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Chapter 1 

Integrals 

 

    How would you do the following integral? 

 

     
 732 2 xx

dx
. 

 

    Well of course today you would use one of the modern computer packages, such as 

Mathematica or Maple or Wolfram, that do calculus and algebraic manipulations for you.  

Some of these packages are quite astonishing in what they can do, and they usually do 

give a correct answer.  (I have never known them not to do so!)  I say "a" correct answer, 

because sometimes the expressions they give, while formally correct, are rather 

complicated and unreduced, or not always in the most convenient form.  For example I 

once saw one of these mathematics packages give, as the answer to a problem, the 

expression cosh( ).x   This happened to be formally correct, but if you have not been 

handling hyperbolic functions recently (and most of us don't see them all that often), it 

may be incomprehensible.  Quick – calculate cosh( ).2   Be honest now – did you find 

the answer (0.15594) in less than five minutes?  Does your table of hyperbolic cosines 

(you haven’t got one) have an entry for the square root of minus two?  (No it doesn’t)  

Actually cosh( )x  is the same thing as xcos , so that 

.15594.0)2cos()2cosh(     

 

   These on-line integration programs have, in recent years, improved enormously, and 

the problem of unduly complicated or unreduced or incomprehensible solutions appears 

only occasionally - though you do sometimes get one.  One could argue that there is no 

need, these days, to learn the art of integration, or to waste one’s time on it.  We are in the 

21
st
 century and we must use the tools available.  To insist on working out the integrals 

oneself rather than by using a computer is rather like insisting on doing numerical 

calculations by long multiplication and division with pencil and paper rather than by just 

pressing the   or   sign on one’s calculator.  What, then, is the use of preparing a file 

like this one that shows us how to carry out integrals ourselves? 

 

  I shan’t argue with that. If we come across an integral that we need in the course of our 

scientific work, by all means look it up in Wolfram and get on with it.  However, many of 

us enjoy, for relaxation, doing the little puzzles that appear in the daily newspapers, such 

as sudokus or crossword puzzles. An integral such as the one above is probably slightly 

more difficult than a newspaper sudoku (although some sudoku devotees have concocted 

some very difficult ones).  Its difficulty level may be comparable to a killer sudoku (for 

those who haven’t heard of a killer sudoku, it’s a special variety with slightly different 

rules), and not nearly as difficult as a cryptic crossword in a British newspaper.  I 

sometimes speculate, wouldn’t it be nice if our daily newspapers were to give, in addition 

to a sudoku and a crossword puzzle, an integral for us to do? 
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  I don’t know if that is ever likely to happen, but I suspect that many of us enjoy or get a 

bit of personal satisfactions from doing little puzzles, and this file may help with doing 

integrations.  

  By the way, I have just worked out 
 732 2 xx

dx
 myself the “old way”, and I get 

 

  .34)732(8ln
2

1 2  xxxk  

 

   Now let me try Wolfram and see what it gives me.  Here it is, Wolfram’s solution: 

 

C
x








 

47

34
sinh

2

1 1  

 

   They don’t look at all alike, do they?   I’ll let you decide if they are the same.  And, if 

they are, which do you prefer?   Wolfram is certainly shorter and more compact - but do 

you have a sinh
1

 button on your calculator, or do you know how to program it on a 

computer?   And by the way, if you have concluded that they are not the same and one of 

them must be wrong, think again.  One way of testing would be to choose some number 

for x and see if both expressions give the same numerical answer.  This won’t work - 

because both expressions include an arbitrary constant of integration. 

 

 

   I now give a short list, for reference, of the integrals of the commonest simple 

mathematical functions, but, beyond that I am not giving a long table of integrals.  

Rather, I am giving a few hints as to how to start.  Indeed it is usually starting that is the 

most difficult part.  One often has to seek a Brilliant Substitution, and, once one hits upon 

a suitable substitution, the rest is straightforward.  Of course, finding the best Brilliant 

Substitution is something that comes partly with experience.  But is also comes in part 

from realizing that not all successful substitutions are necessarily "brilliant" – there are 

some that should be routine. 

 

  After the table of common integrals, I’ll give a number of examples, with hints on how 

to start.  I am assuming that the viewer does know the basics of integration, such as 

making Brilliant Substitutions, and how to integrate by parts.  If not, you are probably not 

quite ready for this file, which is not for absolute beginners. 

 

   Do let me know (tatumjb352 at gmail dot com) if you find any mistakes anywhere.  To 

err is human, but one of the advantages of Web publishing is that mistakes can be 

corrected. 

 

   I’m dealing only with analytical integration in these notes.  For numerical integration, 

see Section 1.2 of http://orca.phys.uvic.ca/~tatum/celmechs/celm1.pdf    
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INTEGRALS OF THE COMMON SIMPLE FUNCTIONS 

 

 

  f x( )        dxxf )(  

 

  x nn ( ) 1         
x

n
C

n 




1

1
 

 

  1/ x       Cx ||ln  

 
  ln x       x x C(ln ) 1  

 

  e x       e Cx   

  a x       
a

a
C

x

ln
  

 
  sin x        cos x C  

 
  cos x      sin x C    

   
  tanx       ln sec x C  

 
  sec x       ln(sec tan )x x C   

 
  csc x       ln(csc cot )x x C   

 
  cot x       ln sin x C  

 

  sin1 x      x x x Csin   1 21  

 

  cos1 x       x x x Ccos   1 21  

 

  tan1 x      x x x Ctan ln( )   1 1
2

21

  

  sec1 x       Cxxxx  1lnsec 21  

 

  csc1 x       Cxxxx  1lncsc 21  

  cot 1 x       Cxxxx  21 1lncot   

 
  sinh x       cosh x C  
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  cosh x       sinh x C  

 
  tanh x       ln(cosh )x C  

 

  sechx       2 1tan e Cx  

 

  cschx       


















1

1
ln

x

x

e

e
k  

 
  cothx      ln( sinh )k x  

 

  sinh1 x     x x x Csinh   1 2 1  

 

  cosh1 x     x x x Ccosh   1 2 1  

 

  tanh1 x           x x x Ctanh ln( )   1 1
2

2 1  

 

                         
 

                        
 

  coth1 x                 x x x Ccoth ln( )   1 1
2

2 1  

 

I included the inverse hyperbolic functions, for "completeness" rather than for their 

importance. They won't mean very much unless you are aware of the following identities. 

 

   1lnsinh 21  xxx  

 

   1lncosh 21  xxx  

   

  













x

x
x

1

1
lntanh

2
11  
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  













1

1
lncoth

2
11

x

x
x  

 

1 x

dx
 is of some interest and needs some care.   Many of us might, in a moment of 

haste, write  .)1ln( Cx      What about 
x

dx

1
?     We might, with similar haste, write 

Cx  )1ln( , which can also be written  
x

k
C

x 


 1
lnor

1

1
ln    No problem so 

far.   But suppose we write  
xx 


 1

1
as

1

1
 and then integrate it.   We would find  

.)1ln()]1ln([
11

CxCx
x

dx

x

dx





   

 

So, what is 
1 x

dx
?     Is it ,)1ln( Cx   or is it  Cx  )1ln( ? 

 

It seems to depend on whether 1x   or  1x .   You can’t take the logarithm of a 

negative number.   (Well, you can’t if all you have heard of is real numbers.  Those of 

you who are familiar with complex numbers will know that, for example, 

i1.369.0)ln(
2
1   and you’ll know where to find it on the Argand diagram.   

Those who are not familiar with them should pretend you’ve never seen this paragraph.) 

 

The truth is, of course, that |1|ln
1


 x

x

dx
, and it doesn’t matter what the value of x 

is.  It might be interesting to convince yourself that 

 

0
1

and69.0
1 5.0

5.16.0

2.0





  x

dx

x

dx
 and similarly with other limits, following 

them by looking at the corresponding areas under a graph of .
1

1




x
y  
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I now have a look at several sorts of integrals that you might encounter, with some 

suggestions as to how to deal with them.  Following that, some integrals for yourself to 

try. 

 

1. (a)   
 cbxx

dx
2

     (b) 
 cbxx

dx

2
      (c)   dxcbxx 2  

 

 

There are three cases to consider:   i.  b c2 4   ii.  b c2 4        iii. b c2 4  

 

Case i. b c2 4 .  In this case, the expression x bx c2    can be written as a perfect 

square, of the form  ( )x   2 , after which the integrals are easy. 

 

Case ii. b c2 4 . In this case, the expression x bx c2    can be written as the product of 

two real linear terms, in the form ( )( )x x   . 

 

     For the integral (a)¸ split the integrand into partial fractions:  

,
)(

1

)(

11

))((

1















 xxxx
  after which the integral is easy. 

 

     For the integrals (b) and (c), let y x  , and we then have to deal with integrals of 

the form 

 

     (b)       
 )( hyy

dy
   or    (c)    ,)( dyhyy      where   h   .     

 

    Then let .tan2 hy    The rest should be straightforward. 

 

 

Case iii. b c2 4 . In this case, add and subtract 1
4

2b   ("half the coefficient of x¸ squared") 

to the expression x bx c2   , which becomes  

 

x bx b c b x b h2 1
4

2 1
4

2 1
2

2 2      ( ) , where h c b2 1
4

2  . 

  

Then let .tan
2
1  hbx   From this,  dhdx 2sec   and  

( ) sec .x b h h  1
2

2 2 2 2     
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The three integrals then become: 

 

(a)  .
1

d
h

   

  

(b)   .sec d  

 

            (c)      .sec32 dh    See example 5 below for this one. 

 

_________________________________________________ 

 

 

2.         .
1


 xx

dx
       Try letting  x  tan .2   

 

_________________________________________________ 

 

 

3.        .
1


 xe

dx
        Try letting  .tan2 xe  

 

_________________________________________________ 

 

 

4.       .
cos1




d
      Write  1 2 2 1

2
 cos cos .   

 

_________________________________________________ 

 

 

5. .sec  dn
 

   

(a) If n is even. 

 

.tantansec)tan1(secsec

tansec

22224

2









dddd

Cd
 

 

      dddd 2224246 sectansecsec)tan1(secsec  

 

          .tantan)tan1(sec 224   d  
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...and so on for higher even powers. 

 

(b) If n is odd. 

 

                .)tanln(secsec Cd   

     

     sectantansectansecsec3
3 dddI  

          








.sectansec

)1(secsectansectansectansec

3

22

dI

dd
 

 

...and so on for higher odd powers. 

_________________________________________________ 

 

6.      .)1(andcossin 2/2 dxxxd nmnm    

 

The second integral is the same as the first if you let x  sin ,   so we deal only with the 

first. 

 

If one or both of m and n are odd:   For example:  

.coscossincossin 4353   dd  

 

Let s s ds d   sin , cos , cos ,   2 21   and so we have  .)1( 223 dsss   

 

If both m and  n are even it's not quite so simple.   For example  

 

.)cos(coscossin 6442   dd  

 

Let's just deal with ,cos6  d   because, if you can deal with that, you can probably also 

deal with .cos4  d    

The most straightforward way is to use the identity 

 

cos (cos cos cos ).6 1
32

6 6 4 15 2 10        

 

In the very unlikely event that you did not know that  

 

cos (cos cos cos ),6 1
32

6 6 4 15 2 10        

 

you'd need to be able to find it quickly.  I can think of two quick methods.  With practice, 

it might be possible to derive the identity in your head, though I haven't tried it myself.  

All you need is de Moivre's Theorem, which is the only theorem you need in 
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trigonometry, because all trigonometric identities can be derived quickly from it.  De 

Moivre's Theorem is:   . immi ee  

 

Thus:  Let z e ii    cos sin , so that 1/ cos sinz i    and hence 

z
z

 
1

2cos .  

The binomial coefficients for ( )a b 6  (which you can get from Pascal's pyramid) are  

 

    1    6    15    20    15    6    1 

 

so that .20
1

15
1

6
11

2

2

4

4

6

6

6






































z
z

z
z

z
z

z
z  

 

That is        2 2 6 12 4 30 2 206 6cos cos cos cos ,        

 

or            cos (cos cos cos ).6 1
32

6 6 4 15 2 10        

 

The other quick way to find this and similar identities is to look it up in the table that you 

will find in Section 3.8 of http://orca.phys.uvic.ca/~tatum/celmechs/celm3.pdf 

 

The definite integrals  
 1

0

2/22/

0
)1(andcossin dxxxd nmnm can be evaluated from 

a simple formula, which is not difficult to derive, namely: 

 

).,(
!)!(

!)!1(!)!1(
cossin2/

0 nmf
nm

nm
dnm






  

 

Here 13!! means, for example, 13 11 9 7 5 3 1      ,  and 1!! =  0!!  =  1.  The 

function f m n( , ) equals /2 if m and n are both even, and f m n( , )  1 otherwise.    

 

For example:  

 00383495.0
4096

5

224681214

35735
cossin2/

0
86 












 d   

 

_________________________________________________ 

 

 

7.     .
23

 DCxBxx

dx
 

 

The cubic expression can always be expressed in the form ( )( ),x x bx c   2  and 

sometimes even in the form ( )( )( ).x x x        It may be easy to do so.  For 

example: 
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( ) ( )( ).x x x x3 21 1 1       Or it may be less easy, for example 

x x x x x bx c3 2 22 5 11      ( )( ),   

where .658584961.8,483461227.3,483461227.1  cb  

 

In any case, you can split the integrand into partial fractions: 

 

  
1
2 2( )( )

,
x x bx c

P

x

Qx R

x bx c  







  
 

 

where (I think – but you'd better check it) 

 

  .
)(

and,
)(

1









bc

b
RPQ

bc
P  

 


 1

and
2 bxx

Rdx

x

Pdx
 will cause no difficulty, but what about ?

2
 cbxx

xdx
 

 

Try something like this:   

  .
2

2

12

2

1
2222 






































 cbxx

b

cbxx

bx

cbxx

x

cbxx

x
 

 

 

 

 

8. .
2

dxex axn 
  

 

     If n is odd, there is no difficulty.  Let y ax 2  and integrate by parts. 

 

    Thus  .)1( 24

2
15 22

Cxxedxex xx   

 

 If n is even, the integral cannot be expressed in terms of the simple elementary functions.  

If it has to be integrated between finite definite limits, it has to be evaluated numerically.  

However, the function (of t) dxe
t x




 0

22
 is called the error function erf t, and it is 

supported by many computer packages. For more on the error function see Section 4.0 of 

http://orca.phys.uvic.ca/~tatum/thermod.html 

 

The definite integral dxe x

 

0

2

 has the value  / .2   This can be derived as follows: 
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  .
0 0

)(
2

0

222

dydxedxe yxx
 
       Let y t x , so that the inner integral becomes 

,
0

)1( 22

dtxe tx

   in which, as far as this inner integral is concerned, x is constant.  

 

Thus   .
0 0

)1(
2

0

222

dtdxxedxe txx
 
       Reverse the order of integration (we can 

always do this with a well-behaved function – when calculating an area, it doesn't matter 

whether we take elemental strips parallel to the y-axis and integrate them with respect to 

x, or do it the other way round.) 

 

Thus   .
0 0

)1(
2

0

222

dxdtxedxe txx
 
       

 

 The inner integral now is 
 

0

)1( ,
22

dxxe xt  in which t is constant.  It is easily found (e.g. 

let s = x
2
) that  this integral comes to 1 1 2/ ( ), t  and therefore 

  .
)1(20 2

2

0

2


 




t

dt
dxe x   This integral is elementary (e.g. let t  tan ) and comes to 

/4. 

 

Therefore      .
2
1

0

2


  dxe x   

 

We can go further.  By substitution of ax  for x, we easily see that 

 

     .
2

1
0

2

a
dxe ax 


   

 

Now each side of this equation is a function of a, not of x.  If we now differentiate both 

sides again and again with respect to a, we obtain progressively 

 

,
4

1
30

2 2

a
dxex ax 


   

,
8

3
50

4 2

a
dxex ax 


   

and so on. 

 

We can also do this with the odd powers.   It is easy to obtain 

 

,
2

1
0

2

a
dxxe ax 

   

 

and by repeated differentiation with respect to a we obtain 
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,
2

1
20

3 2

a
dxex ax 

   

,
1
30

5 2

a
dxex ax 

   

and so on. 

 

Of course, 





0
2  if n is even, and zero if n is odd. 

 

_________________________________________________ 

 

 

 

9. .etc,
222 ))2/(()4/()(


  abxaabbxax eedxe  

 

_________________________________________________ 

 

 

10.   dxedxebx bxaxax


 
22

Re.cos  

 

         dxedxebx bxaxax


 
22

Im.sin  

 

_________________________________________________ 

 

 

 

   In case the newspapers don’t publish a daily integral in addition to their sudoku and 

crossword puzzle, here are a few for fun, chosen at random.  As mentioned earlier, I 

estimate that on average each is about as difficult as a killer sudoku puzzle, but not as 

difficult as a cryptic crossword from a British newspaper.  From time to time as the spirit 

moves me, I may add a few more.  Following the list, I give a few hints.  And after the 

hints, in case you are absolutely stuck, I give some worked solutions.  

 

 

 

1. 
xx

dx

 2
     2. 

xx

dx

 3
      3. 

12

2

 x

dxx
       4.  dx

x

x














1

1
    5.  

x

dx

cos1 
  

 

6.   
1

)2(
2 


 xx

dxx
      7.   

xxx

dxxx

23

)13(
23

2




      8.     

2
1

4
12 


xx

dx
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9.   

4
12 


x

dx
      10.   

1

)12(
3

2




 x

dxxx
    11.   

485 23

2

 xxx

dxx
 

 

12.   
1

)1(
23

2




 xxx

dxx
  13.  

1

)1( 3




 x

dxx
  14.  

37

)13(
2 


 xx

dxx
 

 

15.   xdx2tan  16.  xdxx 2tansin     17.  xdx3cos       18.  xdx3tan  

 

19.   
22 )4(  x

dx
         20.   

1 x

xdx
       21.   dxex x2)1(   

 

22.   dxx 42        23.   
x

dxx

 2

2

      24.  dx
x

x




 1

1
   25.  xdxx ln  

 

26.    xdxxe 2sin3
     27.   

222

2

)4)(9(  xx

dxx
    28.    xdxxsin2cos 2

3

  

 

29.    
13  x

dx
              30.    

x

dxx

 1

31

0
         31.    dx

x

x


3
    32.   

xe

dx




1
 

 

33.     dx
x

x

1

3

           34.   xdxe x 3sin22

      35.   


d
4/

0
)tan1ln(  

 

36.           
dx

x

x
2

1

)1ln(1

0 



       37.  



 cos1

d
          38.   dxxx  1    

39.   
xa

dx

cos1 
                    40.   

14  x

dx
           41.   dxxcos1   

  

42.   dxxcos1                 43.   dxxsin1        44.  dxxsin1   

 

45.   
x

dx

cos1                     46.   
x

dx

cos1           47.  
x

dx

sin1   

 

48.   
x

dx

sin1                     47.   
xx

dx

cos7sin2   
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HINTS 

 

Here are some hints for the integrals above.  I give worked solutions after the hints, but, 

when you have what you believe to be the answer, you can always differentiate your 

answer to see if you arrive at the original integrand. 

 

Don’t forget to add a constant to all of them. 

 

1.   
)1(

11
2 


 xxxx

   Split into partial fractions. 

 

2.  ).1)(1(3  xxxxx  

 

3.  
1

1

1

1

1 22

2

2

2









 xx

x

x

x
 

 

4.   
1

2

1

1

1

1













xx

x

x

x
 

 

5.  xxx
x

x

x

x

x
cotcsccsc

sin

cos1

cos1

cos1

cos1

1 2

22











 

 

    Or you could try something that I often use as a last resort when dealing with 

trigonometric functions, let xt
2
1tan .  It’s often useful. 

 

 6.  
1

2
2 



xx

x
     

The denominator is a quadratic expression.  You must look to see whether .42 acb   

In this case .42 acb   You must “complete the square” in the denominator by writing it 

as  
4
32

2
1)( x .  Then, a substitution 

2
1 xu  may help. 

 

7.   The denominator is )2)(1(  xxx . Split the integrand into partial fractions. 

 

8.  If you had 2

4
1 x you’d probably want to try  cos

2
1x .  But you have 

4
12 x , 

so try  cosh
2
1x  instead.   This may result in something awful such as 

.
1coshsinh

sinh



d
  But then remember that )(sinh

2
1   ee  and 

)(cosh
2
1   ee , and you’ll probably get something that you can handle. 
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9.   Try  tan
2
1x .   You may get an answer with tan and sec  in it, and you won’t 

know what to do with sec .  Pythagoras might help you out.     

 

 

 

 

10.   )1)(1(1 23  xxxx     Split the integrand into partial fractions. 

 

11.  The denominator is .)2)(1( 2 xx  Split the integrand into partial fractions. 

 

12.   ).1)(1(1 223  xxxxx  Split the integrand into partial fractions. 

 

13.   Let .1 xu  

 

14.   I had to work a little with this one.  The first thing I did was to try to make the 

numerator 13 x  look a bit like the derivative of the denominator  114 x . 

 

Thus    
14
11

14
3 )114(13  xx     

 

We now have two integrals: 

 

.
3737

)114(

37

)13(
21214

11
214

3
2

II
xx

dx

xx

dxx

xx

dxx













  

 

I1 is easy.  Write I2 as    

7
3

7
1298

11
2


 

xx

dx
I  

In the denominator, acb 42  , so we complete the square by writing the denominator as 

196
832

14
1 )( x , followed by a substitution such as let    .

14

83
14
1 x   I make the 

final answer 

 

37

)13(
2 


 xx

dxx
= )37ln( 2

14
3  xx  +  







 

83

114
tan 1

837

11 x
  +  C 

 

 

15.   1sectan 22  xx  

 

16.   Integrate by parts. 

 

17.    Write either )cos33(coscos
4
13 xxx   

1 

2x 



241 x  
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         or                 )sin1(coscos 23 xxx   

 

18.    tan
3 

x  =   tan x(sec
2
 x  1) 

 

19.   It’s nearly always a good idea, when you see 22 ax  , to let .tan ax    

 

20.  
1

1

1

1

1 







 xx

x

x

x
 

 

21.   xxxx exxeeex 22 2)1(  , and do the second two by integration by parts. 

 

22.    Not particularly easy.     Let   sec2x      

 

 

Then .sec4sec4tansec41 322  dddxx  

 

The integral of dnsec  is dealt with on page 6 of this file. 

 

The substitution  cosh2x  will also work, though I expect many will find that 

 sec2x  is easier. 

 

I make the answer     Cxxxx  4ln24 2

2
12

2
1  

 

23.  .2 xu   

 

24.   Let  sinx . After some manipulation of trigonometric identities, you should 

arrive at .)sin1(  d  

 

25.   Integrate by parts.  Either way will do. 

 

26.   There’s probably more than one way, but you might try .Im 23 dxee ixx  

         I make it Cexx x  3

13
1 )2cos22sin3( .  This looks unlikely, but try differentiating 

it and see what you get.  You never know - it might be right. 

 

27.   This looks like nothing more than hard work.   If my algebra is right, 

 

  

















 222222

2

)4(

20

4

9

9

9

25

1

)4)(9( xxxxx

x
 

 

Then a few deft substitutions, such as  tan3x   and   tan2x  should help. 

42 x  


x 

2 
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28.  Try any of xyxyxy 2cosor2cos,cos 2  .  Surely one of them will put it in 

a form that you can cope with. 

 

29.  ).1)(1(1 23  xxxx   Split the integrand into partial fractions. 

 

30.   This looks bad enough even as an indefinite integral. As a definite integral it looks 

even worse, because, at the upper limit, the integrand becomes infinite.  Try  2sinx  

 

31.  One suggestion: Try  2cos3x .  If you do this, what is tan ? 

 

32.   You could try the Brilliant Substitution xey  1 , or, alternatively, you could 

write the numerator as .1 xx ee   

 

33.     There’s probably a better way, but all I can immediately think of is the Brilliant 

Substitution  1 xy . 

    

 Indeed, after I wrote the above, Stuart McAlpine came up with another, very nice, 

solution.  He suggests dividing x
3
 by x 1 by long division.  Try it  it works!  

 

  

34.    

I think the first thing I’d do would be to write x3sin 2 as   x6cos
2
1

2
1  . 

 

Then   

Iexdxedxexdxe xxxx

2

1

4

1
2
1

2
1 22222 6cos3sin   , 

 

where   xdxxeI 6cos2

  

 

 

35.    I have not been able to find a simple analytical solution of the indefinite integral. As 

a definite integral, it can be integrated numerically (e.g. by Simpson’s rule), and it is 

found to be 0.272198261...   However, remarkably, an analytical solution for the definite 

integral can be found by making the extraordinarily simple substitution Let  
4

. 

 

36.   This is a definite integral.  You might suspect (you would be right!) that, like 

number 35, I have been unable to find a simple analytical solution of the indefinite 

integral, but, by means of a simple substitution, it is possible to find an analytical solution 

for the definite integral.  The expression 21 x  in the denominator suggest that the 

substitution Let  tanx  might help. 
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37.  Unlike most of the other examples here, this isn’t a “made-up” integral - I really 

came across it while I was doing some astronomical orbital calculations.  This is not 

surprising, since 



cos1

l
r is the equation, in polar coordinates, to a conic section of 

eccentricity .  (The usual symbol for eccentricity is e, but I use  here since we 

frequently use e for something else in these notes.)  For such a simple-looking integral, it 

is surprisingly awkward. Usually I make the Brilliant (i.e. routine) Substitution Let 


2
1tant  only as a last resort, but it does work here.  You will find, as you go, that there 

are three cases to consider:   < 1,   > 1, corresponding to elliptical, parabolic and 

hyperbolic orbits. 

 

38.   Let  xy  1     

 

39.    If  a  =   0,  +1  or  the integral is easy.  Indeed the case with a = +1 is example 5 

of this group.   For other values of a, try making the substitution xt
2
1tan .  This is 

often useful in trigonometry problems, but often only as a last resort when you can’t think 

of anything else.  With this substitution,   

22

2

22 1

2
,

1

1
cos,

1

2
sin,

1

2
tan

t

dt
dx

t

t
x

t

t
x

t

t
x













 . 

 If  a is between 1 and +1  the integral is slightly difficult.   If 1|| a  the function is not 

“well-behaved”  - it has some infinities.  You can get expressions for the indefinite 

integral, but you have to take care if you are doing a numerical integration between two 

limits that you are not going through one of the infinities. 

 

40.    
14  x

dx
.    

(Before starting it might be worth mentioning that, if you are given  
44 ax

dx

 , just 

substitute ayx  , and all will be well.) 

)12)(12(1 224  xxxxx .  Split the integrand into partial fractions. 

You’ll need to know how to do this.  That’s algebra, not calculus. 

 

41.  1)2/(cos2cos 2  xx          42.  )2/(sin21cos 2 xx   
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43, 44    Try either   x  =  /2 y    or     t = tan (x/2)   

In the second suggestion,  
21

2
sin

t

t
x


 . (See suggestion for number 39. 

45.  1)2/(cos2cos 2  xx  

46.  )2/(sin21cos 2 xx   

47, 48.     x  =  /2 y     

49.   Multiply and divide the denominator by √53 

 

 

SOLUTIONS 

 

1.   
 

 
x

xk
Cxx

x

dx

x

dx

xx

dx )1(
ln||ln|1|ln

12








  

 

 

2.   )1)(1(3  xxxxx  

x

xk

Cxxx
x

dx
dx

x
dx

x
dx

xxx

1
ln

ln|1|ln|1|ln
1

1

1

1

)1)(1(

1

2

2
1

2
1

2
1

2
1















 

3.   Cxxdx
x

dx
x

x

x

dxx















1

22

2

2

2

tan
1

1

1

1

1
 

 

 

4.   Cxxdx
x

dx
x

x
dx

x

x













 |1|ln2

1

2

1

1

1

1
 

 

   

5.    

Cxxdxxxx
x

dxx

x

dxx

x

dx











 csccot)cotcsc(csc

sin

)cos1(

cos1

)cos1(

cos1

2

22
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.)2/tan( Cx   

 

 

Alternatively, if you let xt
2
1tan , then 

21

2

t

dt
dx


 , and 

)1(

2
cos2cos1

22
12

t
xx


  and the integral becomes just .dt  

 

6.  
1

)2(
2 


 xx

dxx
 

 

The denominator is a quadratic expression.  We start by looking at acb 42  . If it is 0 , 

it will factorize into two real linear terms.  In this case, it is less than zero, so it won’t 

factorize.  We “complete the square” by writing it as 
4
32

2
1)( x .   And if we now let 

2
1 xu , the integral becomes (or, rather, the integrals become) 

Cxx

Cu
u

du

u

udu

x

u















3

121

3

52

2
1

3

21

3

2
2
5

4
32

2
1

4
322

5

4
32

tan)1ln(

tan.)ln(

    

 

 

7.    



































 2

)1(ln
2

1

1

21

2

1

)2)(1(

)13(

23

)13( 2

23

2

x

x
xkdx

xxxxxx

dxxx

xxx

dxxx

 

Cxxx  |2|ln|1|ln||ln
2
1

2
1  . 

 

If  2x , you’d be safe in writing this as  











2
)1(ln

x

x
xk , but if  2x  I wouldn’t 

risk it. 

 

8.  You need to be pretty familiar with hyperbolic functions for this one. 

 

 

2
1

4
12 

 
xx

dx
I     Let  cosh

2
1x .   Then: 
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  Cxxx

Cede
d

I


















142)2(cosh

)()1(
1coshsinh

sinh

21

2
1

2
1

2
1

 

 

 

9.   

4
12 

 
x

dx
I      Try    tan

2
1x .   Then  









  xxkkdI 2241ln)tan(seclnsec  

 

10.   
1

)12(
3

2




 x

dxxx
      It is always useful is these situations to see if the denominator 

factorizes; and, if it does, split the expressions into partial fractions.  In this case the 

denominator factorizes into )1)(1( 2  xxx  and the expression to be integrated the 

splits into 













 1

12

1

4
23

1

xx

x

x
. 

Thus:    

 

).1()1(ln[)]1()1(ln[

ln)1ln(|1|ln4
1

)12(

1
4

1

)12(

33

3
124

3
1

2

3
1

23
1

3

2

























xxkxxxk

kxxx
xx

dxx

x

dx

x

dxxx

 This last form is OK whether x is less than or greater than 1. 

 

11.   

C
x

xdx
xxxx

dxx

xxx

dxx






















  2

4
|1|ln

)2(

4

1

1

)2)(1(485 22

2

23

2

 

x
x

xk

Cxxxdx
xx

x

x

xx

dxx

xxx

dxx

1

2

2

12

2
1

22

2

2

23

2

tan
1

)1(
ln

tan)1ln(|1|ln2
1

1

11

2

)1)(1(

)1(

1

)1(






















































12.

 

 

13. 

 

1 

2x 



241 x  
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1

)1( 3




 x

dxx
   Let 1 xu .   

])1(ln[

constant||ln23)/233(
1

)1(
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2
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3
1

2

2
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3
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3









xkxxx
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x

dxx

 

 

14.  
37

)13(
2 


 xx

dxx
  The denominator does not factorize into real factors. I’m going to 

manipulate the numerator to try to make it look like the derivative of the denominator.   
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3
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14
3

3
14

14
3 )114()114()14(13  xxxx  .  So now we have 
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








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
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I1 is easy.  It is just )37ln( 2

14
3  xx + constant. 
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
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 
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Let 
14
1 xu .  Then  







 
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
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
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I plus 

a constant.   Hence 
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)13(
2 


 xx
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= )37ln( 2
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3  xx  +  







 

83

114
tan 1

837

11 x
  +  C.      

 

15.    Cxxdxxdxxdx   tansectan 22
 

 

16.     (a)       

CxxCxxxxdxxxx

xxdxxxdxxdxx








seccossec2tansintansec2tansin
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          (b) 
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


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
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17.     (a) 

 

Cxxdxxxxdx   sin3sin)cos33(coscos
4
3

12
1

4
13                           

 

          (b)      

 

Cxxdxxxdxxdx  
3

3
123 sinsinsincoscoscos                              

 

The two solutions, (a) and (b), are trigonometric identities.        

 

18.  Cxxxdxxdxxxdx   seclntantansectantan 2

2
123       

 

Wolfram gives  .coslnsec2

2
1 Cxx        Is that the same? 

 

19.  
22 )4(  x

dx
   It’s nearly always a good idea, when you see 22 ax  ,to let 

.tan ax   In this case, a = 2 and we obtain   

Cdd
d
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20.   Cxx
x

dx

x

dxx

x

xdx










  |1|ln
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21.    

Cxex

Cxexxexexxexxexe

dxxexdxxexdxxedxxex





 

)1(

2222

2)1(
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22

 

 

 

22.  dxx 42  .      Let .sec2 x  

Then    ddxx 22 tansec44  

 

.44sec4sec4 21
3 IIdd    
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







I

I

dd

dd
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constant)tanln(sec2 I  

 

Therefore     

   )2(4ln24

constant]tan[ln(sec2tansec24

2

2
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2
1

2




xCxxxx

dxx
 

 

 

     Alternatively: 

 

Let .sinh2,sinh24,cosh2 2  ddxxx  

 

Then 
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23.    
x

dxx

 2
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Let  xu  2  

 

Cxxx

Cuuu
u

duu

x

dxx







 

)3832(2
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2
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3
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24.   dx
x

x




 1

1
    Let    sinx , then 

 










 ddx

x

x
cos

sin1

sin1

1

1
 

Multiply top and bottom by   sin1 . 

CxxC

ddddx
x

x















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


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)sin1(cos
sin1

sin1
cos

sin1
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Incidentally I tried dx
x

x




 1

1
 and 




 dcos

sin1

sin1
on Wolfram recently, and in 

both cases it returned impossibly complicated answers!  I think they were actually 

correct, though it was very hard work to simplify them.  Such cases are mercifully rare 

these days, and usually the answer is returned in a convenient form. 

 

 

25.   xdxx ln  
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One way:  

CxxI

CxxCxxxI

xdxIxxdxxxxxxxxdxdxxI





 

)(ln

2)(ln2)1(ln2
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2
12

2
1

2
122

2
12

22

 

The other way: 

Cxxxxdxxxxdxxxxxdxdxx  
2

4
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2
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26. 

xdxxe 2sin3
   =   dxixexe 23Im  
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C
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e
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The imaginary part is 

 

Cxxe x  )2cos22sin3(3

13
1  

 

You could also try integrating by parts (either way) - but that’s not so interesting. 

 

 

27. 
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28.   xdxxsin2cos 2
3

  

 

Let’s try the first of my suggestions.  First,  

121cos22cossin,cos 22  yxxxdxdyxy     

dyyxdxx 2
3

22
3

)12(sin2cos    

 

Then maybe try letting   22 sec2y .  That is,   sec
2

1y .   This looks promising, 

so let’s go back to the beginning and make the truly Brilliant Substitution  

.tan1sec1cos22cos,tansecsin,seccos 222

2

1

2

1  xxdxdxx    

Then: 

.tansec
2

1
sin2cos 42

3

  dxdxx  

We already know, from pages 6 and 7, how to integrate nsec , so we’ll use 

1sectan 22    and hence write the integral as 

  dxdxx )secsec2(sec
2

1
sin2cos 352

3

 

 

On carrying out the procedures suggested on pages 6 and 7, I obtain 
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)tanln(secsec

C

C
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



 

 

Thus the integral becomes, after a little tidying up, 

 

Cxdxx  )]tanln(sec3)sec25(tan[secsin2cos 2
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3

. 

 

We have to get back to x, remembering that xcos2sec  , from which 

xx 2cos1cos2tan 2  .  Thus 
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The second suggestion was let   xy 2cos . 

 

This leads to .
)1(8

sin2cos
3

2
3

dy
y

y
xdxx


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The third suggestion was let  y
2
  =  cos 2x. 

 

This leads to  .
)1(2

sin2cos
2

4
2
3

dy
y

y
xdxx


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You could try either of these and see where they lead.  For numerical  integration 

(see  http://orca.phys.uvic.ca/~tatum/celmechs/celm1.pdf    )  these are far faster than the 

original expression. 
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30.         
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x

dxx

 1
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0
.   With the substitution  2sinx , this becomes 
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31. 
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The integral becomes    ddd )12(cos3sin6cossintan6 2  
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32.   If you try the substitution xey  1 , you arrive at  
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If you write the numerator as  xx ee 1 , you arrive at  

 

Cxexdx
xe
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
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.   And since xex ln , this simplifies to 
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33.    The substitution 1 yx  results in    

 

 
 

 

Then 1 xy  and a little algebra results in    Cxxxx  )1ln(2

2
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3
1  

 

Stuart McAlpine’s solution:   x
3
/(x 1)  =  x

2 
 +  x  + 1 + 1/(x 1), after which it is plain 

sailing. 

 

 

34.   I think the first thing I’d do would be to write x3sin 2 as   x6cos
2
1

2
1  . 

 

Then   

Iexdxedxexdxe xxxx
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where   xdxxeI 6cos2
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You could try integrating this by parts.  I haven’t tried it.  Instead I tried 
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35.    
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0
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Let .
4

  .  Then    dd , and the limits become 
4
  and 0. 
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Thus IdddI 
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
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Hence 
8

2ln
I .  Encouragingly, this is 0.272198261, which is what the numerical 

integration gave. 

 

36. 
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0 


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  The substitution  tanx gives, after a little algebra,  


d
4/

0
)tan1ln( , which is the 

same as number 35.  Therefore the answer is  
8

2ln
. 

Interestingly I tried both integrals (35 and 36) on Wolfram.  Like me, it couldn’t find a 

simple expression for the indefinite integral.  For the definite integral, in both cases it 

gave both the numerical solution and the analytical one.  Very impressive. 

 

 

37. 

 

   We can deal with the case  = 1 immediately, because it is the same as example 5, and 

there are several easy ways of dealing with it.  We shall give that case no further thought.   

 

   If we make the substitution 
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If  < 1, we write this as    
   

 
 
 so the answer is    
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If  >1, we write it as    
 

 
 

This can be written in terms of an inverse hyperbolic tangent if you are familiar with such 

things, but it is easier to split the integrand into partial fractions. Put  
  

 
 

 to make this easier, if you like.  The integral now becomes 
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38.   dxxx  1     Let  ydydxyxxy 2,1,1 2  . 

After that, it is straightforward, and you eventually arrive at the unlikely-looking 

 

).32()1( 2/3

15
2 xxCy   

 

 

39. 
xa

dx

cos1 
 .       For a  = 1, see example 5. 

For 1,0,1 a  the answers are, respectively  .tan,,cot
2
1

2
1 CxCxCx   

Otherwise, let xt
2
1tan , and for a between 1 and +the integral becomes 

2

1

12 1

2

)1(1
2

t

dt

ataa

dt

a

a







  . 

Now let 



tan

1

1

a

a
t  and the answer will come out very quickly as 
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Ct
a

a

a














1

11

2
tan

1

2
,  where xt 1tan . 

This is good for either positive or negative a, as long as .1|| a  

For ,1|| a  you’ll need to write the integral as 

2)1(1
2

taa

dt

 . 

You now have a choice, depending on which you dislike the least, hyperbolic functions 

or logarithms.  If you don’t mind hyperbolic functions, just proceed as we did in the case 

.1|| a  

Thus                          
2

1

12 1

2

)1(1
2

t

dt

ataa

dt

a

a







  

Now let 



tanh

1

1

a

a
t  and the answer will come out very quickly as 

Ct
a

a

a














1

11

2
tanh

1

2
,  where xt

2
1tan . 

If you don’t like tanh
1

  (and most of us don’t see things like that every day), try this: 

Let 2

1

1
b

a

a





 , so the integral becomes   

221

2

tb

dt

a    . 

Now  ))((22 tbtbtb  , so split the integral into partial fractions so that it 

becomes   C
bt

bt

a
dt

btbtab




























  ln
1

111

)1(

2

2
. 

where 
1

1

2
1 ,tan






a

a
bxt . 
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This looks like a nice, simple straightforward expression, and so it is.  However, for 

,1|| a  the expression 
xa cos1

1


 is not a “well-behaved” function, in that it has some 

infinities.  You will have to take care if you want the definite integral between two limits 

on either side of an infinity. 

 

It might be noted in passing that 



cos1

l
r  is the equation, in polar coordinates, of 

a conic section of eccentricity .  It is unlikely in that context that one would want to 

calculate  rd , but you never know.  In any case, if  > 1, the conic section is a 

hyperbola - so you see why there are some infinities in this case. 

    

40.   
)12(

2

)12(

2

)12)(12(

1

1

1
2

2
1

4
1

2

2
1

4
1

224













 xx

x

xx

x

xxxxx
 

and so the integral is 

121212
2

12
2

22
1

22
1

24
1

24
1











  xx

dx

xx

dx

xx

xdx

xx

xdx

 

The first integral can be written 

dx
xx

dx
xx

x
dx

xx

x

12

1

12

22
2

12

222
2

24
1

28
1

28
1












   

The second integral can be written 

dx
xx

dx
xx

x
dx

xx

x

12

1

12

22
2

12

222
2

24
1

28
1

28
1












  

So we now have   
 14x

dx
 

dx
xx

dx
xx

dx
xx

x
dx

xx

x

12

1

12

1

12

22
2

12

22
2

24
1

24
1

28
1

28
1















 
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Write the denominator of the third integral as  2

2

12

2

1
2
1

2
12 )()(2  xxx , 

and similarly for the fourth integral, so we now have 

dx
x

dx
x

dx
xx

x
dx

xx

x

2

2

12

2

14
1

2

2

12

2

14
1

28
1

28
1

)()(

1

)()(

1

12

22
2

12

22
2




















 

C

xxxxxx



  )21(tan2)21(tan2)12ln(2)12ln(2 1

4
11

4
12

8
12

8
1

 

C
xx

xx
xx 


















 

12

12
ln)21(tan)21(tan2

2

2
11

4
1         

 

41.  Cxdxxdxx   )2/sin(8)2/cos(2)2/(cos2 2  

42.  Cxdxxdxx   )2/cos(8)2/sin(2)2/(sin2 2  

43.  First suggestion:   x = 2    y, then  dxxsin1    =   dyycos1   

=  Cy  )2/sin(8    =   8 sin(/4 x/2) +  C 

       Second suggestion:   With a little persistence with the variable t you will find the 

trigonometric identity 

)2/sin()2/cos(sin1 xxx  , so the integral is merely 2[sin(x/2)    cos(x/2)]  +  C 

Are these two solutions the same? 
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44.  First suggestion:   x = 2    y, then  dxxsin1    =   dyycos1   

=  Cy  )2/cos(8    =   8 cos(/4 x/2) +  C 

       Second suggestion:   With a little persistence with the variable t you will find the 

trigonometric identity 

)2/sin()2/cos(sin1 xxx   so the integral is merely  2[sin(x/2) + cos(x/2)] + C 

Are these two solutions the same? 

45.   2
2

)2/sec(

cos1


  dx
x

x

dx
ln{k[sec(x/2) + tan(x

 

46.   2
2

)2/csc(

cos1


  dx
x

x

dx
ln{k[csc(x/2) cot(x



47.  x = 2    y, then  
y

dy

x

dx

cos1sin1 


   

 

   2  ln{k[sec(y/2) + tan(y



x = 2    y, then  
y

dy

x

dx

cos1sin1 


  

 

2  ln{k[csc(y/2)  cot(y



The denominator becomes )sin(53)sincoscos(sin53 axaxax  , 

 

where cos a = 2/ 53   and sin a = 7/ 53 ,   a = 74° 03'  , so the answer is 

 

(1/ 53 ) ln[csc(x+a) cot(x + a)] 

 

    
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Difficult Integrals 

dx
e

x
dxex

dxdx
dxxdxex

x

xx

1cos23sin41
cos

3
32

2

222 2





 



 

   All of these integrals look at first glance as though they are about the same order of 

difficulty as the others we have met earlier in this Chapter, and you could probably do 

them in half-an-hour or so.  Go ahead and try!   If you give up, read on. 

 

  These - and many others that we may come across - cannot be expressed in terms of 

simple familiar functions.  If they are to be integrated as definite integrals between 

definite lower and upper integrals, they will usually have to be integrated numerically, 

although it is possible that, in some cases, if they are to be integrated, say from 0 to 1,  or 

0 to  , or 0 to /2, they may have exact values.  I do not deal with numerical integration 

here; I merely draw attention to some integrals that cannot be expressed analytically.  For 

methods of numerical integration, see Chapter 1, Section 2, Celestial Mechanics    

orca.phys.uvic.ca/-tatum/celmechs.html 

 

    We dealt with dxex axn 2 earlier in this chapter, so we don’t repeat it here, other than 

to give the following brief table: 

 

    
a

dxe ax 


 

2

1
0

2

 

 

a
dxxe ax

2

1
0

2


    

2/30

2

4

2

a
dxex ax 


   

 

20

3

2

12

a
dxex ax 

                  
2/50

4

8

32

a
dxex ax 


   

 

.
1
30

5 2

a
dxex ax 

    
2/70

6

16

152

a
dxex ax 


   

 

 

 It is related to the error function erf(x).     dxx )cos( 2 and  dxx )sin( 2 can be 

dealt with by writing )cos( 2x   as   )Re(
2xe   and )sin( 2x   as   ).Im(

2xe   Things like 

dxex axn 2 , dxx )cos( 2 and dxx )sin( 2 are not closely related to erf(x), but 

can be integrated numerically between limits.  dxx )cos( 2 and dxx )sin( 2 are 

Fresnel integrals.  In physics they turn up in the theory of the Cornu spiral. 
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    Integrals involving  22 sin1 k  , or expressions that can be written like this, are 

called elliptic integrals.   In particular 

 

  2/322

22

22
sin1

,sin1,
sin1 









k

d
dk

k

d
 

 

are elliptic integrals of the first, second and third kinds respectively.   The definite 

integrals  

 

  2/322

22

22
sin1

)(,sin1)(,
sin1

)(
2/

0

2/

0

2/

0 












k

d
kdkkE

k

d
kK

  

are complete elliptic integrals of the first, second and third kinds respectively.   Here are 

brief tables and graphs of them: 

         k                       )(kK                   )(kE                            )(k  

 
   0.00         1.5708  1.5708  1.5708 

   0.05         1.5718  1.5698  1.5737 

   0.10         1.5747  1.5669  1.5827 

   0.15         1.5797  1.5619  1.5979 

   0.20         1.5869  1.5550  1.6198 

   0.25         1.5962  1.5460  1.6490 

   0.30         1.6080  1.5348  1.6866 

   0.35         1.6225  1.5215  1.7339 

   0.40         1.6400  1.5059  1.7928 

   0.45         1.6609  1.4880  1.8658 

   0.50         1.6858  1.4675  1.9566 

   0.55         1.7154  1.4442  2.0706 

   0.60         1.7508  1.4181  2.2158 

   0.65         1.7935  1.3887  2.4047 

   0.70         1.8457  1.3887  2.6582 

   0.75         1.9110  1.3185  3.0137 

   0.80         1.9953  1.2763  3.5454 

   0.85         2.1099  1.2281  4.4256 

   0.90         2.2805  1.1717  6.1668 

   0.95         2.5900  1.1027      11.3100 
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Integrals involving expressions such as     sec,sinsin,cos 22ba    can 

be written in terms of elliptic integrals.  Expressions such as these occur in physics in 

calculating the gravitational potential and field of a massive ring, or the oscillations of a 

pendulum through a large angle.  For ,cos ba write  2   and 

 2sin212cos . 

 

dxex x32    You’d think you could just integrate this by parts - but each time you do, 

it gets worse and worse instead of better and better.   Between definite limits, it can be 

integrated numerically.  If the limits are 1 and  , it is an example of a exponential 

integral function: 
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.)(
1

dxexaE axn
n 


  

 

 

 

            

 

 

 

 

 

 

 

 

 

 

 

   

 

 For further details on this function, see http://orca.phys.uvic.ca/~tatum/stellatm/atm3.pdf 

 

Other integrals.  Some people collect stamps.  Others collect difficult integrals.  Here are 

a few from my collection.  I may add more later if I think of it. 

 

                FIGURE III.1 

The exponential integral function 

http://orca.phys.uvic.ca/~tatum/stellatm/atm3.pdf
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0
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0



































x

x

x

x

x

ex

dx

dx
e

ex

dx
e

x

dxex

 

xba

dx

cos ,  
x

dx

tan1  ,  dxxsin  look as if they might be difficult.  It is late at 

night and I can’t immediately think of any obvious solutions without going into 

hypergeometric functions and the like, which not all of us are very familiar with.  If you 

can find a simple solution, give me a buzz at tatumjb352 at gmail dot com   Numerical 

integration between definite limits should be straightforward – though this site does not 

deal with numerical integration.  For numerical integration, see  

https://www.astro.uvic.ca/~tatum/celmechs/celm1.pdf 

 

 

 


