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Chapter 7 

Equations that contain powers of derivatives. 

 

   By this I mean equations that contain expressions such as 

2










dx

dy
, which of course is 

not the same thing as 
2

2

dx

yd
. 

   In this chapter I shall often use the symbol p to mean .or'
dx

dy
y  

 

   Also, I shall maintain the convention that x  means || 2/1x  .  That is, while 

.24,24 2/1 =±=  

 

An example would be the not-too-difficult equation 

 

ypy =− 2)2( . 

 

The obvious and perfectly legitimate way to do this is to write it as 
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or                                                       dy
y

y
x

−
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. 

 

The “differential equation” part of the problem is now over.  All we have to do now is an 

integration, which can be done by means of the Brilliant Substitution  ( I shan’t say how 

many attempts I made) let 
y

y−
=θ

2
tan , or, equivalently, .cos2 2 θ=y  

 

 

 

 

 

 

 

 

 

 

 

 

You will soon arrive at 

θ 

y−2  

y  
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Cx +θ−θθ±= )cos(sin2 , 

 

 where sin θ, cosθ and θ are given as functions of y by the above triangle drawing. 

 

   Here is it, with C = 0: 
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    Here is another way of doing it.  The original equation was: 

 

ypy =− 2)2( . 

 

Re-write this as: 
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Differentiate this with respect to x.  (An unexpected move, since we are trying to 

integrate the equation, not differentiate it!)  The derivative of the left hand side with 

respect to x is, of course, just p. 
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dx

dp

p

p
p

22 )1(

4
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We now have a differential equation in p and x rather than in y and x.  We just have to do 

a simple integration: 

.
)1(

4
22p

dp
x

+
= ∫  

This is easy (make the substitution p = tanφ), and we arrive at 

 

                                                        Cx +φ+φφ= )cossin(2 . 

 

(Don’t worry about the plus sign.  φ is not the same as θ.) 

 

As for y, recall that 
2

2

1

2

p

p
y

+
=  and that p = tanφ, from which we arrive at 

φ= 2sin2y  

   You could try and eliminate φ to obtain an explicit relation between x and y  (good 

luck!), but it is more satisfactory to leave the equations in parametric form. 

 

   Here it is, with C chosen to be π.  You will no doubt be relieved to see that, for real x,  y 

is never greater than 2. 
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Example 

 
42 53 ppx +=  

 

This will be considered solved if you can find y as a function of p.  You then have the 

solution in parametric form, and can easily draw a graph of y versus x.  

 

Are you completely stuck?   It’s actually very, very easy.  Just do the unexpected thing 

that you did in the last example - except that this time differentiate both sides with respect 

to y.  What is the derivative of the left hand side with respect to y?  You should very soon 

arrive at 

 

Cppy ++= 53 42  

 

Here it is with C = 0, calculated from p = 0 to 1. 
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Clairaut’s Equation 

 

  These are equations of the form 

   

             )()( 21 pfpxfy += , 

 

They can be quite exciting. 

 

Let’s try a simple example first, in which 3
21 )(and)( ppfppf == : 

 
3pxpy −=  

 

Differentiate with respect to x, as we did in the previous example. 

 



 5 

'3' 2 ppxppp −+= , 

 

in which 
dx

dp
p =' . 

 

That is,                                          .0)3(' 2 =− pxp  

 

This is exciting because there are two solutions, one of which is satisfied by   0' =p , 

and the other is satisfied by  23px = .  We’ll see shortly that there is a nice geometric 

relation between the two solutions. 

 

The solution of  0' =p    is Cp = .  Substitution of this into the original equation 

3pxpy −=  gives us 

 

,3
CCxy −=  

 

which is a family of straight lines, each member of which has its own value of C. For 

reasons that are not quite clear to me, this solution, representing a family of curves each 

with its own value of the parameter C (constant of integration) is called the complete 

primitive. 

 

What about the other solution - i.e. the solution of 23px = ?  Substitution of this into the 

original equation 3pxpy −=  gives us  .2 2py =    The two underlined equations 

represents the second solution in parametric form, and we can easily eliminate p to find 

the ),( yx equation of the second solution, namely 

 

4

27
2

3

=
y

x
. 

 

   As we have pointed out, the first solution is a family of straight lines, each with its own 

value of C.   The second equation has no arbitrary constant, and is the singular solution. 

 

  Below I have drawn the family 3CCxy −=   (the complete primitive) in blue for 

values of 

 

C   =   tan (15,  30,  45,  60) degrees, and the singular solution in red. 

 

The singular solution is the envelope of the complete primitive.  The complete primitive 

is tangent to the singular solution. 
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 Now let’s try a Clairaut equation  )()( 21 pfpxfy +=  with ppf =)(1  and  

:/1)(2 ppf =  

 

.
1

p
xpy +=  

 

   Carry through exactly the same procedure, and you should find that the complete 

primitive is the family of straight lines 

 

,
1

m
mxy +=  

 

where I have chosen to use the symbol m to represent the arbitrary constant of 

integration, rather than C 

 

The lover of conic sections may recognize this family.   

[See   www.astro.uvic.ca/~tatum/celmechs/celm2.pdf  - especially Section 2,4,  equation 

2.4.6 and figure II.22].   Indeed the lover of conic sections may already guess what the 

singular solution is, but you should in any case work it through to show that the singular 

solution is  
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                                                             xy 42 = , 

 

which is the parabolic envelope of the family of straight lines given by the complete 

primitive .
1

m
mxy +=    FigureII.22 in the above link shows you this. 

 

   As long as )(1 pf  is just p, we’ll always find a family or curves (the Complete 

primitive) and its envelope (the singular solution).   But not if )(1 pf  is not just p. 

 

   Now an example in which )(1 pf  is not just p¸ but something a little (but not too much) 

more complicated, say )(1 pf .  And we’ll take 3
2 )( ppf = , so the Clairaut equation to 

be solved is  
32 pxpy +=      (7.1) 

 

As before, we’ll make the unexpected move of differentiating with respect to x (although 

by this time it is not so unexpected): 

 

'3'2 22 ppxpppp ++= . 

 

There is an obvious singular solution, which you may regard as “trivial” but is 

nevertheless a valid solution, namely p = 0, hence  (from equation 1) y = 0  (i.e. the x-

axis).. 

 

Otherwise                                 
px

p
p
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or                                           
p
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+
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Just as a temporary measure, which some readers may find helpful (others may not), I’ll 

change the notation so that   Yx ≡    and   Xp ≡  :   Then 
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To solve this differential equation, instantly and without hesitation we multiply the 

equation through by 2)1( X− .   [Just in case you didn’t do this instantly and without 

hesitation, go back to Chapter 2, the section on Equations that Require an Integrating 

Factor.] 

 

)1(3])1[()1(2)1( 22
XXYX

dX

d
YX

dX

dY
X −=−=−−−  
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Integrate:                               CXXYX +−=− 32

2
32)1(  

It is time to return to the ),( px notation: 

                                               Cppxp +−=− 32

2
32)1(                  (7.2) 

   The solution is, then, found by eliminating p between this and the original equation 
32 pxpy += .   This will be a family of curves, each with its own value of C.   

Eliminating p algebraically is not easy, but the curves can be calculated and drawn by 

varying p to find first x and then y.  Here they are calculated from p = tan 30º to tan −75º 

for                                                    

 

 

 

      

 

 

Also shown in the graphs, as a thin horizontal black dashed line −−−−−−  , is the 

singular solution, 0=y ,which is a common tangent to all the curves. 
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Below is a close-up view near the three cusps.  The dotted line shows the locus of the 

cusps. 
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  Having arrived at the solution, namely that there is a family of curves given by the 

equations  Cppxp +−=− 32

2
32)1(   and 32 pxpy += , together with the singular 

solution 0=y , we have essentially finished the problem as an exercise in solving a 

differential equation.  However, it might be of interest just to look a little at the geometry 

of the solutions.  I give here the results that I have found from various algebraic 

manipulations, the details of which I do not give here.  I leave it to the reader to derive 

them if s/he wishes. 

 

  Each curve comes to a maximum or a minimum at the point ).0,(C It is a maximum if 

0<C  and a minimum if .0>C    If 0=C there is a maximum and a minimum - you will 

see what I mean if you look at the graphs. 

 

  If 0≥C  there is a cusp.  The cusps lie on the locus 3

27
4 xy =  (derivation not given 

here), which is shown by a dotted line in the drawing above.  

 

  After some algebraic manipulation (which I do not give here), I find that, for a given 

curve with parameter C, the values of p, the slope angle θ, x and y can be calculated by 

application, in order, of the following equations: 

 

Cppp 233 23 −=+−  
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p1tan −=θ  

px
3
2−=  

3

27
4 xy =  

 

  Thus for the curve with C = 2 (the dashed red curve in the figure), 

 

976709.0−=p  

'.37144o=θ  

964064.1=x  

178937.0=y  

 

 

 

 

 

 

 

  


