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CHAPTER 12 

PROPERTIES OF MAGNETIC MATERIALS 

 

12.1 Introduction 

 

This chapter is likely to be a short one, not least because it is a subject in which my own knowledge 

is, to put it charitably, a little limited.  A thorough understanding of why some materials are 

magnetic requires a full course in the physics of the solid state, a course that I could not possibly 

give.  Nevertheless, there are a few basic concepts and ideas concerned with magnetic materials 

which everyone who is interested in electromagnetism should know, and it is the aim of this 

chapter to describe them in a very introductory way. 

 

It may be worthwhile to remind ourselves of the ways in which we have defined the magnetic fields 

B and H.  To define B, we noted that an electric current situated in a magnetic field experiences a 

force at right angles to the current, the magnitude and direction of this force depending on the 

direction of the current.  We accordingly defined B as being equal to the maximum force per unit 

length experienced per unit current, the defining equation being F'  = I %%%%B. 

 

Later, we asked ourselves about the strength of the magnetic field in the vicinity of an electric 

current.  We introduced the Biot-Savart law, which says that the contribution to the magnetic field 

from an element ds of a circuit carrying a current I  is proportional to ( sin ) / ,I ds rθ 2  and we called 

the constant of proportionality µ π/ ( ),4  where µ is the permeability of the material surrounding the 

current.  We might equally well have approached it from another angle. For example, we might 

have noted that the magnetic field inside a solenoid is proportional to nI, and we could have 

denoted the constant of proportionality µ, the permeability of the material inside the solenoid. 

 

We then defined H as being an alternative measure of the magnetic field, given by H = B/µ. 

 

In an isotropic medium, the vectors B and H are parallel, and the permeability is a scalar quantity.  

In an anisotropic crystal, B and H are not necessarily parallel, and the permeability is a tensor.  

 

Some people see an analogy between the equation between the equation B = µH and the equation 

D E= ε  of electric fields.  With our approach, however, I think most readers will see that, to the 

extent that there may be an analogy, the analogy is between D = εE and H = B/µ. 

 

For example, consider a long solenoid, in the inside of which are two different magnetic materials 

in series, the first of permeability µ1 and the second of greater permeability µ2.  The H-field 

everywhere inside the solenoid is just nI, regardless of what is inside it.  Like D, the component of 

H perpendicular to the boundary between two media is continuous, whereas the perpendicular 

component of B is greater inside the material with the larger permeability.  Likewise, if you were to 

consider, for example, two different media lying side-by-side in parallel, between the poles, for 

example, of a horseshoe magnet, the component of B parallel to the boundary between the media is 

continuous, and the parallel component of H is less in the medium of greater permeability. 

 

In this chapter, we shall introduce a few new words, such as permeance and magnetization.  We 

shall describe in a rather simple and introductory way five types of magnetism exhibited by various 
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materials: diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism and 

ferrimagnetism.  And we shall discuss the phenomenon of hysteresis. 

 

 

12.2   Magnetic Circuits and Ohm's Law 

 

Some people find it helpful to see an analogy between a system of solenoids and various magnetic 

materials and a simple electrical circuit.  They see it as a "magnetic circuit".  I myself haven't found 

it to be particularly useful – but, as I mentioned, my experience in this field is less than extensive.  I 

think it may be useful for some readers, however, at least to be introduced to the concept. 

 

The magnetic field inside a long solenoid is given by B nI NI l= =µ µ / .  Here, n is the number of 

turns per unit length, N is the total number of turns, and l is the length of the solenoid.  If the cross-

sectional area of the solenoid is A, the B-flux is ΦB NIA l= µ / .  This can be written 

 

     NI
l

A
B= ×Φ

µ
.     12.2.1 

 

The analogy which some people find useful is between this and Ohm's law: 

 

     V I R= .      12.2.2 

 

The term NI, expressed in ampere-turns, is the magnetomotive force MMF. 

 

The symbol ΦB is the familiar B-flux, and is held to be analogous to current. 

 

The term l A/ ( )µ  is the reluctance, expressed in H
−1

.   Reluctances add in series. 

 

The reciprocal of the reluctance is the permeance, expressed in H.   Permeances add in parallel. 

 

Although the SI unit of permeance is the henry, permeance is not the same as the inductance.  It 

will be recalled, for example, that the inductance of a long solenoid of N turns is 
µAN

l

2

. 

 

Continuing with the analogy, we recall that resistivity = (A / l) % resistance; 

 

Similarly              reluctivity =  (A / l) % reluctance   =   1/µ.   (m H
−1

) 

 

Also, the reciprocal of resistance is conductance.    

 

Similarly the reciprocal of reluctance is permeance.  (H) 

 

And conductivity is (l / A) % conductance. 

 

Likewise (l / A) % permeance is – what else? – permeability µ.   (H m
−1

) 
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I have mentioned these names partly for completeness and partly because it's fun to write some 

unusual and unfamiliar words such as permeance and reluctivity.  I am probably not going to use 

these concepts further or give examples of their use.  This is mostly because I am not as familiar 

with them myself as perhaps I ought to be, and I am sure that there are contexts in which these 

concepts are indeed highly useful.  The next section introduces some more funny words, such as 

magnetization and susceptibility – but these are words that you will need to know and understand. 

 

 

12.3  Magnetization and Susceptibility 

 

The H-field inside a long solenoid is nI.  If there is a vacuum inside the solenoid, the B-field is 

µ µ0 0H nI= .  If we now place an iron rod of permeability µ inside the solenoid, this doesn't change 

H, which remains nI .   The B-field, however, is now B H= µ .  This is greater than µ0H, and we 

can write 

 

B H M= +µ0 ( ) .     12.3.1 

 

The quantity M is called the magnetization of the material.  In SI units it is expressed in A m
−1

.  We 

see that there are two components to B.  There is the µ µ0 0H nI= , which is the externally imposed 

field, and the component µ0M, originating as a result of something that has happened within the 

material. 

 
It might have occurred to you that you would have preferred to define the magnetization from B = µ0H + M, so that 

the magnetization would be the excess of B over µ0H.  The equation B = µ0H + M, would be analogous to the familiar 

D E P= +ε0 , and the magnetization would then be expressed in tesla rather than in A m
−1

 .  This viewpoint does 

indeed have much to commend it, but so does B H M= +µ0 ( ) .   The latter is the recommended definition in the 

SI approach, and that is what we shall use here. 

 

The ratio of the magnetization M ("the result") to H ("the cause"), which is obviously a measure of 

how susceptible the material is to becoming magnetized, is called the magnetic susceptibility χm of 

the material: 

 

      M H= χm .     12.3.2 

 

On combining this with equation 12.3.1 and B =  µH, we readily see that the magnetic 

susceptibility (which is dimensionless) is related to the relative permeability µ µ µr = / 0  by 

 

      µ χr = +1 m .    12.3.3 
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12.4 Diamagnetism 

 

We mentioned in Section 12.1 that there are five types of magnetism exhibited by various 

materials.  In this section we deal with the first of these, namely, diamagnetism. 

 

Diamagnetic materials have a very weak negative susceptibility, typically of order  −10
−6

.  That is 

to say, the relative permeability is slightly less than 1.  Consequently, when a diamagnetic material 

is placed in a magnetic field, B H< µ0 . 

 

If you are now hearing about this phenomenon for the first time, you may be a little surprised, and 

you will be expecting me to present a very short list of quite exotic materials known to be 

diamagnetic.  So, here comes a further surprise:  All materials are diamagnetic.  Some materials 

may also be paramagnetic or ferromagnetic, and their positive paramagnetic or ferromagnetic 

susceptibilities may be larger than their negative diamagnetic susceptibility, so that their overall 

susceptibility is positive.  But all materials are diamagnetic, even if their diamagnetism is hidden by 

their greater para- or ferromagnetism. 

 

A proper account of the mechanism at the atomic level of the cause of diamagnetism requires a 

quantum mechanical treatment, but we can understand the phenomenon qualitatively classically.  

We just have to think of an atom as being a nucleus surrounded by electrons moving in orbits 

around the nucleus.  When an atom (or a large collection of atoms in a macroscopic sample of 

matter) is placed in a magnetic field, a current is induced within the atom by electromagnetic 

induction.  That is, the electrons are caused to orbit around the nucleus, and hence to give the atom 

a magnetic moment, in such a direction as to oppose the increase in the magnetic field that causes 

it.   The result of this happening to all of the atoms in a macroscopic sample is that B will now be 

less than µ0H, and the susceptibility will be negative.  But, you may argue, these induced currents 

and their associated opposing magnetic moments will last only so long as the external field is 

changing.  In fact it persists as long as the magnetizing field persists.  The reason is as follows.  In 

Chapter 10, we were dealing with wires and coils and resistors, and any current induced by a 

changing magnetic field was rapidly dissipated.  For an electron in an orbit around a nucleus, 

however, there is no resistance, so, once it is set in motion, it will stay in motion.  The same 

situation would arise if we were to induce a current in a loop of wire made of superconducting 

material whose resistance is zero.  The current, once induced, continues, and is not dissipated away 

as heat. 

 

 

12.5   Paramagnetism       

 

Diamagnetism makes itself evident in atoms and molecules that have no permanent magnetic 

moment.  Some atoms or molecules, however, do have a permanent magnetic moment, and such 

materials are paramagnetic.  They must still be diamagnetic, but often the paramagnetism will 

outweigh the diamagnetism.  The magnetic moment of an atom of a molecule is typically of order 

of a Bohr magneton.  (See Chapter VII, Sections 21-23, of Stellar Atmospheres for more details 

about the Bohr magneton and the magnetic moments of atoms.  All that we need note here is that a 

Bohr magneton is about 9.3 % 10
−24

 N m T
−1

.)  The presence of a permanent magnetic moment is 

often the result of unpaired electron spins. An example often quoted is the oxygen molecule O2.  
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Liquid oxygen indeed is paramagnetic. When a paramagnetic material is placed in a magnetic field, 

the magnetic moments experience a torque and they tend to orient themselves in the direction of the 

magnetic field, thus augmenting, rather than diminishing, B.  Unsurprisingly the effect is greatest at 

low temperatures, where the random motion of atoms and molecules is low.  At liquid helium 

temperatures (of order 1 K), susceptibilities can be of order +10
−3

 or +10
−2

, thus greatly exceeding 

the small negative susceptibility.  At room temperature, paramagnetic susceptibilities are much less 

– typically about +10
−5

, barely exceeding the diamagnetic susceptibility. 

 

 

12.6   Ferromagnetism 

 

What we normally think of as magnetic materials are technically ferromagnetic.  The 

susceptibilities of ferromagnetic materials are typically of order +10
3
 or 10

4
 or even greater.  

However, the ferromagnetic susceptibility of a material is quite temperature sensitive, and, above a 

temperature known as the Curie temperature, the material ceases to become ferromagnetic, and it 

becomes merely paramagnetic. 

 

Among the elements, only cobalt, iron and nickel are strongly ferromagnetic, their Curie 

temperatures being about 1400, 1040 and 630 K respectively.  Gadolinium is ferromagnetic at low 

temperatures; its Curie temperature is about 289 K = 16 
o
C.   Dysprosium is ferromagnetic below 

its Curie temperature of about 105 K.  There are many artificial alloys and ceramic materials which 

are ferromagnetic. 

 

As with paramagnetic materials, the atoms have permanent magnetic moments, but with the 

difference that these moments are not randomly oriented but are strongly aligned to the 

crystallographic axes.  Within a single crystal, there exist domains, within which all the magnetic 

moments are parallel and are aligned with a particular axis.  In an adjacent domain, again all the 

moments are parallel to each other, but they may be aligned with a different axis, perhaps at right 

angles to the first domain, or perhaps aligned with the same axis but pointing in the opposite 

direction.  Thus we have a number of domains, each highly magnetized, but with some domains 

magnetized in one direction and some in another.  The domains are separated by domain 

boundaries, or “Bloch walls”, perhaps a few hundred atoms thick, within which the orientation of 

the magnetic moments gradually changes from one domain to the next.   Figure XII.1 is a 

schematic sketch of a crystal divided into four domains, with the magnetization in a different 

direction in each. 

   

 

 

 

 

 

 

 

 

 

 

FIGURE XII.1 
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In figure XIII.2 I am exposing the crystal to a progressively stronger and stronger magnetic field, 

and we watch what happens to the domains, and, in figure XIII.3, to the magnetization of the 

crystal as a whole. 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  
 

 

When we first apply a weak field (a), the Bloch walls (domain boundaries) move so that the 

favorably-oriented domains grow at the expense of the opposing domains, and the magnetization 
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slowly increases.  With stronger fields (b), suddenly all the magnetic moments (due to unpaired 

spins) within a single domain change direction almost in unison, so that an opposing domain 

suddenly becomes a favorable domain;  this happens to one domain after another, until all domains 

are oriented favorably, and the magnetization of the specimen rapidly increases.  For yet stronger 

fields (c), the magnetic moments, usually oriented parallel to a crystal axis, bend so that they are in 

the direction of the magnetizing field.  When all of that is achieved, no further magnetization is 

possible, and the specimen is saturated. 

 

Now, if the field is reduced, the magnetic moments relax and take up their normal positions parallel 

to a crystallographic axis.  But, as the field is further reduced (d), there is no reason for the domains 

to reverse their polarity as happened at stage (b).  That is, when stage (b) originally happened, this 

was an irreversible process.  The demagnetization curve does not follow the magnetization curve in 

reverse.  Consequently, when the magnetizing field has been reduced to zero, the specimen retains 

a remanent magnetization (indicated by RM in figure XIII.3), with all domains still favorably 

oriented.  In order to reduce the magnetization to zero, you have to apply a field in the reverse 

direction.  The reverse field needed to reduce the magnetization to zero is called the coercive force 

(indicated by CF in figure XIII.3). 

 

As you repeatedly magnetize the specimen first on one direction and then the other, the graph of 

magnetization versus magnetizing field describes the hysteresis loop indicated in figure XII.3.  

Because of the irreversible process (b), magnetic energy is dissipated as heat during a complete 

cycle, the about of energy loss being proportional to the area of the hysteresis loop.  The amount of 

the hysteresis depends on how freely the domain walls can move, which in turn depends on the 

physical and chemical constitution of the magnetic materials, particularly on the number of 

impurities present that can inhibit Bloch wall movement.  For a permanent magnet, you need a 

material with a fat hysteresis loop, with a large remanent magnetization as well as a large coercive 

force, so that it cannot be demagnetized easily.  For a transformer core, you need a material with a 

narrow hysteresis loop. 

 

If you put a magnetic material inside a solenoid with alternating current inside the solenoid, the 

magnetization will repeatedly go around the hysteresis loop.  If you now gradually decrease the 

amplitude of the current in the solenoid, the hysteresis loop will gradually become smaller and 

smaller, vanishing to a point (H and M both zero) when the current is reduced to zero.  This 

provides a method of demagnetizing a specimen. 

 
It is distressing how often one reads of the “remnant” magnetization.  I have even encountered over-enthusiastic copy-

editors who will change an author’s correct spelling “remanent” to the incorrect “remnant”.  The difference is that 

“remnant” is a noun (as in a remnant of cloth) and “remanent”, which is pronounced with three distinct syllables, is an 

adjective, meaning “remaining”.    

 

 

12.7   Antiferromagnetism 

 

I include this largely for completeness, but I am obliged to be brief, because it is a subject I know 

little about.  It is my understanding that it involves materials in which the atoms or ions or 

molecules have a permanent dipole moment (resulting from unpaired electron spins), as in 

paramagnetic and ferromagnetic materials, and the crystals have domain structure, as in 
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ferromagnetic materials, but alternating ions within a domain have their magnetic moments 

oriented in opposite directions, so the domain as a whole has zero magnetization, or zero 

susceptibility.  An example of an antiferromagnetic material is manganese oxide MnO, in which the 

Mn
++

 ion has a magnetic moment.  Such materials are generally antiferromagnetic at low 

temperatures.  As the temperature is increased, the domain structure breaks down and the material 

becomes paramagnetic – as also happens, of course, with ferromagnetic materials.  But whereas the 

susceptibility of a ferromagnetic material decreases dramatically with rising temperature, until it 

become merely paramagnetic, the susceptibility of an antiferromagnetic material starts at zero, and 

its transformation to a paramagnetic material results in an increase (albeit a small increase) in its 

susceptibility.  As the temperature is raised still further, the paramagnetic susceptibility drops (as is 

usual for paramagnetics), so there is presumably some temperature at which the susceptibility is a 

maximum. 

 

 

12.8    Ferrimagnetism 

 

This section will be shorter still, because I know even less about it!  It is my understanding that, 

like ferromagnetics and antiferromagnetics, there is a domain structure, and, like 

antiferromagnetics, alternate magnetic moments are pointing in opposite directions.  But this does 

not result is complete cancellation of the magnetization of a domain.  This often results if the 

alternating atoms or ions within a domain are different species, with unequal magnetic moments. 


