’) xv(i), yv(i)
20 continue

stop

c --- Error exit.
91 call imemsg (ier, errmsg)

write (*, ’(’’ Error: ’’, a80)’) errmsg
stop
end

Figure 1. Sample program to compute the Planck function‡

3333333333333333

‡The trailing $ carriage control code used in the format strings in the WRITE statements in this and the
other sample Fortran programs is nonstandard Fortran and may not be available on all host machines. Its
function is to defeat the carriage-return linefeed so that the user’s response may be entered on the same line
as the prompt.



- 5 -

This example serves to demonstrate the use of the IMFORT clarg procedures to fetch the
command line arguments, and the use of i/o redirection to capture the output to generate the
plot. The command line to an IMFORT program consists of a sequence of arguments delimited
by spaces or tabs. The subroutine clnarg returns the number of arguments present on the com-
mand line when the task was called. The clargr, clargi, etc. procedures fetch and decode the
values of the individual arguments. Virtually all IMFORT procedures include an integer output
variable ier in their argument list; a zero status indicates success, anything else indicates failure
and the actual error code identifies the cause of the problem. The imemsg procedure may be
called to convert IMFORT error codes into error message strings, as in the example.

Once the program has been entered and compiled and linked with fc, we must declare the
program as a foreign task to the CL. If this is not done the program can still be run via an OS
escape, but none of the advanced CL features will be available, e.g., background execution,
command line expression evaluation, i/o redirection, and so on. The technique used to declare a
foreign task is machine dependent since it depends upon the syntax of the host command inter-
preter. For example, to declare the new CL foreign task planck on a UNIX system, we enter the
following command:

cl> task $planck = $planck.e

The same thing can be achieved on a VMS system with the following declaration (it can be
simplified by moving the VMS foreign task declaration to your LOGIN.COM file):

cl> task $planck = "$planck:==\$disk:[dir...]planck.exe!planck"

The $ characters are required to tell the CL that the new task does not have a parameter file,
and is a foreign task rather than a regular IRAF task. The ! in the VMS example is used to
delimit multiple DCL commands; the command shown defines the DCL foreign task planck and
then executes it. The use of the task statement to declare foreign tasks is discussed in detail in
§3.3.

We have written the program in such a way that the arguments will be queried for if not
given on the command line, so if we enter only the name of the command, an interaction such
as the following will occur:

cl> planck
temperature (degrees kelvin): 3000
start wavelength (microns): .1
end wavelength (microns): 4

Note that if the output of the planck task is redirected this input mechanism will not work, since
the queries will be redirected along with the output. Hence if we use a pipe to capture the out-
put, as in the following example, the arguments must be given on the command line.

cl> planck 3000 0.1 4.0 | graph

This command will compute and plot the emissivity for a 3000 degree kelvin blackbody from
0.1 to 4.0 microns (1000 to 40000 angstroms).

An interesting alternative way to implement the above program would be to output the
function curve as a line in an image, rather than as a table of numbers. For example, a two
dimensional image could be generated wherein each line corresponds to a different temperature.
Graph or implot could then be used to plot curves or overplot families of curves; this would be
more efficient than the technique employed in our sample program. Image access via IMFORT
is illustrated in our next example.



- 6 -

2.2. Example 2: Compute the range of pixel values in an image
The program shown in Figure 2 opens the named image, examines each line in the image

to determine the minimum and maximum pixel values, keeping a running tally until the entire
image has been examined (there is no provision for detecting and ignoring bad pixels in the
image). The newly computed minimum and maximum pixel values are then updated in the
image header as well as printed on the standard output.

c MINMAX -- Compute the minimum and maximum pixel values in an image.
c The new values are printed as well as updated in the image header.
c
c usage: minmax image
c ----------------------------------------------------------------------

program minmax

character*80 image, errmsg
real pix(4096), dmin, dmax, vmin, vmax
integer im, axlen(7), naxis, dtype, ier, j

c --- Get image name.
call clargc (1, image, ier)
if (ier .ne. 0) then

write (*, ’(’’ enter image name: ’’,$)’)
read (*,*) image

endif

c --- Open the image for readwrite access (we need to update the header).
call imopen (image, 3, im, ier)
if (ier .ne. 0) goto 91
call imgsiz (im, axlen, naxis, dtype, ier)
if (ier .ne. 0) goto 91

c --- Read through the image and compute the limiting pixel values.
do 10 j = 1, axlen(2)

call imgl2r (im, pix, j, ier)
if (ier .ne. 0) goto 91
call alimr (pix, axlen(1), vmin, vmax)
if (j .eq. 1) then

dmin = vmin
dmax = vmax

else
dmin = min (dmin, vmin)
dmax = max (dmax, vmax)

endif
10 continue

c --- Update the image header.
call impkwr (im, ’datamin’, dmin, ier)
if (ier .ne. 0) goto 91
call impkwr (im, ’datamax’, dmax, ier)
if (ier .ne. 0) goto 91

c --- Clean up.
call imclos (im, ier)
if (ier .ne. 0) goto 91
write (*, ’(a20, 2 g12.5)’) image, dmin, dmax
stop

c --- Error exit.
91 call imemsg (ier, errmsg)

write (*, ’(’’ Error: ’’, a80)’) errmsg
stop
end

Figure 2. Compute the min and max pixel values in an image



- 7 -

The program as written can only deal with images of one or two dimensions, of pixel type
short (16 bit integer) or real (32 bit floating), with a line length not to exceed 4096 pixels per
line. We could easily change the program to deal with images of up to three dimensions, but
the IMFORT interface does not provide dynamic memory allocation facilities so there is always
going to be an upper limit on the line length if we use the simple get line i/o procedure imgl2r,
as shown. The use of fixed size buffers simplifies the program, however, and is not expected to
be a serious problem in most IMFORT applications.

The alimr subroutine in the previous example is from the IRAF VOPS (vector operators)
package. The function of alimr is to compute the limiting (min and max) pixel values in a vec-
tor of type real, the function type being indicated by the lim, and the pixel datatype by the r.
The VOPS package provides many other such vector operators, and is discussed further in § 4.4.

2.3. Example 3: Copy an image
Our final example (Figure 3) shows how to create a new image as a copy of some existing

image. This can be used as a template to create any binary image operator, i.e., any program
which computes some transformation upon an existing image, writing a new image as output.

By now the functioning of this procedure should be self evident. The only thing here
which is at all subtle is the subroutine imopnc, used to open (create) a new copy of an existing
image. The open new copy operation creates a new image the same size and datatype as the old
image, and copies the image header of the old image to the new image. Any user keywords in
the header of the old image will be automatically passed to the new image, without requiring
that the calling program have explicit knowledge of the contents of the image header.

Note that the program is written to work only on pixels of type real, hence will be
inefficient if used to copy images of type short-integer. A more efficient approach for a general
image copy operator would be to add a conditional test on the variable dtype, executing a
different copy-loop for each datatype, to avoid having to convert from integer to real and back
again when copying a short-integer image. The short-integer equivalents of imgl3r (get line, 3
dim image, type real) and impl3r (put line, 3 dim image, type real) are called imgl3s and impl3s.

The program as written will work for images of up to three dimensions, even though it is
written to deal with only the three dimensional case. This works because the length of the
"unused" axes in an image is set to one when the image is created. A program passed an image
of higher dimension than it is written for will also work, but will not process all of the data.
IMFORT does not support image sections, so only the first few lines of the image will be acces-
sible to such a program.

Additional useful examples of Fortran programs using IMFORT are given in
imfort$tasks. These include utility programs to make test images, print the contents of an
image header, print the values of the pixels in a subraster, and so on. You may wish to copy
the source for these to your own workspace for use as is, or for use as templates to construct
similar programs.



- 8 -

c IMCOPY -- Copy an image. Works for images of up to three dimensions
c with a pixel type of short or real and up to 4096 pixels per line.
c
c usage: imcopy oldimage newimage
c ---------------------------------------------------------------------

program imcopy

real pix(4096)
character*80 oimage, nimage, errmsg
integer ncols, nlines, nbands, j, k, oim, nim
integer ier, axlen(7), naxis, dtype, nargs

c --- Get command line arguments.
call clnarg (nargs)
if (nargs .eq. 2) then

call clargc (1, oimage, ier)
if (ier .ne. 0) goto 91
call clargc (2, nimage, ier)
if (ier .ne. 0) goto 91

else
write (*, ’(’’ input image: ’’,$)’)
read (*,*) oimage
write (*, ’(’’ output image: ’’,$)’)
read (*,*) nimage

endif

c --- Open the input image and create a new-copy output image.
call imopen (oimage, 1, oim, ier)
if (ier .ne. 0) goto 91
call imopnc (nimage, oim, nim, ier)
if (ier .ne. 0) goto 91

c --- Determine the size and pixel type of the image being copied.
call imgsiz (oim, axlen, naxis, dtype, ier)
if (ier .ne. 0) goto 91

ncols = axlen(1)
nlines = axlen(2)
nbands = axlen(3)

c --- Copy the image.
do 15 k = 1, nbands

do 10 j = 1, nlines
call imgl3r (oim, pix, j, k, ier)
if (ier .ne. 0) goto 91
call impl3r (nim, pix, j, k, ier)
if (ier .ne. 0) goto 91

10 continue
15 continue

c --- Clean up.
call imclos (oim, ier)
if (ier .ne. 0) goto 91
call imclos (nim, ier)
if (ier .ne. 0) goto 91

stop

c --- Error actions.
91 call imemsg (ier, errmsg)

write (*, ’(’’ Error: ’’, a80)’) errmsg
stop
end

Figure 3. Image copy program



- 9 -

3. The IMFORT Programming Environment
IRAF provides a small programming environment for the development of host Fortran

programs using the IMFORT interface. This environment consists of the general CL tools, e.g.,
the editor, the page and lprint tasks, etc., plus a few special tools, namely, the fc compile/link
utility and the foreign task facility. In this section we discuss these special tools and facilities.
Information is also provided for linking to the IMFORT libraries if program development is to
take place at the host system level.

The classic third generation program development cycle (ignoring such minor details as
designing the software) is edit — compile/link — debug. The edit phase uses the CL edit task,
an interface to the host system editor of choice. The compile/link phase is performed by the fc
utility. The debug phase is optional and is generally only necessary for large programs. The
host system debug tool is used; while IRAF does not provide a special interface to the host
debug tool, one can easily be constructed using the foreign task facility if desired.

Programs which use the IMFORT interface are inevitably host system dependent to some
degree, since they are host programs. In the interests of providing the user with concrete exam-
ples, the discussion in this section must therefore delve into the specifics of certain host operat-
ing systems. We have chosen to use UNIX and VMS in the examples, since most IRAF imple-
mentations run on one or the other of these operating systems. The ties between the IMFORT
programming environment and the host system are quite simple, however, so it should not be
difficult to see how to modify the examples for a different host.

3.1. The FC Compile/Link Utility
The fc utility provides a consistent, machine independent interface to the host system com-

piler and linker which is convenient and easy to use. In addition, fc provides a means for link-
ing host programs with the IRAF libraries without having to type a lot, and without having to
build host command scripts. All of the IRAF libraries are accessible via fc, not just IMFORT
(lib$libimfort.a) and the IRAF system libraries used by IMFORT, but all the other IRAF
libraries as well, e.g., the math libraries.

The default action of fc is to compile and link the files listed on the command line, i.e.,
source files in various languages, object modules, and libraries. Any source files are first turned
into object modules, then the objects are linked in the order given, searching any libraries in the
order in which they are encountered on the command line (the IMFORT libraries are searched
automatically, after any libraries listed on the command line). By default, the root name of the
new executable will be the same as that of the first file listed on the command line; a different
name may be assigned with the -o switch if desired.

The syntax of the fc command is as follows:

fc [switches] file [file ...] [-o exefile]

The most interesting switches are as follows:

-c Compile but do not link.

-llibrary
Link to the named IRAF library. On a UNIX host this switch may also be used to
reference the UNIX libraries. The -llibrary reference should be given in the file
list at the point at which you want the library to be searched. The -l causes fc to
look in a set of standard places for the named library; user libraries should be
referenced directly by the filename of the library.

-o exefile
Override the default name for the executable file produced by the linker.



- 10 -

-x Compile and link for debugging.

Since the fc command line can contain many different types of objects, a filename extension
is required to identify the object type. The IRAF filename extensions must be used; these are
listed in the table below.

22222222222222222222222222
IRAF Filename Extensions22222222222222222222222222
extn usage2222222222222222222222222222222222222222222222222222
.a object library
.c C source file
.e executable
.f Fortran source file
.o object module
.s Assembler source file
.x SPP source file2222222222222222222222222211

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

The fc utility is easy to learn and use. Here are a few examples illustrating the most
common usage of the utility. To compile and link the Fortran program prog.f, producing
the executable program prog.e:

cl> fc prog.f

To compile the file util.f to produce the object util.o, without linking anything:

cl> fc -c util.f

To link prog.o and util.o, producing the executable program prog.e:

cl> fc prog.o util.o

To do the same thing, producing an executable named foo.e instead of prog.e:

cl> fc prog.o util.o -o foo.e

To compile and link prog.f for debugging:

cl> fc -x prog.f

To link prog.o with the IRAF library lib$libdeboor.a (the DeBoor spline package),
producing the executable prog.e as output:

cl> fc prog.o -ldeboor

To do the same thing, spooling the output in the file spool and running the whole thing in
the background:

cl> fc prog.o -ldeboor >& spool &

To link instead with the library libfoo.a, in the current directory (note that in this case
the library is a module and not a switch):

cl> fc prog.o libfoo.a

Just about any combination of switches and modules that makes sense will work. The order
of libraries in the argument list is important, as they will be searched in the order in which
they are listed on the command line.

The fc utility is actually just a front-end to the standard IRAF compiler xc, as we shall
see in §3.3. See the manual page for xc for additional information.



- 11 -

3.2. Host Level Linking to the IMFORT Libraries
In some cases it may be desirable to use host system facilities to compile and link pro-

grams which use the IMFORT interface. The procedure for doing this is host dependent and
is completely up to the user, who no doubt will already have a preferred technique worked
out. All one needs to know in this situation are the names of the libraries to be linked, and
the order in which they are to be linked. The libraries are as follows, using the IRAF
filenames for the libraries. All the libraries listed are referenced internally by the IMFORT
code hence are required.

lib$libimfort.a IMFORT itself
lib$libsys.a Contains certain pure code modules used by IMFORT
lib$libvops.a The VOPS vector operators library
hlib$libos.a The IRAF kernel (i/o primitives)

The host pathnames of these libraries will probably be evident, given the host pathname of
the IRAF root directory (lib is a subdirectory of the IRAF root directory). If in doubt, the
osfn intrinsic function may be used while in the CL to print the host pathname of the desired
library. For example,

cl> = osfn ("lib$libimfort.a")

will cause the CL to print the host pathname of the main IMFORT library.

3.3. Calling Host Programs from the CL
Since Fortran programs which use IMFORT are host programs rather than IRAF pro-

grams, the CL foreign task interface is used to connect the programs to the CL as CL callable
tasks. The foreign task interface may also be used to provide custom CL task interfaces to
other host system utilities, e.g., the debugger or the librarian.

The function of the task statement in the CL is to make a new task known to the CL.
The CL must know the name of the new task, the name of the package to which it is to be
added, whether or not the new task has a parameter file, the type of task being defined, and
the name of the file in which the task resides. At present new tasks are always added to the
"current" package. The possible types of tasks are normal IRAF executable tasks, CL script
tasks, and foreign tasks. Our interest here is only in the forms of the task statement used to
declare foreign tasks. There are two such forms at present. The simplest is the following:

task $taskname [, $taskname...] = $foreign

This form is used when the command to be sent to the host system to run the task is identical
to the name by which the task is known to the CL. Note that any number of new tasks may
be declared at one time with this form of the task statement. The $ prefixing each taskname
tells the CL that the task does not have a parameter file. The $foreign tells the CL that
the new tasks are foreign tasks and that the host command is the same as taskname. For
example, most systems have a system utility mail which is used to read or send electronic
mail. To declare the mail task as an IRAF foreign task, we could enter the following declara-
tion, and then just call the mail task from within the CL like any other IRAF task.

task $mail = $foreign

The more general form of the foreign task statement is shown below. The host command
string must be quoted if it contains blanks or any other special characters; $ is a reserved
character and must be escaped to be included in the command sent to the host system.

task $taskname = $host_command_string

In this form of the task statement, the command to be sent to the host system to execute the



- 12 -

new IRAF task may be any string. For example, on a VMS host, we might want to define
the mail task so that outgoing messages are always composed in the editor. This could be set
up by adding the /EDIT switch to the command sent to VMS:

task $mail = $mail/edit

Foreign task statements which reference user-written Fortran programs often refer to the pro-
gram by its filename. For the task to work regardless of the current directory, either the full
pathname of the executable file must be given, or some provision must be made at the host
command interpreter level to ensure that the task can be found.

When a foreign task is called from the CL, the CL builds up the command string to be
sent to the host command interpreter by converting each command line argument to a string
and appending it to host_command_string preceded by a space. This is the principal
difference between the foreign task interface and the low level OS escape facility: in the case
of a foreign task, the command line is fully parsed, permitting general expression evaluation,
i/o redirection, background execution, minimum match abbreviations, and so on.

In most cases this simple method of composing the command to be sent to the host sys-
tem is sufficient. There are occasional cases, however, where it is desirable to embed the
command line arguments somewhere in the string to be sent to the host system. A special
argument substitution notation is provided for this purpose. In this form of the task state-
ment, host_command_string contains special symbols which are replaced by the CL com-
mand line arguments to form the final host command string. These special symbols are
defined in the table below.

$0 replaced by taskname
$1, $2, ..., $9 replaced by the indicated argument string

$∗ replaced by the entire argument list
$(N) use host equivalent of filename argument N (1-9 or ∗ )

An example of this form of the task statement is the fc task discussed in §3.1. As we
noted earlier, fc is merely a front-end to the more general IRAF HSI command/link utility xc.
In fact, fc is implemented as a foreign task defined in the default user package in the
LOGIN.CL file. The task declaration used to define fc is shown below. The task statement
shown is for UNIX; the VMS version is identical except that the -O switch must be quoted
else DCL will convert it to lower case. In general, foreign task statements are necessarily
machine dependent, since their function is to send a command to the host system.

task $fc = "$xc -h -O $∗ -limfort -lsys -lvops -los"

The argument substitution facility is particularly useful when the host command template
consists of several statements to be executed by the host command interpreter in sequence
each time the CL foreign task is called. In this case, a delimiter character of some sort is
required to delimit the host command interpreter statements. Once again, this is host system
dependent, since the delimiter character to be used is defined by the syntax of the host com-
mand interpreter. On UNIX systems the command delimiter character is semicolon (‘;’).
VMS DCL does not allow multiple statements to be given on a single command line, but the
IRAF interface to DCL does, using the exclamation character (‘!’), which is the comment
character in DCL.

The $() form of argument substitution is useful for foreign tasks with one or more
filename arguments. The indicated argument or arguments are taken to be IRAF virtual
filenames, and are mapped into their host filename equivalents to build up the host command
string. For example, assume that we have an IMFORT task phead, the function of which is
to print the header of an image in FITS format on the standard output (there really is such a
program - look in imfort$tasks/phead.f). We might declare the task as follows



- 13 -

(assuming that phead means something to the host system):

task $phead = "$phead $(*)"

We could then call the new task from within the CL to list the header of, for example, the
standard test image dev$pix, and page the output:

cl> phead dev$pix | page

Or we could direct the output to the line printer:

cl> phead dev$pix | lpr

Filename translation is available for all forms of argument substitution symbols, e.g., $(1),
$(2), $(∗ ), and so on; merely add the parenthesis.

It is suggested that new foreign task statements, if not typed in interactively, be added
to the user package in your LOGIN.CL file, so that the definitions are not discarded when
you log out of the CL or exit a package. If you want to make the new tasks available to other
IRAF users they can be added to the local package by adding the task statements to the file
local$tasks/local.cl. If this becomes unwieldy the next step is to define a new
package and add it to the system; this is not difficult to do, but it is beyond the scope of this
manual to explain how to do so.

3.3.1. Example 1 Revisited
Now that we are familiar with the details of the foreign task statement, it might be use-

ful to review the examples of foreign task statements given in §2.1, which introduced the
planck task. The UNIX example given was as follows:

cl> task $planck = $planck.e

This is fine, but only provided the planck task is called from the directory containing the exe-
cutable. To enable the executable to be called from any directory we can use a UNIX path-
name instead, e.g.,

cl> task $planck = $/usr/jones/iraf/tasks/planck.e

Alternatively, one could place all such tasks in a certain directory, and either define the path-
name of the directory as a shell environment variable to be referenced in the task statement,
or include the task’s directory in the shell search path. There are many other possibilities, of
course, but it would be inappropriate to enumerate them here.

The VMS example given earlier was the following:

cl> task $planck = "$planck:==\$disk:[dir...]planck.exe!planck"

The command string at the right actually consists of two separate DCL commands separated
by the VMS/IRAF DCL command delimiter ‘!’. If we invent a pathname for the executable,
we can write down the the first command:

$ planck :== $usr\$2:[jones.iraf.tasks]planck.exe

This is a DCL command which defines the new DCL foreign task planck. We could shorten
the CL foreign task statement by moving the DCL declaration to our DCL LOGIN.COM file;
this has the additional benefit of allowing the task to be called directly from DCL, but is not
as self-contained. If this were done the CL task statement could be shortened to the follow-
ing.

cl> task $planck = $foreign

The same thing could be accomplished in Berkeley UNIX by defining a cshell alias for the
task in the user’s .cshrc file.



- 14 -

3.4. Debugging IMFORT Programs
Programs written and called from within the IRAF environment can be debugged using

the host system debug facility without any inconvenience. The details of how to use the
debugger are highly dependent upon the host system since the debugger is a host facility, but
a few examples should help the reader understand what is involved.

Berkeley UNIX provides two debug tools, the assembly language debugger adb and the
source language debugger dbx. Both are implemented as UNIX tasks and are called from
within the IRAF environment as tasks, with the name of the program to be debugged as a
command line argument (this example assumes that adb is a defined foreign task):

cl> adb planck.e

The program is then run with a debugger command, passing any command line arguments to
the program as part of the debugger run-program command. Programs do not have to be
compiled in any special way to be debugged with adb; programs should be compiled with fc
-x to be debugged with dbx.

In VMS, the debugger is not a separate task but rather a shareable image which is
linked directly into the program to be debugged. To debug a program, the program must first
be linked with fc -x. The program is then run by simply calling it in the usual way from the
CL, with any arguments given on the command line. When the program runs it comes up
initially in the debugger, and a debugger command (go) is required to execute the user pro-
gram. Note that if the program is run directly with run/debug there is no provision for
passing an argument list to the task.

3.5. Calling IMFORT from Languages other than Fortran
Although our discussion and examples have concentrated exclusively on the use of the

IMFORT library in host Fortran programs, the library is in fact language independent, i.e., it
uses only low level, language independent system facilities and can therefore be called from
any language available on the host system. The method by which Fortran subroutines and
functions are called from another language, e.g., C or assembler, is highly machine dependent
and it would be inappropriate for us to go into the details here. Note that fc may be used to
compile and link C or assembler programs as well as Fortran programs.

3.6. Avoiding Library Name Collisions
Any program which uses IMFORT is being linked against the main IRAF system

libraries, which together contain some thousands of external procedure names. Only a few
hundred of these are likely to be linked into a host program, but there is always the chance
that a user program module will have the same external name as one of the modules in the
IRAF libraries. If such a library collision should occur, at best one would get an error mes-
sage from the linker, and at worst one would end up with a program which fails mysteriously
at run time.

At present there is no utility which can search a user program for externals and cross
check these against the list of externals in the IRAF system libraries. A database of external
names is however available in the file lib$names; this contains a sorted list of all the For-
tran callable external names defined by procedures in the imfort, ex, sys, vops, and os libraries
(the ex library is however not searched when linking IMFORT programs).

The match task may be used to check individual user external names against the name
list, or a host utility may be used for the same purpose. For example, to determine if the
module subnam is present in any of the IRAF system libraries:

cl> match subnam lib$names



- 15 -

The names database is also useful for finding the names of all the procedures sharing a partic-
ular package prefix. For example,

cl> match "^cl" lib$names | table

will find all the procedures whose names begin with the prefix "cl" and print them as a table
(the lists package must be loaded first).



- 16 -

4. The IMFORT Library
In this section we survey the procedures provided by the IMFORT interface, grouped

according to the function they perform. There are currently four main groups: the command
line access procedures, the image access procedures, the vector operators (VOPS), and a small
binary file i/o package. With the exception of the VOPS procedures, all of the IMFORT rou-
tines were written especially for IMFORT and are not called in standard IRAF programs.
The VOPS procedures are standard IRAF procedures, but are included in the IMFORT inter-
face because they are coded at a sufficiently low level that they can be linked into any pro-
gram, and they tend to be useful in image processing applications such as IMFORT is
designed for.

The ANSI Fortran-77 standard requires that all names in Fortran programs have six or
fewer characters. To eliminate guesswork, the names of all the IMFORT procedures are
exactly six characters long and the names adhere to a naming convention. The first one or
two characters in each name identify the package or group to which the procedure belongs,
e.g., cl for the command line access package, im for the image access package, and so on.
The package prefix is followed by the function name, and lastly a datatype code identifying
the datatype upon which the procedure operates, in cases where multiple versions of the pro-
cedure are available for a range of datatypes.

package_prefix // function_code // type_suffix

The type suffix codes have already been introduced in the examples. They are the same as
are used throughout IRAF. The full set is [bcsilrdx], as illustrated in the following table (not
all are used in the IMFORT procedures).

22222222222222222222222222222222222222222222222
Standard IRAF Datatypes22222222222222222222222222222222222222222222222

suffix name code typical fortran equivalent2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
b bool 1 LOGICAL
c char 2 INTEGER∗ 2 (non-ANSI)
s short 3 INTEGER∗ 2 (non-ANSI)
i int 4 INTEGER
l long 5 INTEGER∗ 4 (non-ANSI)
r real 6 REAL
d double 7 DOUBLE PRECISION
x complex 8 COMPLEX2222222222222222222222222222222222222222222222211

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

The actual mapping of IRAF datatypes into host system datatypes is machine depen-
dent, i.e., short may not map into INTEGER∗ 2 on all machines. This should not matter since
the datatype in which data is physically stored internally is hidden from user programs by the
IMFORT interface.

In cases where multiple versions of a procedure are available for operands of different
datatypes, a special nomenclature is used to refer to the class as a whole. For example,

clarg[cird] (argno, [cird]val, ier)

denotes the set of four procedures clargc, clargi, clargr, and clargd. The datatype of the out-
put operand (cval, ival, etc.) must match the type specified by the procedure name.

With the exception of the low level binary file i/o procedures (BFIO), all IMFORT pro-
cedures are implemented as subroutines rather than functions, for reasons of consistency and
to avoid problems with mistyping of undeclared functions by the Fortran compiler.



- 17 -

4.1. Command Line Access
The command line access procedures are used to decode the arguments present on the

command line when the IMFORT program was invoked. This works both when the program
is called from the IRAF CL, and when the program is called from the host system command
interpreter. The command line access procedures are summarized in Figure 4, below.

clnarg (nargs)
clrawc (outstr, ier)

clarg[cird] (argno, [cird]val, ier)

Figure 4. Command Line Access Procedures

The clnarg procedure returns the number of command line arguments; zero is returned
if an error occurs or if there were no command line arguments. The clargc, clargi, etc., pro-
cedures are used to fetch and decode the individual arguments; clargc returns a character
string, clargi returns an integer, and so on. A nonzero ier status indicates either that the com-
mand line did not contain the indexed argument, or that the argument could not be decoded in
the manner specified. Character string arguments must be quoted on the command line if
they contain any blanks or tabs, otherwise quoting is not necessary. The rarely used clrawc
procedure returns the entire raw command line as a string.

4.2. Image Access
The image access procedures form the bulk of the IMFORT interface. There are three

main categories of image access procedures, namely, the general image management pro-
cedures (open, close, create, get size, etc.), the header access procedures (used to get and put
the values of header keywords), and the pixel i/o procedures, used to read and write image
data.

IMFORT currently supports images of up to three dimensions, of type short-integer or
real. There is no builtin limit on the size of an image, although the size of image a particular
program can deal with is normally limited by the size of a statically allocated buffer in the
user program. IMFORT does not map IRAF virtual filenames, hence host dependent names
must be used when running a program which uses IMFORT.

IMFORT currently supports only the OIF image format, and images must be of type
short-integer or real. Since normal IRAF programs support images of up to seven disk data-
types with a dimensionality of up to seven, as well as completely different image formats
than that expected by IMFORT (e.g., STF), if you are not careful IRAF can create images
which IMFORT programs cannot read (don’t omit the error checking!). In normal use, how-
ever, types short-integer and real are by far the most common and images with more than two
dimensions are rare, so these are not expected to be serious limitations.

4.2.1. General Image Access Procedures
The general image access and management procedures are listed in Figure 5. An image

must be opened with imopen or imopnc before header access or pixel i/o can occur. The
image open procedures return an image descriptor (an integer magic number) which uniquely
identifies the image in all subsequent accesses until the image is closed. When the operation
is completed, an image must be closed with imclos to flush any buffered output, update the
image header, and free any resources associated with the image descriptor. The maximum
number of images which can be open at any one time is limited by the maximum number of
open file descriptors permitted by the host operating system.



- 18 -

New images are created with imopnc and imcrea. The imopnc procedure creates a new
copy of an existing image, copying the header of the old image to the new image but not the
data. The new copy image must be the same size and datatype as the old image. For com-
plete control over the attributes of a new image the imcrea procedure must be used. The
imopnc operation is equivalent to an imopen followed by an imgsiz to determine the size and
datatype of the old image, followed by an imcrea to create the new image, followed by an
imhcpy to copy the header of the old image to the new image and then two imclos calls to
close both images.

Note that imgsiz always returns seven elements in the output array axlen, regardless of
the actual dimensionality of the image; this is so that current programs will continue to work
in the future if IMFORT is extended to support images of dimensionality higher than three.
Images may be deleted with imdele, or renamed with imrnam; the latter may also be used to
move an image to a different directory. The imflsh procedure is used to flush any buffered
output pixel data to an image opened for writing.

imopen (image, acmode, im, ier) acmode: 1=RO,3=RW
imopnc (nimage, oim, nim, ier) acmode: always RW
imclos (im, ier)

imcrea (image, axlen, naxis, dtype, ier)
imdele (image, ier)
imrnam (oldnam, newnam, ier)

imflsh (im, ier)
imgsiz (im, axlen, naxis, dtype, ier)
imhcpy (oim, nim, ier)
impixf (im, pixfd, pixfil, pixoff, szline, ier)

Figure 5. General Image Access Procedures

The impixf procedure may be used to obtain the physical attributes of the pixel file, i.e.,
the pixel file name, the one-indexed char offset to the first pixel, and the physical line length
of an image as stored in the pixel file (the image lines may be aligned on device block boun-
daries). These parameters may be used to bypass the IMFORT pixel i/o procedures to
directly access the pixels if desired (aside from the blocking of lines to fill device blocks, the
pixels are stored as in a Fortran array). The BFIO file descriptor of the open pixel file is also
returned, allowing direct access to the pixel file via BFIO if desired. If lower level (e.g., host
system) i/o facilities are to be used, bfclos or imclos should be called to close the pixel file
before reopening it with the foreign i/o system.

Direct access to the pixel file is not recommended since it makes a program dependent
upon the details of how the pixels are stored on disk; such a program may not work with
future versions of the IMFORT interface, nor with implementations of the IMFORT interface
for different (non-OIF) physical image storage formats. Direct access may be warranted when
performing a minimum modification hack of an old program to make it work in the IRAF
environment, or in applications with unusually demanding performance requirements, where
the (usually negligible) overhead of the BFIO buffer is unacceptable. Note that in many
applications, the reduction in disk accesses provided by the large BFIO buffer outweighs the
additional cpu cycles required for memory to memory copies into and out of the buffer.



- 19 -

4.2.2. Image Header Keyword Access
The image header contains a small number of standard fields plus an arbitrary number

of user or application defined fields. Each image has its own header and IMFORT does not
in itself make any association between the header parameters of different images. The header
access procedures are summarized in Figure 6. Note that the imgsiz procedure described in
the previous section is the most convenient way to obtain the size and datatype of an open
image, although the same thing can be achieved by a series of calls to obtain the values of the
individual keywords, using the procedures described in this section.

imacck (im, keyw, ier)
imaddk (im, keyw, dtype, comm, ier)
imdelk (im, keyw, ier)
imtypk (im, keyw, dtype, comm, ier)

imakw[bcdir] (im, keyw, [bcdir]val, comm, ier)
imgkw[bcdir] (im, keyw, [bcdir]val, ier)
impkw[bcdir] (im, keyw, [bcdir]val, ier)

imokwl (im, patstr, sortit, kwl, ier)
imgnkw (kwl, outstr, ier)
imckwl (kwl, ier)

Figure 6. Image Header Access Procedures

Both the standard and user defined header parameters may be accessed via the pro-
cedures introduced in this section. The imacck procedure tests for the existence of the named
keyword, returning a zero ier if the keyword exists. New keywords may be added to the
image header with imaddk, and old keywords may be deleted with imdelk. The datatype of a
keyword may be determined with imtypk. The attributes of a keyword are its name, datatype,
value, and an optional comment string describing the significance of the parameter. The com-
ment string is normally invisible except when the header is listed, but may be set when a new
keyword is added to the header, or fetched with imtypk.

The most commonly used procedures are likely to be the imgkw and impkw families of
procedures, used to get and put the values of named keywords; these procedures require that
the keyword already be present in the header. The imakw procedures should be used instead
of the impkw procedures if it is desired that a keyword be automatically added to the header if
not found, before setting the new value. Automatic datatype conversion is performed if the
requested datatype does not match the actual datatype of the keyword.

The keyword list package is the only way to obtain information from the header without
knowing in advance the names of the header keywords. The imokwl procedure opens a key-
word list consisting of all header keywords matching the given pattern, returning a list
descriptor to be used as input to the other procedures in the package. Successive keyword
names are returned in calls to imgnkw; a nonzero ier is returned when the end of the list is
reached. The keyword name is typically used as input to other procedures such as imtypk or
one of the imgkw procedures to obtain further information about the keyword. A keyword list
should be closed with imckwl when it is no longer needed to free system resources associated
with the list descriptor.



- 20 -

22222222222222222222222222222222222222222222222222
Standard Image Header User Keywords22222222222222222222222222222222222222222222222222

name datatype description2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
naxis int number of axes (dimensionality)
naxis[1:3] int length of each axis, pixels
pixtype int pixel datatype
datamin real minimum pixel value
datamax real maximum pixel value
ctime int image creation time
mtime int image modification time
limtime int time min/max last updated
title string image title string (for plots etc.)2222222222222222222222222222222222222222222222222211
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

The keyword list pattern string follows the usual IRAF conventions; some useful pat-
terns are "∗ ", which matches the entire header, and "i_", which matches only the standard
header keywords (the standard header keywords are really named "i_naxis", "i_pixtype", etc.,
although the "i_" may be omitted in most cases). A pattern which does not include any pat-
tern matching metacharacters is taken to be a prefix string, matching all keywords whose
names start with the pattern string.

An image must be opened with read-write access for header updates to have any effect.
An attempt to update a header without write permission will not produce an error status
return until imclos is called to update the header on disk (and close the image).

4.2.3. Image Pixel Access
The IMFORT image pixel i/o procedures are used to get and put entire image lines to

N-dimensional images, or to get and put N-dimensional subrasters to N-dimensional images.
In all cases the caller supplies a buffer into which the pixels are to be put, or from which the
pixels are to be taken. The pixel i/o procedures are summarized in Figure 7.

As shown in the figure, there are four main classes of pixel i/o procedures, the get-line,
put-line, get-section, and put-section procedures. The get-line and put-line procedures are
special cases of the get/put section procedures, provided for programming convenience in the
usual line by line sequential image operator (they are also slightly more efficient than the
subraster procedures for line by line i/o). It is illegal to reference out of bounds and i1 must
be less than or equal to i2 (IMFORT will not flip lines); the remaining subscripts may be
swapped if desired. Access may be completely random if desired, but sequential access (in
storage order) implies fewer buffer faults and is more efficient.

im[gp]l1[rs] (im, buf, ier)
im[gp]l2[rs] (im, buf, lineno, ier)
im[gp]l3[rs] (im, buf, lineno, bandno, ier)
im[gp]s1[rs] (im, buf, i1, i2, ier)
im[gp]s2[rs] (im, buf, i1, i2, j1, j2, ier)
im[gp]s3[rs] (im, buf, i1, i2, j1, j2, k1, k2, ier)

Figure 7. Image Pixel I/O Procedures

Type short and type real versions of each i/o procedure are provided. The type real pro-
cedures may be used to access images of either type short or type real, with automatic data-
type conversion being provided if the disk and program datatypes do not match. The type
short-integer i/o procedures may only be used with type short images.



- 21 -

The user who is familiar with the type of image i/o interface which maps the pixel array
into virtual memory may wonder why IMFORT uses the more old fashioned buffered tech-
nique. There are two major reasons why this approach was chosen. Firstly, the virtual
memory mapping technique, in common use on VMS systems, is not portable. On a host
which does not support the mapping of file segments into paged memory, the entire image
must be copied into paged memory when the image is opened, then copied again when the
image operation takes place, then copied once again from memory to disk when the image is
closed. Needless to say this is very inefficient, particularly for large images, and some of our
applications deal with images 2048 or even 6000 pixels square.

Even on a machine that supports mapping of file segments into memory, mapped access
will probably not be efficient for sequential access to large images, since it causes the system
to page heavily; data pages which will never be used again fill up the system page caches,
displacing text pages that must then be paged back in. This happens on even the best sys-
tems, and on a system that does not implement virtual memory efficiently, performance may
suffer greatly.

A less obvious reason is that mapping the image directly into memory violates the prin-
ciple of data independence, i.e., a program which uses this type of interface has a builtin
dependence on the particular physical image storage format in use when the program was
developed. This rules out even such simple interface features as automatic datatype conver-
sion, and prevents the expansion of the interface in the future, e.g., to provide such attractive
features as an image section capability (as in the real IRAF image interface), network access
to images stored on a remote node, support for pixel storage schemes other than line storage
mode (e.g., isotropic mappings or sparse image storage), and so on.

The majority of image operations are either sequential whole-image operations or opera-
tions upon subrasters, and are just as easily programmed with a buffered interface as with a
memory mapped interface. The very serious drawbacks of the memory mapped interface dic-
tate that it not be used except in special applications that must randomly access individual
pixels in an image too large to be read in as a subraster.

4.3. Error Handling
The IMFORT error handling mechanism is extremely simple. All procedures in which

an error condition can occur return a nonzero ier error code if an error occurs. The value of
ier identifies which of many possible errors actually occurred. These error codes may be con-
verted into error message strings with the following procedure:

imemsg (ier, errmsg)

It is suggested that every main program contain an error handling section at the end of the
program which calls imemsg and halts program execution with an informative error message,
as in the examples in §2. This is especially helpful when debugging new programs.

4.4. Vector Operators
The vector operators (VOPS) package is a subroutine library implementing a large

number of primitive operations upon one dimensional vectors of any datatype. Some of the
operations implemented by the VOPS routines are non-trivial to implement, in which case the
justification for a library subroutine is clear. Even in the simplest cases, however, the use of
a VOPS procedure is advantageous because it provides scope for optimizing all programs
which use the VOPS operator, without having to modify the calling programs. For example,
if the host machine has vector hardware or special machine instructions (e.g., the block move
and bitfield instructions of the VAX), the VOPS operator can be optimized in a machine
dependent way to take advantage of the special capabilities of the hardware, without
compromising the portability of the applications software using the procedure.



- 22 -

The VOPS procedures adhere to the naming convention described in §4. The package
prefix is a, the function code is always three characters, and the remaining one or two charac-
ters define the datatype or types upon which the procedure operates. For example, aaddr per-
forms a vector add upon type real operands. If the character k is added to the three character
function name, one of the operands will be a scalar. For example, aaddkr adds a scalar to a
vector, with both the scalar and the vector being of type real.

Most vector operators operate upon operands of a single datatype: one notable exception
is the acht (change datatype) operator, used to convert a vector from one datatype to another.
For example, achtbi will unpack each byte in a byte array into an integer in the output array,
providing a capability that cannot be implemented in portable Fortran. Any datatype suffix
characters may be substituted for the bi, to convert a vector from any datatype to any other
datatype.

In general, there are are three main classes of vector operators, the unary operators, the
binary operators, and the projection operators. The unary operators perform some operation
upon a single input vector, producing an output vector as the result. The binary operators
perform some operation upon two input vectors, producing an output vector as the result.
The projection operators compute some function of a single input vector, producing a scalar
function value (rather than a vector) as the result. Unary operators typically have three argu-
ments, binary operators four, and projection operators two arguments and one output function
value. For example, aabsi is the unary absolute value vector operator, type integer (here, a is
the input vector, b is the output vector, and npix is the number of vector elements):

aabsi (a, b, npix)

A typical example of a binary operator is the vector add operator, aaddr. Here, a and b are
the input vectors, and c is the output vector:

aaddr (a, b, c, npix)

In all cases except where the output vector contains fewer elements than one of the input vec-
tors, the output vector may be the same as one of the input vectors. A full range of datatypes
are provided for each vector operator, except that there are no boolean vector operators
(integer is used instead), and char and complex are only partially implemented, since they are
not sensible datatypes for many vector operations. In any case, the VOPS char is the SPP
char and should be avoided in Fortran programs.

Once these rules are understood, the calling sequence of a particular VOPS operator can
usually be predicted with little effort. The more complex operators, of course, may have spe-
cial arguments, and some study is typically required to determine their exact function and
how they are used. A list of the VOPS operators currently provided is given below (the data-
type suffix characters must be added to the names shown to form the full procedure names).

aabs - Absolute value of a vector
aadd - Add two vectors

aaddk - Add a vector and a scalar
aand - Bitwise boolean AND of two vectors

aandk - Bitwise boolean AND of a vector and a scalar
aavg - Compute the mean and standard deviation of a vector
abav - Block average a vector
abeq - Vector equals vector

abeqk - Vector equals scalar
abge - Vector greater than or equal to vector

abgek - Vector greater than or equal to scalar
abgt - Vector greater than vector

abgtk - Vector greater than scalar
able - Vector less than or equal to vector



- 23 -

ablek - Vector less than or equal to scalar
ablt - Vector less than vector

abltk - Vector less than scalar
abne - Vector not equal to vector

abnek - Vector not equal to scalar
abor - Bitwise boolean OR of two vectors

abork - Bitwise boolean OR of a vector and a scalar
absu - Block sum a vector
acht - Change datatype of a vector

acjgx - Complex conjugate of a complex vector
aclr - Clear (zero) a vector

acnv - Convolve two vectors
acnvr - Convolve a vector with a real kernel
adiv - Divide two vectors

adivk - Divide a vector by a scalar
adot - Dot product of two vectors
advz - Vector divide with divide by zero detection
aexp - Vector to a real vector exponent

aexpk - Vector to a real scalar exponent
afftr - Forward real discrete fourier transform
afftx - Forward complex discrete fourier transform
aglt - General piecewise linear transformation

ahgm - Accumulate the histogram of a series of vectors
ahiv - Compute the high (maximum) value of a vector
aiftr - Inverse real discrete fourier transform
aiftx - Inverse complex discrete fourier transform
aimg - Imaginary part of a complex vector
alim - Compute the limits (minimum and maximum values) of a vector
alln - Natural logarithm of a vector
alog - Logarithm of a vector
alov - Compute the low (minimum) value of a vector
altr - Linear transformation of a vector
alui - Vector lookup and interpolate (linear)
alut - Vector transform via lookup table

amag - Magnitude of two vectors (sqrt of sum of squares)
amap - Linear mapping of a vector with clipping
amax - Vector maximum of two vectors

amaxk - Vector maximum of a vector and a scalar
amed - Median value of a vector

amed3 - Vector median of three vectors
amed4 - Vector median of four vectors
amed5 - Vector median of five vectors

amgs - Magnitude squared of two vectors (sum of squares)
amin - Vector minimum of two vectors

amink - Vector minimum of a vector and a scalar
amod - Modulus of two vectors

amodk - Modulus of a vector and a scalar
amov - Move (copy or shift) a vector

amovk - Move a scalar into a vector
amul - Multiply two vectors

amulk - Multiply a vector and a scalar
aneg - Negate a vector (change the sign of each pixel)
anot - Bitwise boolean NOT of a vector
apkx - Pack a complex vector given the real and imaginary parts



- 24 -

apol - Polynomial evaluation
apow - Vector to an integer vector power

apowk - Vector to an integer scalar power
arav - Mean and standard deviation of a vector with pixel rejection
arcp - Reciprocal of a scalar and a vector
arcz - Reciprocal with detection of divide by zero
arlt - Vector replace pixel if less than scalar
argt - Vector replace pixel if greater than scalar
asel - Vector select from two vectors based on boolean flag vector

asok - Selection of the Kth smallest element of a vector
asqr - Square root of a vector
asrt - Sort a vector in order of increasing pixel value

assq - Sum of squares of a vector
asub - Subtract two vectors

asubk - Subtract a scalar from a vector
asum - Sum of a vector
aupx - Unpack the real and imaginary parts of a complex vector
awsu - Weighted sum of two vectors
awvg - Mean and standard deviation of a windowed vector
axor - Bitwise boolean XOR (exclusive or) of two vectors

axork - Bitwise boolean XOR (exclusive or) of a vector and a scalar

A non-trivial example of the use of vector operators is the case of bilinear interpolation
on a two dimensional image. The value of each pixel in the output image is a linear sum of
the values of four pixels in the input image. The obvious solution is to set up a do-loop over
the pixels in each line of the output image, computing the linear sum over four pixels from
the input image for each pixel in the output line; this is repeated for each line in the output
image.

The solution using the VOPS operators involves the alui (vector look up and interpo-
late) and awsu (weighted sum) vector operators. A lookup table defining the X-coordinate in
the input image of each pixel in a line of the output image is first generated. Then, for each
line of the output image, the two lines from the input image which will contribute to the out-
put image line are extracted. Alui is used to interpolate each line in X, then awsu is used to
form the weighted sum to interpolate in the Y direction. This technique is especially efficient
when bilinear interpolation is being used to expand the image, in which case the alui interpo-
lated X-vectors, for example, are computed once but then used to generate several lines of the
output image by taking the weighted sum, a simple and fast operation. When moving
sequentially up through the image, the high X-vector becomes the low X-vector for the next
pair of input lines, hence only a single call to alui is required to set up the next region.

The point of this example is that many or most image operations can be expressed in
terms of primitive one dimensional vector operations, regardless of the dimensionality of the
image being operated upon. The resultant algorithm will often run more efficiently even on a
conventional scalar machine than the equivalent nonvectorized code, and will probably run
efficiently without modification on a vector machine.

Detailed specification sheets (manual pages) are not currently available for the VOPS
procedures. A summary of the calling sequences is given in the file vops$vops.syn,
which can be paged or printed by that name while in the CL, assuming that the system has
not been stripped and that the sources are still on line. The lack of documentation is really
not a problem for these operators, since they are all fairly simple, and it is easy to page the
source file (in the vops directory) to determine the exact calling sequence. For example, to
examine the source for awsu, type



- 25 -

cl> page vops$awsu.gx

to page the generic source, regardless of the specific datatype of interest. If you have trouble
deciphering the generic source, use xc -f file.x to produce the Fortran translation of
one of the type specific files in the subdirectories vops$ak and vops$lz.

4.5. Binary File I/O (BFIO)
The IMFORT binary file i/o package (BFIO) is a small package, written originally as an

internal package for use by the IMFORT image i/o routines for accessing header and pixel
files (the VOS FIO package could not be used in IMFORT without linking the entire
IRAF/VOS runtime system into the Fortran program). Despite its original conception as an
internal package, the package provides a useful capability and is portable, hence has been
included in the IMFORT interface definition. Nonetheless, the user should be warned that
BFIO is a fairly low level interface and some care is required to use it safely. If other suit-
able facilities are available it may be better to use those, although few interfaces will be
found which are simpler or more efficient than BFIO for randomly accessing pre-existing or
preallocated binary files.

The principal capability provided by BFIO is the ability to randomly access a binary
file, reading or writing an arbitrary number of char-units of storage at any (one-indexed) char
offset in the file. The file itself is a non-record structured file containing no embedded record
manager information, hence is suitable for access by any program, including non-Fortran pro-
grams, and for export to other machines (this is usually not the case with a Fortran unformat-
ted direct access file). Unlike the mainline IMFORT procedures, many of the BFIO pro-
cedures are integer functions returning a positive count value if the operation is successful
(e.g., the number of char units of storage read or written), or a negative value if an error
occurs. Zero is returned for a read at end of file.

bfaloc (fname, nchars, status)
fd = bfopen (fname, acmode, advice) acmode: 1=RO,3=RW,5=NF

bfclos (fd, status) advice: 1=random,2=seq

nchars = bfread (fd, buf, nchars, offset)
nchars = bfwrit (fd, buf, nchars, offset)

nchars = bfbsiz (fd)
nchars = bffsiz (fd)

chan = bfchan (fd)
stat = bfflsh (fd)

Figure 8. Low Level Binary File I/O Procedures

BFIO binary files may be preallocated with bfaloc, or created with bfopen and then ini-
tialized by writing at the end of file. Preallocating a file is useful when the file size is known
in advance, e.g., when creating the pixel file for a new image. The contents of a file allocated
with bfaloc are uninitialized. To extend a file by writing at the end of file the file size must
be known; the file size may be obtained by calling bffsiz on the open file.

Before i/o to a file can occur, the file must be opened with bfopen. The bfopen pro-
cedure returns as its function value an integer file descriptor which is used to refer to the file
in all subsequent accesses until the file is closed with bfclos. Binary data is read from the file
with bfread, and written to the file with bfwrit. Any amount of data may be read or written
in a single call to bfread or bfwrit. All user level i/o is synchronous and data is buffered



- 26 -

internally by BFIO to minimize disk transfers and provide for the blocking and deblocking of
data into device blocks. Any buffered output data may be flushed to disk with bfflsh. The
function bfchan returns the descriptor of the raw i/o channel as required by the IRAF binary
file driver.

BFIO manages an internal buffer, necessary for efficient sequential i/o and to hide the
device block size from the user program. Larger buffers are desirable for sequential i/o on
large files; smaller buffers are best for small files or for randomly accessing large files. The
buffer size may be set at bfopen time with the advice parameter. An advice value of 1
implies random access and causes a small buffer to be allocated; a value of 2 implies sequen-
tial access and causes a large buffer to be allocated. Any other value is taken to be the actual
buffer size in chars, but care must be used since the value specified must be some multiple of
the device block size, and less than the maximum transfer size permitted by the kernel file
driver. Note that when writing at end of file, the full contents of the internal buffer will be
written, even if the entire buffer contents were not written into in a bfwrit call. The buffer
size in chars is returned by bfbsiz.

Since BFIO is a low level interface, the file offset must always be specified when read-
ing from or writing to the file, even when the file is being accessed sequentially. Contrary to
what one might think, file offsets are one-indexed in the Fortran tradition, and are specified in
units of chars. Do not confuse char with the Fortran CHARACTER; char is the fundamental
unit of storage in IRAF, the smallest datum which can be accessed as an integer quantity with
the host Fortran compiler, normally INTEGER∗ 2 (16 bits or two bytes on all current IRAF
hosts).



- 27 -

Appendix: Manual Pages for the Imfort Procedures
This section presents the ‘‘manual pages’’ for the IMFORT and BFIO procedures. The

manual pages present the exact technical specifications of each procedure, i.e., the procedure
name and arguments (not necessarily obvious in the case of a typed family of procedures), the
datatypes and dimensions of the arguments, and a precise description of the operation of the
procedure. Each procedure is presented on a separate page for ease of reference.

The following conventions have been devised to organize the information presented in
this section:

d The manual pages are presented in alphabetical order indexed by the procedure
name.

d A single manual page is used to present an entire family of procedures which
differ only in the datatype of their primary operand. The name on the manual
page is the generic name of the family, e.g., clargi, clargr, etc., are described in
the manual page clarg.

d In some cases it makes sense to describe several related procedures with a single
manual page. An example is the keyword-list package, consisting of the pro-
cedures imokwl, imgnkw, and imckwl. In such a case, since the procedures have
different names the manual page for the group is duplicated for each procedure in
the group, so that the user will not have to guess which name the manual page is
filed under.

d The synopsis section of each manual page defines the calling sequence of each
procedure, the datatypes and dimensions of the arguments, and notes whether each
argument is an input argument (#I) or an output argument (#O).

d The return value section describes the conditions required for successful execution
of the procedure, normally indicated by a zero status in ier. A symbolic list of the
possible error codes is also given. The numeric values of these error codes are
defined in imfort$imfort.h and in lib$syserr.h, but the exact numeric
codes should be used only for debugging purposes or passed on to the imemsg
procedure to get the error message string. The numeric error codes are likely to
change in future versions of the interface hence their values should not be "wired
into" programs.

Manual pages for the VOPS procedures are not included since VOPS is not really part
of the IMFORT interface, and it is not yet clear if the VOPS procedures are complex enough
to justify the production of individual manual pages.


