Chapter 5
 Second Order Differential Equations 4
 Equations of the form $\left(a D^{2}+b D+c\right) y=f(x)$

Equations of the form $\left(a D^{2}+b D+c\right) y=f(x)$ or $a y^{\prime \prime}+b y^{\prime}+c y=f(x)$ (including the case where $f(x)=0$, dealt with in the last chapter) are called linear equations with constant coefficients. Linear, because there are no terms in y^{2} or $y^{\prime 2}$ or $y^{\prime \prime 2}$, and constant coefficients because the coefficients a, b and c are just numbers, and not functions of x or of y.

We can write the solution symbolically as

$$
y=\left(\frac{1}{a D^{2}+b D+c}\right) f(x)+\ldots
$$

plus not a constant, but plus another function of x, which we'll shortly see is not quite arbitrary. So, we'll write the general solution as

$$
y=y_{1}+y_{2},
$$

where $y_{1}=\left(\frac{1}{a D^{2}+b D+c}\right) f(x)$ is called the particular integral, and y_{2} is called the complementary function.

Thus we could write the original equation as

$$
\left(a D^{2}+b D+c\right) y_{1}+\left(a D^{2}+b D+c\right) y_{2}=f(x)
$$

Since y_{1} already satisfies $\left(a D^{2}+b D+c\right) y_{1}=f(x)$, it follows that the complementary function satisfies $\left(a D^{2}+b D+c\right) y_{2}=0$.

In Summary:

The solution to an equation of the form $\left(a D^{2}+b D+c\right) y=f(x)$ can be written as the sum of two parts: $y=y_{1}+y_{2}$, where the complementary function y_{2} is the solution of $\left(a D^{2}+b D+c\right) y_{2}=0$, which we already know how to do (from Second Order Differential Equations 2 (SODE2)), and the particular integral
$y_{1}=\left(\frac{1}{a D^{2}+b D+c}\right) f(x)$,
which we are going to be able to do, using the properties of the operator D described in SODE3.
I'll give one example each of the cases $b^{2}>4 a c, b^{2}<4 a c, b^{2}=4 a c$.
$b^{2}>4 a c$
$y^{\prime \prime}-5 y^{\prime}+6 y=x^{3} e^{x}$
First, we'll find the complementary function y_{2}, which is the solution to the equation
$y_{2}{ }^{\prime \prime}-5 y_{2}{ }^{\prime}+6 y_{2}=0$.
The auxiliary equation is
$k^{2}-5 k+6$, with solutions $k_{1}=2, k_{2}=3$.
The solution is given explicitly in SODE2. It is
$\underline{y_{2}=A e^{2 x}+B e^{3 x}}$

Now for the particular integral y_{2}, which is the answer to

$$
y_{1}=\left(\frac{1}{D^{2}-5 D+6}\right) x^{3} e^{x}=\left(\frac{1}{(D-2)(D-3)}\right) x^{3} e^{x}=\left(\frac{1}{D-3}-\frac{1}{D-2}\right) x^{3} e^{x}
$$

We now refer to SODE3 to remind ourselves what is meant by $\frac{1}{D-a}$. We see there that $(D-a)^{-1} f=e^{a x} D^{-1}\left(f e^{-a x}\right)$.

That is to say

$$
\begin{aligned}
& \left(\frac{1}{D-3}\right) x^{3} e^{x}=e^{3 x} D^{-1}\left(x^{3} e^{x} e^{-3 x}\right)=e^{3 x} x^{3} e^{-2 x} d x \\
& =e^{3 x}\left[-\frac{1}{8} e^{-2 x}\left(4 x^{3}+6 x^{2}+6 x+3\right)\right]=-\frac{1}{8} e^{x}\left(4 x^{3}+6 x^{2}+6 x+3\right)
\end{aligned}
$$

(Remember from SODE3 that we can take the arbitrary constant to be zero. We already have the necessary and sufficient two arbitrary constants in the complementary function.)

Similarly

$$
\begin{aligned}
& \left(\frac{1}{D-2}\right) x^{3} e^{x}=e^{2 x} D^{-1}\left(x^{3} e^{x} e^{-2 x}\right)=e^{2 x} \int x^{3} e^{-x} d x \\
& =e^{2 x}\left[-e^{-x}\left(x^{3}+3 x^{2}+6 x+6\right)\right]=-e^{x}\left(x^{3}+3 x^{2}+6 x+6\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
y_{1} & =e^{x}\left(x^{3}+3 x^{2}+6 x+6-\frac{1}{2}-\frac{3}{4} x^{2}-\frac{3}{4} x-\frac{3}{8}\right) \\
& =\frac{1}{8} e^{x}\left(4 x^{3}+18 x^{2}+42 x+45\right)
\end{aligned}
$$

The general solution is then

$$
\underline{\underline{y}=\frac{1}{8}\left(4 x^{3}+18 x^{2}+42 x+45\right) e^{x}+A e^{2 x}+B e^{3 x}}
$$

Equations of the form $\left(x^{2} D^{2}+b x D+c\right) y=f(x)$.
That is, $x^{2} \frac{d^{2} y}{d x^{2}}+b x \frac{d y}{d x}+c y=f(x)$

An equation such as $\left(3 x^{2} D^{2}-5 x D+6\right) y=\sin x$ is immediately made into the above form by dividing throughout by 3 . Therefore, in describing this type of differential equation, I shall always assume that the coefficient of $x^{2} D^{2} y$ is 1 . The method for solving this type of equation can also be extended to equations of higher order, such as

$$
\left(x^{3} D^{3}+b x^{2} D^{2}+c x D+g\right) y=f(x) .
$$

These equations are easily solved by means of the Brilliant Substitution

$$
x=e^{u},
$$

from which it is easy to show (do it!) that

$$
x \frac{d y}{d x}=\frac{d y}{d u}
$$

and slightly less easy to show (persist!) that

$$
x^{2} \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d u^{2}}-\frac{d y}{d u} .
$$

The original differential equation then immediately transforms to

$$
\frac{d^{2} y}{d u^{2}}+(b-1) \frac{d y}{d u}+c y=F(u)
$$

where $F(u)=f\left(e^{u}\right)$. We are now on familiar ground.
Before doing an example, we might wonder how this can be extended to equations of higher order. For example, what is $x^{3} \frac{d^{3} y}{d x^{3}}$? And $x^{4} \frac{d^{4} y}{d x^{4}}$? And so on... You may skip this and go straight to Example 1 if you wish. Let's use the notation:

$$
D \equiv \frac{d}{d x} \quad \text { and } \quad \mathcal{D} \equiv \frac{d}{d u}
$$

Thus the original equation is

$$
\left(x^{2} D^{2}+b x D+c\right) y=f(x)
$$

and the transformed equation is

$$
\left(\mathcal{D}^{2}+(b-1) \mathcal{D}+c\right) y=F(u)
$$

We have established that

$$
\begin{gathered}
x D \equiv \mathcal{D} \\
x^{2} D^{2} \equiv \mathcal{D}(\mathcal{D}-1)
\end{gathered}
$$

and that

Further differentiation will establish that

$$
x^{3} D^{3} \equiv \mathcal{D}(\mathcal{D}-1)(\mathcal{D}-2)
$$

and yet again that

$$
x^{4} D^{4} \equiv \mathcal{D}(\mathcal{D}-1)(\mathcal{D}-2)(\mathcal{D}-3)
$$

and so on.

Example 1

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-4 y=x^{2}
$$

That is:

$$
\left(x^{2} D^{2}+x D-4\right) y=x^{2} .
$$

The transformed equation becomes simply

$$
\left(\mathcal{D}^{2}-4\right) y=e^{2 u} .
$$

The particular integral y_{2} is the solution of $\left(\mathcal{D}^{2}-4\right) y=0$, or $\frac{d^{2} y}{d u^{2}}=4 y$, which is

$$
y_{2}=A e^{2 u}+B e^{-2 u}=\underline{A x^{2}+\frac{B}{x^{2}}} .
$$

The complementary function y_{1} is given by

$$
\begin{aligned}
y_{1} & =\frac{e^{2 u}}{\left(\mathcal{D}^{2}-4\right)}=\frac{1}{4}\left[\frac{e^{2 u}}{\mathcal{D}-2}-\frac{e^{2 u}}{\mathcal{D}+2}\right] \\
& =\frac{1}{4}\left[(\mathcal{D}-2)^{-1} e^{2 u}-(\mathcal{D}+2)^{-1} e^{2 u}\right] \\
& =\frac{1}{4}\left[e^{2 u} \mathcal{D}^{-1}\left(e^{2 u} . e^{-2 u}\right)-e^{-2 u} \mathcal{D}^{-1}\left(e^{2 u} . e^{2 u}\right)\right] \\
& =\frac{1}{4}\left[e^{2 u} \mathcal{D}^{-1}(1)-e^{-2 u} \mathcal{D}^{-1}\left(e^{4 u}\right)\right] \\
& =\frac{1}{4}\left[e^{2 u} u-\frac{1}{4} e^{-2 u} e^{4 u}\right] \\
& =\frac{1}{4}\left[x^{2} \ln x-\frac{1}{4} x^{2}\right]
\end{aligned}
$$

When we add the complementary function y_{1} to the particular integral y_{2} to obtain the general solution y, we can absorb the term $-\frac{1}{16} x^{2}$ of y_{1} into the term $A x^{2}$ of y_{2}, so that the general solution is

$$
\underline{\underline{y}=A x^{2}+\frac{B}{x^{2}}+\frac{1}{4} x^{2} \ln x .}
$$

Example 2

$$
x^{4} \frac{d^{2} y}{d x^{2}}+2 x^{3} \frac{d y}{d x}+4=0
$$

This can be written:

$$
\left(x^{2} D^{2}+2 x D\right) y=-\frac{4}{x^{2}}
$$

This transforms to

$$
\mathcal{D}(\mathcal{D}+1) y=-4 e^{-2 u}
$$

The particular integral is found by solution of

$$
\frac{d^{2} y}{d u^{2}}+\frac{d y}{d u}=0
$$

The solution of this can be found by elementary means (e.g. Let $z=\frac{d y}{d u}$)

$$
y=C+B e^{-u}=\underline{C+\frac{B}{x}} .
$$

(Don't fret if you find $y=C-\frac{B}{x}$. After all, B is just an arbitrary constant.)
The complementary function is found from

$$
y=-4 \frac{1}{\mathcal{D}(\mathcal{D}+1)} e^{-2 u}=4\left[\frac{1}{\mathcal{D}+1}-\frac{1}{\mathcal{D}}\right] e^{-2 u}
$$

It is left to the reader to find that $y=-2 e^{-2 u}$, so that the general solution is

$$
y=C+\frac{B}{x}-\frac{2}{x^{2}} .
$$

