Chapter 14
 Functions of a Complex Variable

1. Function of a Complex Variable

Let z be a complex variable, which can be written either as $x+i y$ or as $r e^{i \theta}$.
A function $f(z)$ (such as, for example z^{2} or $\sin z$) will result in a new complex number, which we'll call w, which can be written either as $u+i v$ or as $\rho e^{i \phi}$.

It should be possible, for a given function, to express u and v in terms of x and y, and it should be possible to express ρ and ϕ in terms of r and θ.

Let us do an example. Thus, suppose that $w=f(z)=\sin z$.
That is:

$$
w=\sin (x+i y)=\sin x \cos i y+\cos x \sin i y=\sin x \cosh y+i \cos x \sinh y
$$

Thus $u=\sin x \cosh y$ and $v=\cos x \sinh y$
Can we work in polar coordinates, and express ρ and ϕ in terms of r and θ ? Yes, we can, although this particular example is a slightly difficult and messy one. Other simple functions may be easier.

$$
\begin{aligned}
& w=\sin r e^{i \theta}= \\
& \sin (r \cos \theta+i r \sin \theta)=\sin (r \cos \theta) \cosh (r \sin \theta)+i \cos (r \cos \theta) \sinh (r \sin \theta)
\end{aligned}
$$

We now have u and v in terms of r and θ and we can calculate ρ from $\rho^{2}=u^{2}+v^{2}$ and ϕ from $\tan \phi=y / x$. We find, after a little algebra, that

$$
\rho^{2}=\cosh ^{2}(r \sin \theta)-\cos ^{2}(r \cos \theta)
$$

and

$$
\tan \phi=\cot (r \cos \theta) \tanh (r \sin \theta)
$$

2. Some Simple Functions

We shall look at the following simple functions:

$$
w=z^{2}, \quad 1 / z, \sqrt{z}, \ln z, \sin z, \quad \cos z, \quad e^{z}
$$

Exercise: For each of the above seven functions, express u and v in terms of x and y_{s} and express ρ and ϕ in terms of r and θ. The function $\cos z$ will be similar to $\sin z$. The others will be easier.

I show below the answers that I get. Please let me know if you think there are any mistakes. tatumjb352 at gmail dot com

$$
\begin{aligned}
& w=z^{2} \quad u=x^{2}-y^{2} \quad v=2 x y \quad \rho=r^{2} \quad \phi=2 \theta \\
& w=\frac{1}{z} \quad u=\frac{x}{x^{2}+y^{2}} \quad v=-\frac{y}{x^{2}+y^{2}} \quad \rho=\frac{1}{r} \quad \phi=-\theta \\
& w=\sqrt{z} \quad u^{2}=\frac{\sqrt{x^{2}+y^{2}}+x}{2} \quad v^{2}=\frac{\sqrt{x^{2}+y^{2}}-x}{2} \quad \rho^{2}=r \quad \phi=\frac{1}{2} \theta \\
& w=\ln z \quad u=\frac{1}{2} \ln \left(x^{2}+y^{2}\right) \quad \tan v=\frac{y}{x} \\
& \rho^{2}=(\ln r)^{2}+\theta^{2} \quad \tan \phi=\frac{\theta}{\ln r} \\
& w= \\
& \sin z \quad u=\sin x \cosh y \quad v=\cos x \sinh y \\
& \rho^{2}=\cosh ^{2}(r \sin \theta)-\cos 2(r \cos \theta) \quad \tan \phi=\cot (r \cos \theta) \tanh (r \sin \theta) \\
& w= \\
& \cos ^{2} \quad u=\cos x \cosh y \quad v=-\sin x \sinh y \\
& \\
& \rho^{2}=\cosh ^{2}(r \sin \theta)+\cos ^{2}(r \cos \theta) \quad \tan \phi=-\tan (r \cos \theta) \tanh (r \sin \theta) \\
& \\
& \quad w=e^{z} \quad u=e^{x} \cos y \quad v=e^{x} \sin y \quad \rho=e^{2 r \cos \theta} \quad \phi=r \sin \theta
\end{aligned}
$$

2. Mapping

Given a function $f(z)$, to any point $z=x+i y$ in the z-plane there will be a corresponding point $w=u+i v$ in the w-plane. And if the point z is constrained to move in the z-plane along some curve $F(x, y)=0$, the point w will move along some curve $G(u, v)=0$ in the w-plane. We can say that the function $f(z)$ maps the curve $F(x, y)=0$ in the z-plane on to the curve $G(u, v)=0$ in the w-plane. This is the sense in which we use the word "mapping" in the title to this section.

In what follows I am going to try to map first a circle and then a square in the z-plane using several different $f(z)$. Each of these functions maps the circle and the square on to some most interesting and unexpected loci in the w-plane. It is great fun. I hope (but don't guarantee) that I have done them all correctly. I hope viewers will do them themselves - and let me know if I've got any wrong. tatumjb352 at gmail dot com

2a. Mapping a circle

Let us suppose that we have a point $z=x+i y=r e^{i \theta}$ in the z-plane, and that the point lies upon the circle $x^{2}+y^{2}=1$. That is to say, in polar coordinates, it lies upon the circle $r=$ 1. How do each of the functions

$$
w=z^{2}, \quad 1 / z, \quad \sqrt{z}, \quad \ln z, \quad \sin z, \quad \cos z, \quad e^{z}
$$

map the circle on to the w-plane?
They are fairly easy to calculate. Vary θ from 0° to 360° in steps of one degree. Since the circle is of unit radius, x and y are just $\cos \theta$ and $\sin \theta$ respectively. Then calculate u and v from the formulas given in the previous section, and plot a graph of v versus u.

$$
\underline{w}=z^{2}
$$

$z=r e^{i \theta}$, therefore $w=r^{2} e^{2 i \theta}$. Since z lies on the circle $r=1, w$ also lies on a unit circle, but when the argument of z is θ, the argument of w is 2θ. As z moves around its circle in its plane, w moves around a similar circle in its plane, but at twice the angular speed. By the time that z has moved completely round its circle, w has moved around its circle twice.
$w=\sqrt{z}$
As z moves around its circle in its plane, w moves around a similar circle in its plane, but at half the angular speed. By the time that z has moved completely round its circle, w has moved only through a semicircle.
$\underline{w}=1 / z$
As z moves around its circle in a counterclockwise direction, w moves in a similar circle at the same angular speed, but in the clockwise direction.
$w=\ln z$

$$
z=r e^{i \theta}, \text { or, while it is on its unit circle }, \quad z=e^{i \theta}, \text { so } w=i \theta
$$

While z moves around its circle from $\theta=0$ to $2 \pi, w$ moves in a straight line up the imaginary axis from $v=0$ to $6.28 i$.
$\underline{w}=\sin z$
Recall (Chapter 13, for example) that

$$
\begin{aligned}
w= & \sin z \quad u=\sin x \cosh y \quad v=\cos x \sinh y \\
& \rho^{2}=\cosh ^{2}(r \sin \theta)-\cos ^{2}(r \cos \theta) \quad \tan \phi=\cot (r \cos \theta) \tanh (r \sin \theta)
\end{aligned}
$$

Imagine z to move counterclockwise around its unit circle $(r=1)$ one degree at a time starting at $\theta=0$, we (or our computer) can calculate in turn $x(=\cos \theta), y(=\sin \theta), u, v, \rho$ and ϕ, and so it is straightforward to plot the progress of w in its plane. I show below z (in black, in its x, y plane) and w (in red, in its u, v plane).

On the real axis, $u= \pm \sin 1= \pm 0.8415$
On the imaginary axis, $v= \pm i \sinh 1= \pm 1.1752 i$
$\underline{w}=\cos z$
It turns out that $\cos z$ looks surprisingly different from $\sin z$

Recall that

$w=\cos z \quad u=\cos x \cosh y \quad v=-\sin x \sinh y$

$$
\rho^{2}=\cosh ^{2}(r \sin \theta)+\cos ^{2}(r \cos \theta) \quad \tan \phi=-\tan (r \cos \theta) \tanh (r \sin \theta)
$$

and go through the same procedure as with $\sin z$.
. I show below what I get for z (in black, in its x, y plane) and w (in red, in its u, v plane).

The red locus of w in its plane looks like a circle, and in fact is very close to a circle, although not exactly so. As z moves counterclockwise from P_{0} through an angle θ to P, w moves also counterclockwise from Q_{0} through an angle ψ to Q . If z moves at a uniform angular speed, the angular speed of w is not quite uniform, but on average is twice the angular speed of z, so, as z goes round its black circel once, w goes round its red circle twice. Shown below are a table and a graph of ψ versus θ.

On the real axis, u has the values $\cos 1=0.5403$ and $\cosh 1=1.5431$, so that the horizontal diameter of the red quasicircle is $\cosh 1-\cos 1=1.002778$, and the mid-point of the quasicircle is at $u=0.5(\cosh 1+\cos 1)=1.0417$

The values of v on the imaginary axis (and hence the vertical diameter of the quasicircle) are slightly less easy to compute. We start from $v=-\sin x \sinh y=-\sin x \sinh \left(1-x^{2}\right)^{1 / 2}$.

Some differential calculus shows that the greatest and least values of v occur where

$$
y \tanh y=x \tan x
$$

in which

$$
y=\left(1-x^{2}\right)^{1 / 2}
$$

The solution to these simultaneous equations is
$x=0.647421 \quad y= \pm 0.762133$
corresponding to $v= \pm 0.505476$.
The viewer might ask if the quasicircle is an ellipse, and, if it is, what is its eccentricity. The present answer to the first question is that, at the moment, I don't know. However, if it is an ellipse, its eccentricity is 00186 .

The mappings of the unit circle by $\sin x$ and by $\cos x$ seem surprisingly different. Perhaps some enterprising viewer might try mappings of the unit circle by $\sin (z+\alpha)$, and see how the peanut morphs into the quasicircle as α goes from 0 to $\pi / 2$. Maybe even make a movie of it, and share it with us on the Web.
$\underline{w}=e^{z}$
Recall that

$$
w=e^{z} \quad u=e^{x} \cos y \quad v=e^{x} \sin y \quad \rho=e^{2 r \cos \theta} \quad \phi=r \sin \theta
$$

and go through the same procedure as with $\sin z$.
I show below what I get for z (in black, in its plane) and w (in red, in its plane).

If we start at $x=1, y=0$ on the black circle, and move counterclockwise by θ around the circle, then in the w-plane, we start at the right hand side of the red "bean" and move counterclockwise. I show the value of θ in degrees at several points around the bean.

For $v=0$ on the bean, u has the values $e^{-1}=0.3679$ and $e=2.7183$.
The maximum and minimum values of v can be found by putting the derivative of v to zero. This results in $x=y \tan y$. Combined with $x^{2}+y^{2}=1$ this results in $x=0.073612 \quad y=0.739085$., which corresponds to $u=1.449574 \quad v= \pm 1.321161$.

2a. Mapping a square
Now let us use the same seven functions

$$
w=z^{2}, \quad 1 / z, \quad \sqrt{z}, \quad \ln z, \quad \sin z, \quad \cos z, \quad e^{z}
$$

to map a square in the z-plane on to the w-plane. We choose the square to be bounded by the lines $x= \pm 1, y= \pm 1$. It is easy to generate numbers (x, y) that delineate the square. Then, for each (x, y) we calculate u and v, and hence draw the locus of w in the w-plane. Here are the results that I get.
$\underline{w}=z^{2}$
The square in the z-plane maps on to a lens-shaped figure in the w-plane. As we go round the square once in the z-plane, we go round the lens twice in the w-plane. In the figure, I have labelled the four corners of the square A, B, C, D. The small letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ show the corresponding points in the lens.

$\underline{w}=1 / z$

$\underline{w}=z^{1 / 2}$
In preparing the figures below, I have taken account of the positive and negative values of the square roots. The first figure is uncluttered with letters. In the second figure I have labelled, outside the black square, in capital letters, key points on the squuare. I have labelled, inside the red star, in small letters, correspondng points on the star. As z goes counterclockwise once around the square, w goes twice, clockwise, around the star.

$w=\ln z$
The mapping of the square (black) in the z-plane on to the w-plane (red) is shown below. The real part of w, namely u, is restricted between 0 and $\frac{1}{2} \ln 2=0.3466$. The cusps are at $\pm 45^{\circ}$ and $\pm 135^{\circ}$.

$\underline{w}=\sin z$
If z starts at A in the figure below, and then goes counterclockwise around the square, w starts at a in the figure below, and goes counterclockwise round the red path.

$\underline{w}=\cos z$
If z starts at A in the figure below and proceeds counterclockwise around the black square, w starts at a on the red path, and goes twice counterclockwise round the red path as z goes round he square once.

$\underline{w}=e^{z}$
If z starts at A in the figure below and proceeds couterclockwise around the black square, w starts at a on the red path, and goes counterclockwise round the red path.

As in the case of mapping the circle, the paths in the w-plane are remarkably different for the sine and cosine functions, and it might be interesting for an enterprising viewer to try mapping through the function $\sin (z+\alpha)$ as α goes from 0 to $\pi / 2$

