Chapter 1
Integrals

How would you do the following integral?

J' dx
V22 —3x + 7

Well of course today you would use one of the modern computer packages, such as
Mathematica or Maple or Wolfram, that do calculus and algebraic manipulations for you.
Some of these packages are quite astonishing in what they can do, and they usually do
give a correct answer. (I have never known them not to do so!) I say "a" correct answer,
because sometimes the expressions they give, while formally correct, are rather
complicated and unreduced, or not always in the most convenient form. For example |
once saw one of these mathematics packages give, as the answer to a problem, the

expression cosh(~/—x). This happened to be formally correct, but if you have not been
handling hyperbolic functions recently (and most of us don't see them all that often), it
may be incomprehensible. Quick — calculate cosh(\/—_Z). Be honest now — did you find

the answer (0.15594) in less than five minutes? Does your table of hyperbolic cosines
(you haven’t got one) have an entry for the square root of minus two? (No it doesn’t)

Actually  cosh(v/—x) is the same thing as cosvx, so that
cosh(v=2) = cos(~/2) = 0.15594.

These on-line integration programs have, in recent years, improved enormously, and
the problem of unduly complicated or unreduced or incomprehensible solutions appears
only occasionally - though you do sometimes get one. One could argue that there is no
need, these days, to learn the art of integration, or to waste one’s time on it. We are in the
21% century and we must use the tools available. To insist on working out the integrals
oneself rather than by using a computer is rather like insisting on doing numerical
calculations by long multiplication and division with pencil and paper rather than by just
pressing the x or + sign on one’s calculator. What, then, is the use of preparing a file
like this one that shows us how to carry out integrals ourselves?

I shan’t argue with that. If we come across an integral that we need in the course of our
scientific work, by all means look it up in Wolfram and get on with it. However, many of
us enjoy, for relaxation, doing the little puzzles that appear in the daily newspapers, such
as sudokus or crossword puzzles. An integral such as the one above is probably slightly
more difficult than a newspaper sudoku (although some sudoku devotees have concocted
some very difficult ones). Its difficulty level may be comparable to a killer sudoku (for
those who haven’t heard of a killer sudoku, it’s a special variety with slightly different
rules), and not nearly as difficult as a cryptic crossword in a British newspaper. |
sometimes speculate, wouldn’t it be nice if our daily newspapers were to give, in addition
to a sudoku and a crossword puzzle, an integral for us to do?



I don’t know if that is ever likely to happen, but I suspect that many of us enjoy or get a
bit of personal satisfactions from doing little puzzles, and this file may help with doing
integrations.

By the way, | have just worked out I o myself the “old way”, and I get
J2x2 —3x + 7
1
—In[k( 8(2x* —3x + 7) + 4x — 3)]
7 nllVe )

Now let me try Wolfram and see what it gives me. Here it is, Wolfram’s solution:

1 . 4(4x-3
——sinh + C
V2 ( Ja7 j

They don’t look at all alike, do they? I’ll let you decide if they are the same. And, if
they are, which do you prefer? Wolfram is certainly shorter and more compact - but do
you have a sinh™ button on your calculator, or do you know how to program it on a
computer? And by the way, if you have concluded that they are not the same and one of
them must be wrong, think again. One way of testing would be to choose some number
for x and see if both expressions give the same numerical answer. This won’t work -
because both expressions include an arbitrary constant of integration.

I now give a short list, for reference, of the integrals of the commonest simple
mathematical functions, but, beyond that 1 am not giving a long table of integrals.
Rather, I am giving a few hints as to how to start. Indeed it is usually starting that is the
most difficult part. One often has to seek a Brilliant Substitution, and, once one hits upon
a suitable substitution, the rest is straightforward. Of course, finding the best Brilliant
Substitution is something that comes partly with experience. But is also comes in part
from realizing that not all successful substitutions are necessarily "brilliant” — there are
some that should be routine.

After the table of common integrals, I’ll give a number of examples, with hints on how
to start. | am assuming that the viewer does know the basics of integration, such as
making Brilliant Substitutions, and how to integrate by parts. If not, you are probably not
quite ready for this file, which is not for absolute beginners.

Do let me know (tatumjb352 at gmail dot com) if you find any mistakes anywhere. To
err is human, but one of the advantages of Web publishing is that mistakes can be
corrected.

I’'m dealing only with analytical integration in these notes. For numerical integration,
see Section 1.2 of http://orca.phys.uvic.ca/~tatum/celmechs/celm1.pdf




INTEGRALS OF THE COMMON SIMPLE FUNCTIONS

f(x) [ f(x)dx
"1
X" (nz-1 1 + C
1/x In|x] + C
In x X(Ihx = 1) + C
e e + C
‘ Lo
sinx —cosx + C
COS X sinx + C
tanx Insecx + C
Secx In(secx + tanx) + C
CSCX In(cscx —cotx) + C
cot x Insinx + C

sint x xsin?x — J1-x* + C
cos* X Xcosix — 1-x® + C

tan™ x xtanx — iIn(L+ x*) + C
sect x XSec X — In(x + 4/ X3 —1) + C

csct x XcSCix — In(x — X? —1) + C
cot ™t x Xcottx — In(w/1+ x> — x) + C

sinh x coshx + C



cosh x

tanh x

sechx

cschx

coth x

sinh™ x

cosh™ x

tanh™ x

sech™1x

csch™lx

coth™ x

sinhx + C

In(coshx) + C

2tane* + C

In k[e: _1J
e’ +1
In(k sinh x)
xsinhx — /x2 +1 + C
xcosh'x — /X’ =1 + C

xtanh™x + iIn(x* +1) + C

xsech™lx + sin"lx + C
xesch™x 4+ sinh™ix + C

xcoth™x + 2In(x* —-1) + C

I included the inverse hyperbolic functions, for "completeness” rather than for their
importance. They won't mean very much unless you are aware of the following identities.

sinh™*x = In(x + /X2 +1)

cosh* x

tanh™ x

sech™lx =

csch™lx =

Ak
(1+w1—x)
o

In(x + /X2 —1)

g

1+*v1+x)



coth™x = %In(x i 1]
X -1

il is of some interest and needs some care. Many of us might, in a moment of
X —

haste, write In(x—1) + C. What about Ildx ?  We might, with similar haste, write
- X

—In(1 — x) + C, which can also be written Inli +C or InlL No problem so
— X - X

far. But suppose we write 1 1 as 1 ! and then integrate it. We would find
X — - X
LS S —[-Inl-x)] +C = In(1-x) + C.
x—1 1-x

So, what is 1%7 Isit In(x—1) + C, orisit Inl—x) + C?
X -

It seems to depend on whether x >1 or x<1. You can’t take the logarithm of a

negative number. (Well, you can’t if all you have heard of is real numbers. Those of
you who are familiar with complex numbers will know that, for example,

In(-3) = —0.69 + 3.1i and you’ll know where to find it on the Argand diagram.

Those who are not familiar with them should pretend you’ve never seen this paragraph.)

The truth is, of course, that J.il = In|x — 1|, and it doesn’t matter what the value of X
X —

is. It might be interesting to convince yourself that

= —-0.69 and —— = 0 and similarly with other limits, following

J'0-6 dx 15 dx
02 X—1 05 X-—1

-

them by looking at the corresponding areas under a graph of y =

[E=N

X_



| now have a look at several sorts of integrals that you might encounter, with some
suggestions as to how to deal with them. Following that, some integrals for yourself to

try.
dx

dx >
1. (a) jm (b) jm () [4/x° + bx + cdx

There are three cases to consider: i. b? = 4c ii. b?>4c iii. b? < 4c

Case i. b*> = 4c. In this case, the expression x* + bx + ¢ can be written as a perfect
square, of the form (x + a)?, after which the integrals are easy.

Case ii. b* > 4c. In this case, the expression x* + bx + ¢ can be written as the product of
two real linear terms, in the form (x + o)(x + B).

For the integral (a), split the integrand into partial fractions:

1 = 1 ( 1 - ! J after which the integral is easy.
(X + o)X + B) B—oal(X+a) (x+PB)

For the integrals (b) and (c), let y = x + o, and we then have to deal with integrals of
the form

dy a
(b) j—m or (c) [y(y+h)dy, where h=B-o.

Then let y =h tan?®. The rest should be straightforward.

Case iii. b* < 4c. In this case, add and subtract 1b* ("half the coefficient of x, squared")
to the expression x> + bx + ¢, which becomes

X? +bx +1b* + ¢ —1b* = (X +1ib)® + h?, where h* = ¢ — b’

Then let  x+1b = htan. From this,  dx = hsec?0do and
(x +1b)?> + h* = h*sec®0.



The three integrals then become:

5.

()

1
@ - jdo,

(b) [secodo.

(c) h%jsec®0dd. See example 5 below for this one.

dx

e

Try letting x = tan’@.

dx

Iw/1+ex.

Try letting e* = tan?6.

do

j,/1+ cosO

Write 1+ cos® = 2cos” 0.

[sec"6de.
If nis even.

[sec®6do
[sec*0do

[sec®0do

=tan6 + C
= Jsec?0(L + tan’0)d0 = [sec?0d® + [tan®6d tan®.

[sec*®(l + tan® 0)do= [sec’0dd + [sec® Otan’ Osec” 0dO

=[sec*® + [(L+ tan®©)tan6d tan®.



...and so on for higher even powers.

(b) Ifnisodd.

[secod® = In(sec6+tan6)+C.

I; = [sec®0dd = [secOdtan® = secHtan® — [tan6d secH
= secOtan® — [secOtan®0d0 = secOtan® — [secO(sec’6 — 1)do
secOtan® —I; + [sec6de.

...and so on for higher odd powers.

6. [sin™@cos"0d0 and [x"(L - x*)"?dx,

The second integral is the same as the first if you let x = sin6, so we deal only with the
first.

If one or both of m and n are odd: For example:
[sin®0cos®0d0 = [sin’0cos” 6.cos 0do.

Let s =sin®, cos’® = 1-s*, ds=cos0do, and sowe have [s°(l— s*)*ds.
If both m and n are even it's not quite so simple. For example
[sin*6cos* 0d0 = [(cos*® — cos® B)de.

Let's just deal with j c0s°0de, because, if you can deal with that, you can probably also

deal with [cos*0de.
The most straightforward way is to use the identity

cos’0 = £ (cos60 + 6cos40 + 15c0s20 + 10).
In the very unlikely event that you did not know that
cos®0 = 1 (cos60 + 6cos40 + 15c0s20 + 10),

you'd need to be able to find it quickly. | can think of two quick methods. With practice,
it might be possible to derive the identity in your head, though | haven't tried it myself.
All you need is de Moivre's Theorem, which is the only theorem you need in



trigonometry, because all trigonometric identities can be derived quickly from it. De
Moivre's Theorem is: e'™9=e™®,

Thus: Let z=¢€" =cosO +isin®, so that 1/z=cos® —isin® and hence

Z+ 1 = 2¢0s0.
Z

The binomial coefficients for (a + b)® (which you can get from Pascal's pyramid) are

1 6 15 20 15 6 1

6
so that z+1 = 26+i +6z4+i +1522+i + 20.
z 78 7% 72

That is 2°c0s®0 = 2c0s60 + 12c0s40 + 30c0s20 + 20,
or cos’0 = X (cos60 + 6c0s40 + 15c0s20 + 10).

The other quick way to find this and similar identities is to look it up in the table that you
will find in Section 3.8 of http://orca.phys.uvic.ca/~tatum/celmechs/celm3.pdf

The definite integrals | g '%Sin™0cos" 0d0  and [ é(m(l—xz)”’ 2dx can be evaluated from
a simple formula, which is not difficult to derive, namely:

(m-D"(n - D”f(m,n).
(m + n)l!

[F'%in™ O cos" 6dO =

Here 13!! means, for example, 13 x11x 9 x 7 x5x3x1, and 1!' = 0! = 1. The
function f (m,n) equals /2 if m and n are both even, and f (m,n) = 1 otherwise.

For example:

[&'%in® 0cos® 0de = o

OX3X7x5%x3  m _ — 0.00383495
14x12x8x6x4x2 2 4096 e

dx
x> +Bx> +Cx+ D

7. |

The cubic expression can always be expressed in the form (x + a)(x* + bx + ¢), and
sometimes even in the form (x + o)(X + B)(X + vy). It may be easy to do so. For
example:
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(x* +1) = (x +1)(x* — x +1). Oritmay be less easy, for example
X3 +2x% + 5x —11 = (X + o)(X* +bx +©),
where oo =1.227 461 483, b =3.227 461 483, ¢ =8.961584 658.

In any case, you can split the integrand into partial fractions:

1 P N Qx+R
(X+a)(X® +bx+¢) Xx+a X +bx+c

where (I think — but you'd better check it)

p:;,qz_p ad R = - P~
c+ab+ a) c+ab+ a)
P2 and [P will cause no difficulty, but what about | XX 2
X +a X +bx +1 X“ +bx+c

Try something like this:

X 1 2X _ 1 2x+b b
x> +bx+c  2(x*+bx+c 2(x°+bx+c X2 +bx+c)

8. [x"e*® dx.

If n is odd, there is no difficulty. Let y = ax® and integrate by parts.
Thus [x%e“dx = e (x* = x* +1) + C.

If n is even, the integral cannot be expressed in terms of the simple elementary functions.
If it has to be integrated between finite definite limits, it has to be evaluated numerically.

However, the function (of t) %jée‘xzdx is called the error function erf t, and it is
T

supported by many computer packages. For more on the error function see Section 4.0 of
http://orca.phys.uvic.ca/~tatum/thermod.html

The definite integral ["e™ dx has the value 'z / 2. This can be derived as follows:
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(jg’ e‘xzdx)2 = [l e *Y)dydx. Let y=tx, so that the inner integral becomes

2 2 . . .. . . .
jg)xe"‘ @+ dt, in which, as far as this inner integral is concerned, x is constant.

) e‘dex)2 = Il xe @+ qdtdx. Reverse the order of integration (we can

always do this with a well-behaved function — when calculating an area, it doesn't matter
whether we take elemental strips parallel to the y-axis and integrate them with respect to
X, or do it the other way round.)

Thus (jw

Thus (jgo e‘dex)2 =l xe <@+ Ogydt.

The inner integral now is [“xe " * ™% dx, in which t is constant. It is easily found (e.g.

let s = x) that this integral comes to 1/(1+t®), and therefore

(jg‘)efxzdx)2 = jg)Lz This integral is elementary (e.g. let t = tan6)and comes to
2(1 + t9)

/4.

Therefore Iy e ¥dx = 1Jn.

We can go further. By substitution of ~/ax for x, we easily see that

jgoe‘a"zdx _Liz
2\a

Now each side of this equation is a function of a, not of x. If we now differentiate both
sides again and again with respect to a, we obtain progressively

0 _ax? 1 T

2 —ax

e “dx = = [—,

.[O 4 a3

0 _ax? 3 T
4 _ —ax _

J'Oxe dx—g ;a

and so on.

We can also do this with the odd powers. It is easy to obtain
00 _ax? 1
[, e dx = —,
a

and by repeated differentiation with respect to a we obtain



2 1
0 3 ,—ax
e dx = —,
.[O 2a2
2 1
© 5 —ax _
one dX—g,

and so on.

Of course, [ 2[" ifniseven, and zero if n is odd.

9. J‘e—(axz + bx)dX _ eb2/(4a)‘|‘e—a(>< + b/(2a))? etc.

10. [cos bxe ® dx =Re | e +bxgy

. _ 2 _ 2
[sinbxe ™ dx = Im[e ™ *Pdx

In case the newspapers don’t publish a daily integral in addition to their sudoku and
crossword puzzle, here are a few for fun, chosen at random. As mentioned earlier, |
estimate that on average each is about as difficult as a killer sudoku puzzle, but not as
difficult as a cryptic crossword from a British newspaper. From time to time as the spirit
moves me, | may add a few more. Following the list, | give a few hints. And after the
hints, in case you are absolutely stuck, I give some worked solutions.

2
Yy

(X + 2)dx (x* = 3x + 1)dx

3 J' dx
X2 —x+1 X3 —3x? + 2x \/XZ_%_XJF%
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2 2
0. J' dx (2x° + x + Ddx 11, _[ X“dx

10.
W2 4 1 x3 -1 X3+ 5x? +8x +4

(x+1)%dx (¢ + 1)dx (3x+ 1)dx
12. |22 130 (R g (22
J.x?’— X2 +x -1 I -[

X —1 7x% +X +3
15. Itanzxdx 16. Isinxtanzxdx 17. Icos?’xdx 18. Itan3xdx
19, j% 20 [ a1 [@+x2edx
(x“+4) x-1
2
X“dx 1+x
22. j X2 — 4dx 23, j 24, j/l_xdx 25, jxlnxdx
2 3
26. IesxsinZde 27. I 5 X dxz 5 ICOSZZXSinXdX
(x=+9)(x° + 4)

dx 1 x3dx /3 X4 dx
29. 30. 32.
J‘x3 +1 J.0 J1-x j 1+ e

3
n/
3. [S—dx 34 [e™sin’sxix 3. [, *In(t + tan6)do

Xx—-1
1In(d + x) dx 4o
36 0 l + X2 37 J‘m 38 J‘X,I:L— XdX
dx rdx
39. | — 40. 41. | ./1+ cosxdx
j1+acosx e | .[

42, j,/l—cosxdx 43, ‘,/1+sinxdx 44, I,/l—sinxdx

45 IL 46 L 47 J'L
~J 1+ cosx - 1-cosx ~J /1+sinx
dx dx
48. - 47,
8 j,/l—sinx JZSiI’lX+7COSX
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HINTS
Here are some hints for the integrals above. | give worked solutions after the hints, but,
when you have what you believe to be the answer, you can always differentiate your
answer to see if you arrive at the original integrand.

Don’t forget to add a constant to all of them.

Split into partial fractions.

—x  X(x -1

2. X3 —x = x(x —(x +1).

3 X _x2+1_ 1
x4+l X% +1 X% +1

X+1 -1 2
4 = +
x-1 x-1 x—=1
1 1 - cosx 1-cosx 2
5. = > = — = CSC” X — cscXxcot X
1+cosx 1-cos”x sin“ x

Or you could try something that I often use as a last resort when dealing with
trigonometric functions, let t = tan$x. It’s often useful.

X+ 2
6. —
X*=-x+1
The denominator is a quadratic expression. You must look to see whether b® > = < 4ac.
In this case b? < 4ac. You must “complete the square” in the denominator by writing it

as (x — %)2 + 3. Then, asubstitution u = x — 3 may help.

7. The denominator is x(x — 1)(x —2) . Split the integrand into partial fractions.

8. If you had /1 — x* you’d probably want to try x = $cos6. But you have ,/x* — 1,
sotry x =3cosh¢ instead. This may result in something awful such as

sinh ¢do
sinh¢ — cosh¢ +1
cosh¢ = %(e¢ + e, and you’ll probably get something that you can handle.

. But then remember that sinh¢ = 2 (e* — e™®) and
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9. Try x = 1tan6. You may get an answer with tan 6 and sec 0 in it, and you won’t
know what to do with sec 6. Pythagoras might help you out. \/m

2X
0

1
10. x3 -1 = (x =1)(x®> + x+1) Split the integrand into partial fractions.

11. The denominator is (x + 1)(x + 2)2. Split the integrand into partial fractions.
12. xX* = x® + x =1 = (x=1)(x* +1). Split the integrand into partial fractions.
13. Letu = x — 1.

14. 1 had to work a little with this one. The first thing | did was to try to make the
numerator 3x+ 1 look a bit like the derivative of the denominator 14x+ 1.

Thus 3x+1=2@4x+D)+ 3

We now have two integrals:

Bx+Ddx 5 (@4x+Ddx N HJ- dx

7x° +x+3  YWI7x?ix+3 Y Ix? 4x+3
. . dx
_ 1
I 1seasy. Write las 1, = & —
x> +1x+3

In the denominator, b? < 4ac, so we complete the square by writing the denominator as

(x+4)° + 25, followed by a substitution such as let  x + - = % | make the
final answer

(3x+ Ldx _ 2 1 14x +1
jm = ZIn(7x" +x+3) + %tan = + C

15. tan®x = sec’x— 1
16. Integrate by parts.

17.  Write either cos®x = 1(cos3x + 3cos )
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or cos® x = cos x(L — sin? x)
18. tan®x = tanx(sec’x — 1)
19. It’s nearly always a good idea, when you see x> + a2, to let x = atan®.

20. X :X_1+ 1
Xx—1 Xx—1 Xx—1

21. (L+x)%e* = e* + 2xe* + x%*, and do the second two by integration by parts.

X
22. Not particularly easy. Let x =2secH Ix2_ 4

Then \/x? —1dx = 4secOtan®0d0 = 4sec®® — 4secOdo.

The integral of sec" 6d0 is dealt with on page 6 of this file.

The substitution x = 2cosh¢ will also work, though I expect many will find that
X = 2SecH is easier.

| make the answer 1 x,/x*—4 — 2In[%(x +/x2—4 )J + C
23. U=2-X

24. Let x =sin 0. After some manipulation of trigonometric identities, you should
arrive at [(1 + sin 0)de.

25. Integrate by parts. Either way will do.

26. There’s probably more than one way, but you might try Im]Je**e**dx.
| make it 2% (3sin2x — 2cos 2x)e** + C. This looks unlikely, but try differentiating
it and see what you get. You never know - it might be right.

27. This looks like nothing more than hard work. If my algebra is right,

x? 19 9 2
(X +9)(x*+4) 25| x*+9 xX*+4 (X* +4)?

Then a few deft substitutions, such as x = 3tan® and x = 2tan¢ should help.
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28. Tryanyof y =cosx, y =cos2x or y?=cos2x. Surely one of them will put it in
a form that you can cope with.

29. x> +1 = (x +D)(x* — x +1). Split the integrand into partial fractions.

30. This looks bad enough even as an indefinite integral. As a definite integral it looks
even worse, because, at the upper limit, the integrand becomes infinite. Try x =sin?6

31. One suggestion: Try x = 3cos® 0. If you do this, what is tan 6?2

32. You could try the Brilliant Substitution y = 1+ e*, or, alternatively, you could

write the numerator as 1 + e* — e*.

33.  There’s probably a better way, but all I can immediately think of is the Brilliant
Substitution y = x —1.

Indeed, after | wrote the above, Stuart McAlpine came up with another, very nice,

solution. He suggests dividing x* by x — 1 by long division. Try it — it works!

34.
I think the first thing I'd do would be to write sin®3x as 1 — 1cos6x.

Then
Iezxsin23xdx = %Jezxdx - %Iezx cosbxdx = ze” - 31,
where | = Iezx cos 6xdx

35. | have not been able to find a simple analytical solution of the indefinite integral. As
a definite integral, it can be integrated numerically (e.g. by Simpson’s rule), and it is
found to be 0.272198261... However, remarkably, an analytical solution for the definite

integral can be found by making the extraordinarily simple substitution Let 6 = 7 — ¢.

36. This is a definite integral. You might suspect (you would be right!) that, like
number 35, | have been unable to find a simple analytical solution of the indefinite
integral, but, by means of a simple substitution, it is possible to find an analytical solution

for the definite integral. The expression 1+ x? in the denominator suggest that the
substitution Let x = tan©® might help.
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37. Unlike most of the other examples here, this isn’t a “made-up” integral - | really
came across it while 1 was doing some astronomical orbital calculations. This is not

surprising, since r = 1+ o056 is the equation, in polar coordinates, to a conic section of
+ £C0S

eccentricity €. (The usual symbol for eccentricity is e, but I use € here since we
frequently use e for something else in these notes.) For such a simple-looking integral, it
is surprisingly awkward. Usually I make the Brilliant (i.e. routine) Substitution Let

t =tan$6 only as a last resort, but it does work here. You will find, as you go, that there

are three cases to consider: ¢ <1, e=1, ¢ > 1, corresponding to elliptical, parabolic and
hyperbolic orbits.

38. Let y =,1-xX

39. If a = 0, +1 or —1 the integral is easy. Indeed the case with a = +1 is example 5
of this group. For other values of a, try making the substitution t = tan$x. This s

often useful in trigonometry problems, but often only as a last resort when you can’t think

of anything else. With this substitution,

tanx =

. 2t 1-t? 2dt
>, SinXx=——, COSX = R dx = 5 -
1-t 1+t 1+t 1+t

If ais between —1 and +1 the integral is slightly difficult. If |a|>1 the function is not

“well-behaved” - it has some infinities. You can get expressions for the indefinite
integral, but you have to take care if you are doing a numerical integration between two

limits that you are not going through one of the infinities.

dx
40. :
J‘x“ +1
(Before starting it might be worth mentioning that, if you are given j4—x4 , just
X" +a

substitute x = ay, and all will be well.)

x* +1 = (X2 —V2x + D(x? + v/2x + 1). Split the integrand into partial fractions.

You’ll need to know how to do this. That’s algebra, not calculus.

41. cosx = 2cos’(x/2)-1 42. cosx = 1-2sin*(x/2)
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43,44 Tryeither x = n/2—-y or t=tan(x/2)

In the second suggestion, sinx = 12—tt2 . (See suggestion for number 39.
+

45, cosx = 2cos’(x/2)-1

46. cosx = 1—2sin*(x/2)

47,48. x = 2 -y
49. Multiply and divide the denominator by V53

SOLUTIONS

1.

[ = 2 [ njx—1) - ||+ C - |n—k(x_l)‘

X5 =X x-1 X X
2. X2 —x = x(x=1)(x+1)
[ o=t L+ [ jdx = Lin|x=1| + In|x+1] I x +C

X(Xx=1)(x+1) x-1 x+1

kX% —
= In
X

2 2
X“dx X +1 1 4
3. = dx — dx = x —tan " x+C
J‘x2+1 J‘x2+1 JAx2+1

4. j“l j—d b [—2dx = x +2In|x-1] +C
Xx—-1
5.
I dx _ (1_COS)§)dX j(l cosx)dx j(csc X—cscxcot x)dx = —cotx + cscx +C
1+ cosx 1-cos”x sin? x
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tan(x/2) + C.

2dt

Alternatively, if you let t = tan$ x, then dx = e and
+
1+cosx = 2cos’$x = LZ and the integral becomes just [ dt.
@+t°)
6. j (x + 2)dx
X2 —x+1

The denominator is a quadratic expression. We start by looking at b? — 4ac . If itis >0,
it will factorize into two real linear terms. In this case, it is less than zero, so it won’t
factorize. We “complete the square” by writing it as (X — %)2 + %. And if we now let

u = x — 1, the integral becomes (or, rather, the integrals become)

udu du
5 ‘ 1 2,3 5.2 -12u
+ = = —In(u +—) + 2-=tan— <L +C
'[UZ % 2 u2 ?1 2 4 2 /3 J3

5 -1 2x-1
ﬁtan i +C

2
= 3In(x*-x+1) +

7.
I(X2_3X+1)dx=J(X2_3X+1)dx=£J‘1+L—de=ln k(x—l)i
X3 — 3x% + 2x X(x=1(x-2) 29 (x x-1 x-2 \/x—z

= ZIn|x| +Injx=1] — 3In|x-2|+C .

If x>2,you’d be safe in writing this as In{k(x— 1) /LZ} , butif x< 2 I'wouldn’t
X —_
risk it.

8. You need to be pretty familiar with hyperbolic functions for this one.

= I o Let x = Zcosh¢. Then:
\/xz -1 -x+1
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_ sinh ¢d¢ . ovie 1 ,
- J.sinh<|>—coshq>+ 1 ;J.(1+e )do =3 (o +e’) +C

= %[coshl(ZX) + 2X + /4x% — 1]+ C

9. I=J ox Try x=21tan0. Then

X? + 1 o J1+ax?
I = jsecede = Ink(sec6 + tan6) = In k(\/1+ 4x2 4 ZX) 0

(2x2 + x + 1)dx
x3 -1
factorizes; and, if it does, split the expressions into partial fractions. In this case the
denominator factorizes into (x —1)(x? + x + 1) and the expression to be integrated the
2x +1
x-1 x*+x+ 1}'

2X

10. It is always useful is these situations to see if the denominator

splits into %{

Thus:
2
J~(2x + X + 1)dx _ %[4]‘ dx +J-(2x+1)dx
X_

X3 —1 X2+ x +1
= In[k(x-D*(x* + x + D] = LIn[k(x-1)*(x*-1).

This last form is OK whether x is less than or greater than 1.

} = 1fain|x = 1] + In(x +x +1) +InK]

11.

x2dx x2dx 1 4 4
Is 2 :I > :J - > [dx =In|x + 1]+
X"+ 5X° +8x +4 (X+D)(x+2) x+1 (x+2) X+ 2

L I (x+1) dx o (x+1)%dx
— X% +x -1 (x=1)(x* +1)
- I 2 _ 2X + 21 dx = 2In|x-1] — 1In(x*+1) + tan"x + C
x-1 x“°+1 x°+1

R

_ 2
= In k(x-1) + tan x
X2+

13.
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3
M Letu=x-1.
x -1
3
(C+ Dax_ (u? +3u +3+ 2/u)du = 3 u’ +3u +3u +2In|u| + constant
1
X_

= 1%+ 1%% + x + In[k(x—1)*]

14. j (3x+ Dax The denominator does not factorize into real factors. I’'m going to

7x% +x +3
manipulate the numerator to try to make it look like the derivative of the denominator.

3x+1= Z@4x+4) = 214x +1+4) = 2(14x +1) +2 . So now we have

(3x+ 1)dx _ 3 (14x + 1)dx L u dx e
7x% +x+3  MWITx?ax+3 MWl 4x43 e

|1 is easy. Itis just 3 In(7x +X+3) + constant.

|2=£J dx =11 dx =£I dx
98 98
x> +1x+3 x>+ ix+ Lo+ 8 (x+4)° +38
du 14u 14x +1
Letu=x+=. Then I, =1 =1L tgn7? = 1L tan jplus
14 2 98 U _{_189% 7@ (\/@] 7./83 \/@
a constant. Hence w = 2In(7x* +x+3) + Ft nt lax+1) C.
7X° +X +3 ! V83
Itanzxdx = Iseczxdx - Idx = tanx — x+C
16. (a)
Isin xtan? xdx = —Jtanzx dcosx = —cos xtan? x + Jcos xd tan® x
= —sinxtanx + Z'fsecxtanxdx = —sinxtanx +2secx + C = cosx +secx +C
(b)

Isin xtan? xdx = J.sin xsec’ x dx — jsin Xdx = Isin xd tanx — J.sin Xdx

=sinxtanx — jtanxdsinx - ~|Asinxdx = sinxtanx + cosx +cosx + C
= secx + cosx + C
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17. (a)
jcos3 xdx = lj(cosBx + 3cos x)dx = Lsin3x + 3sinx +C
4 12 4
(b)
Icos3 xdx = Icosxdx - Icosxsinzdx = sinx — isin®x +C

The two solutions, (a) and (b), are trigonometric identities.

18. Itans xdx = Itan xsec? xdx — Itan xdx = itan®x —Insecx +C

Wolfram gives isec®x +Incosx + C. Is that the same?
dx ) - 2 2
19. J.ﬁ It’s nearly always a good idea, when you see x“ + a“,to let
(x*+4)

X = atan®. In this case, a = 2 and we obtain

2
%J-sec ?ge _ %ICOSZQde - %I(coszm 1)d0 = Lsin20+ 16+ C
Sec

: -1
i5(sinBcosd + 6) +C = +tan~3x| + C

1 X 2
16| x2 +4 x*+4

l[ 2x + tanl%xj +C

16| x2+4

20 J‘XdX :J(X_l)dX_FJ‘ dx =X+ Injx-1] + C
X —1 x—-1 x -1
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21.
J.(1+ x)2eXdx = jexdx + 2J.xexdx + Ixzexdx
=e* + 2xeX — 26X + x%X —2xeX + 2% + C

= L+x2)e* + C

22. j x2 — 4dx. Let X = 2seco. X

Then I X2 — 4dx = 4Isecetan26de 0

= 4Jsec3ed9 - 4Jsecede = 41, — 41,

I, = Jsec®06d6 = [secO(l + tan?0)d® = JsecOdd + JtanOd seco
= [secOdd + secOtan® — JsecOd tan®

= [secOdd + secOtan® — [sec® 6dO
= In(secO +tan0) + secOtan® — 1, +constant
I} = ZIn(sec +tan6) + ZsecOHtan6 +constant

I, = In(secO + tan®) + constant

Therefore
J.,/x2 —4dx = 2secHtan® — 2[In(secH + tan6] + constant

- %x\/m-2|n[§(x+\/m)]+ C (x22

Alternatively:

Let x = 2cosh¢, +/x? —4 =2sinh¢, dx = 2sinh ¢do.

Then

JVxT—4dx = 4[sinh? ¢dd = [(e? — e-¢}2d¢ = [(e*®+ e72¢ — 2)do

= 2[(cosh2d — 1)dd = sinh2d — 2 + C = 2sinhdcoshd —

26+ C
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= 1x/x?— 4 - 2coshilx +c
= 1y /xT— 4 — 2 [E(x + ¥ - 4)] + C (x = 2)

Let u=2-x

2
I X7 J(Z Wdu _ ~u"?@ - fu + Zu’) + C

1/ - X
= -2.J2-x(32+8x+3x%) + C

24. I/1+de Let x =sin®@, then
1-x
J- 1+x 1+S|neCosede
1—x 1 —sin®

Multiply top and bottom by /1 + sin©
[ 1+ X4 j 1+5IN0 sodo = j 1459 os6do = [(1+ sin0)do
1—x 1—sin® 11— sin20

=0-cos® + C = sin” x—\/—x +C

Incidentally I tried I 1+ de and J. wcos 0d6 on Wolfram recently, and in
1-—x 1 -sin®

both cases it returned impossibly complicated answers! | think they were actually
correct, though it was very hard work to simplify them. Such cases are mercifully rare
these days, and usually the answer is returned in a convenient form.

25. Ix In xdx
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One way:
| = jxlnxdx = de[x(lnx—l)] = x3(Inx -1) - jx(lnx—l)dx = x%(Inx 1) — | +jxdx
21 = x*(Inx -1 + $x* +2C = x*(Inx - 1)+ 2C

| =1ix*(nx-1) +C

The other way:
- 1y2) = 1y2 _ 1|2 — 1y2 _1 — 1y2 _1y2
lenxdx_jlnxd(zx)_zx In x 2J.xdlnx_zx In x 2'[xdx_zx Inx —+x°+C

26.
Ie3x sin2xdx = ImjesXeZide

Ie3xe2ixdx _ Ie(S +2i)xdx _ 1 . e(3 +2i)X L C
(3 +2i)

_ 3-2i (3+2i)x

& +C = £e¥(3 - 2i)(cos2x + isin2x) + C

The imaginary part is

3 -
€% (3sin2x — 2cos2x) + C

You could also try integrating by parts (either way) - but that’s not so interesting.

27.

_[ x2dx _ld..9 . 9 2
(X% +9)(x* + 4)* 259 x*+9 X2 +4  (X* +4)?

-1 9 -1 5 2X A
= %{—man X +§tan X - " + tan~ Zx||+C

10x
-1 -1
= ﬁ{—than %x + 13tan %x — }+ C
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3
28. Ic0522xsin xdx

Let’s try the first of my suggestions. First,
y=cosx, dy = —sinxdx ©os2x = 2cos’x —1 = 2y? —1

3 3
Ic0522xsin xdx = —I(Zy2 —1)%dy

Then maybe try letting 2y® = sec’6. Thatis, y = -LsecO. This looks promising,

+
so let’s go back to the beginning and make the truly Brilliant Substitution

COS X = %sece, sin xdx = —%secetan 0d0, cos2x = 2cos? x—1 =sec’0—1 = tan? 0.
Then:

3
jc0522xsin xdx __ 1 jsecetan“ 0do.
J2

We already know, from pages 6 and 7, how to integrate sec" 0, so we’ll use
tan®0 = sec?0 —1 and hence write the integral as

3
2 : _ _i 50 3
jcos 2xsin xdx = NG ~"(sec 6 — 2sec” 6 + sec0)do

On carrying out the procedures suggested on pages 6 and 7, | obtain

[secO = In(secH + tan6) + C,
[sec®® = isecOtan® + lin(secO + tan®) + C,

[sec®0 = lsec®0tan0 + 2secOtan® + $In(secd + tand) + Cg

Thus the integral becomes, after a little tidying up,

3
Ic0522xsin xdx = Y2[secOtan6(5 — 2sec?0) — 3In(seco +tan6)] + C.

We have to get back to x, remembering that sec6 = V2 cos x, from which

tan® = /2cos’x — 1 = +/cos2x . Thus

j cost 2x sinx dx = % [*.-’2 cos2x cosx (5 —4cos?x) — 3In(v2 cosx + Vcos2x }] +C.
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The second suggestion was let y = cos2x.

3

3
This leads to Ic0522xsinxdx = I 8(1y )dy.
+y

The third suggestion was let y* = cos 2x.

3
This leads to jcosZZXSin xdx = I

4
V2L +y?)

You could try either of these and see where they lead. For numerical integration
(see http://orca.phys.uvic.ca/~tatum/celmechs/celm1.pdf ) these are far faster than the
original expression.

29.

j31 dx:j i dx=1j ! +2_X+2 dx
X+ 1 (x+D(x“—x+1) 3 x+1  x*—x+1

%i B 1&}” _1 {L 1o 2x-1 +g;}dx

39 x+1 2 (X°—x+1) 39 x+1 2 (X*°—=x+1) (x> = x +1)

I, = In(x* = x +1) + C,

1 1 L 2(x—1)
I, = dx = dx = 2tan? +C
] Xox+ o+ g J (x+3?+ (1 B B T
Hence
1 4 2(x =1)
dx = LIn(x+1) — LIn(x® = x+1) + Ltan™* +C
Joax = dinexsn) — Fin )+ et

30.
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1 3
I X"dx . With the substitution x = sin? 0, this becomes

041-x

nl2 . 7 32

2 sin‘0do = —

.[0 £
31.

NE)
3—X
0
Jx
2 3-X .
X = 3c0s°0 tan0 = dx = —6sin0cos0do

X

The integral becomes —6/tan8sin®cos6dd = —6/sin®06do = 3[(cos26 — 1)do

= 3sin20 — 30+ C = 3sinBcos® —30+C = 3. /%Xg C3tant 2X
X

xG—x) - 3tan |°=X 4 ¢
X

32. If you try the substitution y =1 +e”*, you arrive at

X

| &y jdy y Lo & — ma+e®+c
(y -y (y 1) 1+e

If you write the numerator as 1 +e* — e*, you arrive at

_[dx — I e” dx = x — In2 +eX) +C. Andsince x = Ine*, this simplifies to
1+ eX

eX
In =-Inl+e*)+C
1+e*
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33. The substitution x =y +1 results in

J‘}-‘3+ 3Ivi 4+ 3y + 1

> dy = %}-‘3 + 324+ 3y + my+ C

Then y = x —1 and a little algebra resultsin = $x° + 3x* + x + In(x - 1) + C

Stuart McAlpine’s solution: x*/(x—1) = x* + x + 1 + 1/(x — 1), after which it is plain
sailing.
34. Tthink the first thing I'd do would be to write sin®3x as 1 — 1cos6x.

Then

jezxsin23xdx = %Iezxdx - %_[ezx cosbxdx = 7€ -

N |

where | = Iezx cos 6xdx

You could try integrating this by parts. I haven’t tried it. Instead I tried

| = Re J.e(z””)xdx —Re €27 L C = Le2pe (2 — 6i)(cos6x + isin6x) + C
2 + 6l 40
| = 5e¥(2c0s6x +6sin6x) + C = 6™ (cosbx +3sin6x) + C
Hence
J.GZXSin23XdX (= %ezx B %I) _ ezx(zl[— COS6X + 35m3xj e
40
35.

/4
| = jo In(L + tan 0)do

Let 0 =74 —¢.. Then dO =-d¢, and the limits become 4 and 0.

l1-tan¢ 2
l+tang 1+tang

Also, 1 +tan® =1 +tan(7 —¢) =1 +



31

nl4 2 nl4 /4 ntin 2
Thus | = jo |n(1+tan¢]d¢ - jo In2dp — jo In(L + tand)do = ;!

Hence | = nlg 2. Encouragingly, this is 0.272198261, which is what the numerical

integration gave.

1In(d + x) y
36.Jo 1+ %

n/
The substitution x = tan6 gives, after a little algebra, IO ) In(1 + tan©)dO, which is the

same as humber 35. Therefore the answer is %

Interestingly | tried both integrals (35 and 36) on Wolfram. Like me, it couldn’t find a
simple expression for the indefinite integral. For the definite integral, in both cases it
gave both the numerical solution and the analytical one. Very impressive.

37.

We can deal with the case € = 1 immediately, because it is the same as example 5, and
there are several easy ways of dealing with it. We shall give that case no further thought.

_$2
i : 5 do = 12d:2 the integral
+ +

If we make the substitution t = tan%e cosO =

dt
l+e+ (L—e)t?

becomes ZI

If £ <1, we write this as

so the answer is

2 L r= =
————tan | t] +C
41 — g* _,"J'l+ z

where t = tan30.
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If ¢ >1, we write it as

EJ‘ dt
e —1J &+ 1—t2

g — 1

This can be written in terms of an inverse hyperbolic tangent if you are familiar with such
things, but it is easier to split the integrand into partial fractions. Put

to make this easier, if you like. The integral now becomes
2 ALy
e—1l2a||a-t a+t

- ! [In[a * tﬂ +C , where t =tan}6 and

38. Ix,/l—xdx Let y = J1—x, x =1-y? dx = —2ydy.

After that, it is straightforward, and you eventually arrive at the unlikely-looking

y = C — 2(1-x)¥%(2 + 3x).

39. IL Fora =1, see example 5.
1+ acosx

For a=—-1, 0, +1 the answers are, respectively —cotZx +C, x+C, tanix+C.

Otherwise, let t = tan% X, and for a between —1 and +1 the integral becomes

dt 2 dt
ZJ 2 T 7 I lva 2 °
l+a + (1-a)t 1-as -+t
Now let t = i%”; tany and the answer will come out very quickly as
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2 4 ica 1
2tan ( mt) +C, wheret = tan™ x.

1-a

This is good for either positive or negative a, as long as |a| < 1.

For |a| > 1, you’ll need to write the integral as

ZJ‘ dt :
a+l - (a-Nt
You now have a choice, depending on which you dislike the least, hyperbolic functions

or logarithms. If you don’t mind hyperbolic functions, just proceed as we did in the case

la] < 1.
dt 2 dt
Thus ZJ. 2 = . J. a+1 2
a+l - (a—-Dt a-1J2%—t
a+1 . .
Now let t = ,/——; tanhy and the answer will come out very quickly as

tanhl( thj +C, where t = tanix.

T‘ N
|
=

a

If you don’t like tanh™* (and most of us don’t see things like that every day), try this:

: 2 dt
a+l .2
Let ——; =b”, so the integral becomes 1 Ibz —Z

Now b% —t? = (b —t)(b +t), so split the integral into partial fractions so that it

becomes 2 J. 1 - 1 dt = 1 Int+b +C.
ba-1)Jt+b t-b \/az_l t—b

a+1l
a-1"

where t = tan1x, b =
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This looks like a nice, simple straightforward expression, and so it is. However, for
. 1 . .. .
|a] > 1, the expression ————— is not a “well-behaved” function, in that it has some
1+acos x

infinities. You will have to take care if you want the definite integral between two limits
on either side of an infinity.

It might be noted in passing that r = ————— is the equation, in polar coordinates, of
1+ €ecosH

a conic section of eccentricity €. It is unlikely in that context that one would want to
calculate [rd6, but you never know. In any case, if € > 1, the conic section is a
hyperbola - so you see why there are some infinities in this case.

1 1 ~12x + 1 12x +3

O T @ Vi) Ve D) —\/_x+1) % + V2x + 1)

and so the integral is

_1 L 1 L
4\/§IX2—\/§X+1 i 4\/§Ix2+\/§x+1 "

N[~
N[~

J' dx N J- dx
X2 —2x +1 X2 +2x +1

The first integral can be written

_%\/EJ-ZX—\/E+\/_ ela\/EJ. 2x—\/§ dx—ﬂ 1 dx
x? —2x +1 x2 —2x +1 X2 —2x +1

The second integral can be written

1 2X + /2 — \/_ _ 1 2X + /2 1 1
\/_J. X +\/_x+1 \/_J.x +\/_x+1dX 4Ix2—ﬁx+1dx

So we now have j 1
x* +

2X — /2 2X + /2
1 fpf_ X Ne 1 /o[ Xt Ne
8 ijz—ﬁx+1dx i Zj ox +

;J‘;d)w;j';
X2 +2x +1 Yl _ox+1 Yl ox 41

dx
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Write the denominator of the third integral as x? — v2x +1+1 = (x - %)2 + (%)2,

and similarly for the fourth integral, so we now have

1 -2 1 2X + /2
b T b ™

1 1 1
diem %)2 e e ey

1J2In(x* —V2x + D+1vV2In(x +v/2x +1) — V2 tan (1 —2x) + 22 tan" (1 ++/2x)
+C

= 12/ tan(1++2x) - tan*(1-+2%) + In /); i\/\/:)):i] +C

41, j 200s%(x/2) dx = ﬁjcos(x/z)dx: J8sin(x/2) +C

42. j 2sin?(x/2) dx = ﬁjsin(xlz)dx = —/8cos(x/2) +C
43. First suggestion: x =m/2 — vy, then I,/1+sinxdx = —I,/1+ cosy dy
= —8sin(y/2) +C = —8sin(t/4—x/2)+ C

Second suggestion: With a little persistence with the variable t you will find the

trigonometric identity

J1+sinx = cos(x/2) + sin(x/2), so the integral is merely 2[sin(x/2) — cos(x/2)] + C

Are these two solutions the same?
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44. First suggestion: x =m/2 — vy, then I,/l —sinxdx = —J,/l — cos y dy

= —J8cos(y/2) +C = /8 cos(n/d—x/2) + C

Second suggestion: With a little persistence with the variable t you will find the

trigonometric identity

J1—sinx = cos(x/2) — sin(x/2) so the integral is merely 2[sin(x/2) + cos(x/2)] + C

Are these two solutions the same?

45. j J‘sec(x/ 2) dx = V2 In{k[sec(¢2) + tan(x2)]}
\/1 + COS X

4. | J-csc(x/Z)d = V2 In{k[csc(x/2) — cot(x/2)]}
\/l COS X

47. x=m7/2 —

y then J.L — _J‘L
’ J1+sinx J1+cosy

= —J2 In{k[sec(y/2) + tan(y/2)]}

4

dx d
8. x=m/2 — y, then Im: —Iﬁ
= —~/2 In{k[csc(y/2) — cot(y/2)]}
49. The denominator becomes = +/53(sinxcosa + cosxsina) = v/53sin(x +a),
where cos a = 2/+/53 and sin a = 7/@, a=74°03' , sothe answer is

(1/4/53) In[csc(x+a) — cot(x + a)]
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Difficult Integrals

3
[ x~2e73*dx IXX— dx

[ x2%e % dx Icosxzdx I o1

dx I dx
J1—4sin%0 \J3+ 2cos0

All of these integrals look at first glance as though they are about the same order of
difficulty as the others we have met earlier in this Chapter, and you could probably do
them in half-an-hour or so. Go ahead and try! If you give up, read on.

These - and many others that we may come across - cannot be expressed in terms of
simple familiar functions. If they are to be integrated as definite integrals between
definite lower and upper integrals, they will usually have to be integrated numerically,
although it is possible that, in some cases, if they are to be integrated, say from O to 1, or
0 to «o, or 0 to n/2, they may have exact values. | do not deal with numerical integration
here; | merely draw attention to some integrals that cannot be expressed analytically. For
methods of numerical integration, see Chapter 1, Section 2, Celestial Mechanics
orca.phys.uvic.ca/-tatum/celmechs.html

We dealt with [ x"e ® dx earlier in this chapter, so we don’t repeat it here, other than
to give the following brief table:

fea= 3,7
Foe o= e -
o x%e ™ dx :2%2 Iy x'e™dx = ;;;é/i
iy X% dx = % ;e i = 1165ﬁ

It is related to the error function erf(x). Icos(—xz)dx and J.sin(—xz)dx can be

dealt with by writing cos(—x%) as Re(e™) and sin(=x?) as Im(e™). Things like

[x"e*® dx |, Icos(+x2)dx and jsin(+x2)dx are not closely related to erf(x), but

can be integrated numerically between limits. Icos(+x2)dx and Isin(+x2)dx are

Fresnel integrals. In physics they turn up in the theory of the Cornu spiral.
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Integrals involving /1 —k?sin? @ , or expressions that can be written like this, are
called elliptic integrals. In particular

_[1/1 k?sin2 0 do, j
f-

do
‘[1/1— k?sin2@

are elliptic integrals of the first, second and third kinds respectively. The definite
integrals

kzsn o

K (k) = J~(7)t/2

do /2 > . 2 nl2 do
— E(k) = V1-—K 0do, TI(k) =
\1-k?sin%0 () '[0 o (9 IO (1— kzsin2(9)3/2

are complete elliptic integrals of the first, second and third kinds respectively. Here are

brief tables and graphs of them:

k K (k) E(K) (k)
0.00 1.5708 1.5708 1.5708
0.05 1.5718 1.5698 1.5737
0.10 1.5747 1.5669 1.5827
0.15 1.5797 1.5619 1.5979
0.20 1.5869 1.5550 1.6198
0.25 1.5962 1.5460 1.6490
0.30 1.6080 1.5348 1.6866
0.35 1.6225 1.5215 1.7339
0.40 1.6400 1.5059 1.7928
0.45 1.6609 1.4880 1.8658
0.50 1.6858 1.4675 1.9566
0.55 1.7154 1.4442 2.0706
0.60 1.7508 1.4181 2.2158
0.65 1.7935 1.3887 2.4047
0.70 1.8457 1.3887 2.6582
0.75 1.9110 1.3185 3.0137
0.80 1.9953 1.2763 3.5454
0.85 2.1099 1.2281 4.4256
0.90 2.2805 1.1717 6.1668
0.95 2.5900 1.1027 11.3100
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Integrals involving expressions suchas \/a + bcos9, \/sinz a —sin?0, v/secH can

be written in terms of elliptic integrals. Expressions such as these occur in physics in
calculating the gravitational potential and field of a massive ring, or the oscillations of a

pendulum through a large angle. For /a + bcos©, write 6 = 2¢ and
cos2¢ =1—2sin’¢.

[x2e*dx  You’d think you could just integrate this by parts - but each time you do,

it gets worse and worse instead of better and better. Between definite limits, it can be
integrated numerically. If the limits are 1 and oo, it is an example of a exponential
integral function:
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E, (a)=] x "e"dx.
1

For further details on this function, see http://orca.phys.uvic.ca/~tatum/stellatm/atm3.pdf

Other integrals. Some people collect stamps. Others collect difficult integrals. Here are

a few from my collection. | may add more later if I think of it.


http://orca.phys.uvic.ca/~tatum/stellatm/atm3.pdf

4

[“x%In@ - e™)dx = T
0 45
3 4
» X dx = =
0e* -1 15
© x4ex 4714

— X _
0 (eX —1)* 15
g8 dx n
0 x°(e" -1) 15

J' dx J' dx
Ja+bcosx 4 1+tanx
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: J.\/sin x dx look as if they might be difficult. It is late at

night and I can’t immediately think of any obvious solutions without going into
hypergeometric functions and the like, which not all of us are very familiar with. If you
can find a simple solution, give me a buzz at tatumjb352 at gmail dot com Numerical
integration between definite limits should be straightforward — though this site does not
deal with numerical integration. For numerical integration, see
https://www.astro.uvic.ca/~tatum/celmechs/celmZ1.pdf



