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CHAPTER 16 

THE RESTRICTED THREE-BODY PROBLEM 

 

[An earlier version of these notes included material on the theory of the equivalent 

potential.  Much of the material was not immediately relevant to our subject of celestial 

mechanics, and it has now been moved, and expanded, to my notes on Classical 

Mechanics (http://orca.phys.uvic.ca/~tatum/classmechs.html), as Chapter 21.] 

 

 

16.1   The Collinear Lagrangian Points 

 

 

  

 

 

 

 

 

We are going to consider the following problem.  Two masses, M1 and M2 are revolving 

around their mutual centre of mass C in circular orbits, at a constant distance a apart.  

The orbital period is given by 
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and the angular orbital speed is given by 
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I establish the following notation. 
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We note the following distances: 
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We ask ourselves the following question:  Are there any points on the line passing 

through the two masses where a third body of negligible mass could orbit around C with 

the same period as the other two masses; i.e. it would remain on the line joining the two 

main masses? 

 

In fact there are three such points, and they are known as the collinear lagrangian points.  

(The collinear points were discussed by Euler before Lagrange, but Lagrange took the 

problem further and discovered an additional two points not collinear with the masses, 

and the five points today are generally all known as the lagrangian points.  We shall 

discuss the additional points in section 16.2.)  I have marked the three points in figure 

XVI.4 with the letters L1, L2 and L3.  There are evidently 3! = 6 ways in which I could 

choose the subscripts.  Often today, the inner lagrangian point is labelled L1 and the outer 

points are labelled L2 and L3.  This seems to me to lack logic, and I choose to label the 

inner point L3, and the outer points associated with M1 and M2 are then L1 and L2 

respectively.    Incidentally, I am not making any assumption about which of the two 

main bodies is the more massive. 

 

Let us deal first with L1.  Let us suppose that the distance from C to L1 is xa. 

 

A particle of mass m at L1 is subject (in a co-rotating reference frame) to three forces, 

namely the gravitational attractions from the two main bodies, and the centrifugal force 

acting away from C.  If this body is to be in equilibrium, we must have 
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On making use of equations 16.1.2 and 16.1.4, we find that this equation becomes 
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After manipulation, this becomes 

 

   ,054

4

3

3

2

210 =+++++ xxaxaxaxaa    16.1.10 

 



 3 

where   ,331 2

0 µ−µ+−=a       16.1.11 

 

   ,242 432

1 µ+µ−µ+µ−=a     16.1.12 

 

   ,4621 32

2 µ+µ−µ+−=a      16.1.13 
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3 661 µ+µ−=a       16.1.14 

 

and   .424 µ+−=a       16.1.15 

 

Although equation 16.1.10 is a quintic equation, it has just one real root for positive µ.  It 

is also worth noting, that, although I re-wrote equation 16.1.9 in the quintic form of 

equation 16.1.10, my experience is that it is easier to solve the original form, 16.1.9, by 

the Newton-Raphson process, than to set up and solve the quintic version of the equation. 

 

The positions of L2 and L3 can be found by exactly similar arguments – you just have to 

take care with the directions and distances of the two gravitational forces. 

 

For L2, the coefficients are the same as for L1, except  
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and   .424 µ−=a        16.1.18 

 

For L3, the coefficients are 
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0 µ−µ+µ−=a      16.1.19 

 

   ,2542 432
1 µ+µ−µ+µ−=a     16.1.20 

 

   ,4641 32

2 µ−µ+µ−=a      16.1.21 
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3 661 µ+µ−=a       16.1.22 

 

and   .424 µ−=a        16.1.23 

 

(Reminder: When computing any of these polynomials, write them in terms of nested 

parentheses.  See Chapter 1, Section 1.5.) 

 



 4 

It is also of interest to see the equivalent potential (gravitational plus centrifugal).  The 

expression for gravitational potential energy is, as usual, −GMm/r, where r is the distance 

from the mass M.  The expression for the centrifugal potential energy is ,22

2
1 rmω−  

where r is the distance from the centre of mass.  The negative of the derivative of this 

expression is m ,2rω  which is the usual expression for the centrifugal force.  When we 

apply these principles to the system of two masses under consideration, we obtain the 

following expression for the equivalent potential (which, in this section, I’ll just call V 

rather than V'). 
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On making use of equations 16.1.2 and 16.1.4, we find that this equation becomes 
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Setting the derivatives of this expression to zero gives, of course, the positions of the 

lagrangian points, for these are equilibrium points where the derivative of the potential is 

zero.  Figure XVI.5 shows the potential for a mass ratio q = 5.  Note that, in the line 

joining the two masses, the equivalent potential at the lagrangian points is a maximum, 

and therefore these points, while equilibrium points, are unstable.  We shall see in section 

16.6 that the points are actually saddle points.  While several spacecraft are in orbit or are 

planned to be in orbit around the collinear lagrangian points (e.g. SOHO at the interior 

lagrangian point, and MAP at L2), continued small expenditure of fuel is presumably 

needed to keep them there. 

 

It will be of interest to see how the positions of the lagrangian points vary with mass 

fraction.  Indeed mass can be transferred from one member of a binary star system to the 

other during the evolution of a binary star system.  We shall discuss a little later how this 

can happen.  For the time being, without worrying about the exact mechanism, we’ll just 

vary the mass fraction and see how the positions of the lagrangian points vary as we do 

so.  However, if mass is transferred from one member of a binary star system to the other, 
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and if there are no external torques on the system, the angular momentum L of the system 

will be conserved, and, to ensure this, the separation a of the two stars changes with mass 

fraction.   

 

Exercise.  Show that, for a given orbital angular momentum L of the system, the 

separation a of the components varies with mass fraction according to 
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Here M  =  M1  +  M2 is the total mass of the system.  In figure XVI.6 I have used this 

equation, plus equations 16.1.10 and 16.1.7, to compute the distances of M2, C, and the 

three lagrangian points from M1 as a function of mass fraction.  The unit of distance in 

figure XVI.6 is ),/(16 32 GML which is the separation of the two masses when the two 

masses are equal.  Each of these distances has a minimum value for a particular mass 

fraction.  These minimum distances, and the mass fractions for which they occur, are as 

follows: 
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              Least value     Mass fraction 

 

      M1C  0.421875
*
 666666.0 &  

      M1L2     1.690392 0.524579 

       M1M2 1.000000 0.500000 

      M1L3 0.489038 0.446273 

                 M1L1       0.677756 0.436062 

 
     *

0.421875 = 27/64 exactly 
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How can mass transfer actually occur in a binary star system?  Well, stars are not points – 

they are large spherical bodies.  When the hydrogen is exhausted in the core by 

thermonuclear reactions, a star expands hugely (“leaves the main sequence”) and when it 

expands so much that the outer layers of its atmosphere reach the inner lagrangian point, 

matter from the large star spills over into the other star.  The more massive of the two 

stars in a binary system generally evolves faster; it is the first to leave the main sequence 

and to expand so that its atmosphere reaches the inner lagrangian points.  One can 

imagine the more massive star gradually filling up its potential well of figure XVI.5, until 

it overflows and drips over the potential hill of the inner point, and then falls into the 

potential well of its companion. 
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   One way of interpreting figure XVI.6 is to imagine that M1 starts with a large mass 

fraction close to 1, and therefore near the top of  figure XVI.6.  Now imagine that this 

star loses mass to its companion, so that the mass fraction decreases.  We start moving 

down the M1 line of figure XVI.6.  We see the inner point L3 coming closer and closer.  If 

the surface of the star meets L3 while L3 is still approaching (i.e. if the mass fraction is 

still greater than 0.446273), then further mass transfer will make L3 approach ever faster, 

and mass transfer will therefore be rapid.  When the mass fraction is less than 0.5, the star 

that was originally the more massive star is by now less massive than its companion.  

When the mass fraction has been reduced below 0.446273, further mass transfer will 

push L3 away, and therefore further mass transfer will be slow. 

 

    In these calculations I assumed that the stars can be treated gravitationally as if they 

are point sources – and so they can be, however large they are, as long as they are 

spherically symmetric.  By the onset of mass transfer, the mass-losing star is quite 

distorted and is far from spherical.  However, this distortion affects mostly the outer 

atmosphere of the star, and, provided that the greater bulk of the star is contained within a 

roughly spherically-symmetric volume, the point source approximation should continue 

to be good.  The other assumption I made was that orbital angular momentum is 

conserved.  There are two reasons why this might not be so – but for both of them there is 

likely to be very little loss of orbital angular momentum.  One possibility is that mass 

might be lost from the system – through one or other or both of the external collinear 

lagrangian points.  But figure XVI.5 shows that the potentials of these points are 

appreciably higher than the internal point; therefore mass transfer takes place well before 

mass loss.  Another reason why orbital angular momentum might be conserved is as 

follows.  When matter from the mass-losing star is transferred through the inner point to 

the mass-gaining star, or flows over the inner potential hill, it does not move in a straight 

line directly towards the second star.  This entire analysis has been referred to a co-

rotating reference frame, and when matter moves from M1 towards M2, it is subject to a 

Coriolis force (see section 4.9 of Classical Mechanics), which sends it around M2 in an 

accretion disc.  During this process the total angular momentum of the system is 

conserved (provided no mass is lost from the system) but this must now be shared 

between the orbital angular momentum of the two stars and the angular momentum of the 

accretion disc.  However, as long as the latter is a relatively small contribution to the total 

angular momentum, conservation of orbital angular momentum remains a realistic 

approximation. 

 

     

 

16.2    The Equilateral Lagrangian Points 

  

There is no general analytical solution in terms of simple algebraic functions for the 

problem of three gravitating bodies of comparable masses.  Except in a few very specific 

cases the problem has to be solved numerically.  However in the restricted three-body 

problem, we imagine that there are two bodies of comparable masses revolving around 

their common centre of mass C, and a third body of negligible mass moves in the field of 
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the other two.  We considered this problem partially in section 16.1, except that we 

restricted our interest yet further in confining our attention to the line joining to two 

principal masses.  In this section we shall widen our attention.  One question that we 

asked in section 16.1 was: Are there any points where a third body of negligible mass 

could orbit around C with the same period as the other two masses?  We found three such 

points, the collinear lagrangian points, on the line joining the two principal masses.  In 

this section we shall discover two additional points, the fourth and fifth lagrangian points.  

They are not collinear with M1 and M2, but are such that the three masses are at the 

corners of an equilateral triangle.    

 

We shall work in a co-rotating reference frame in which there are two deep hyperbolic 

potential wells of the form 2211 /and/ rGMrGM −−  from the gravitational field of the 

two principal masses sunk into the nose-up paraboloidal potential of the form 22

2
1 ωρ− , 

whose negative derivative is the centrifugal force per unit mass.  Here ρ is the usual 

cylindrical coordinate, and ./)( 3

21

2 aMMG +=ω  

 

                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                    

                                                                                                           

 

 

 

 

In figure XVI.7 we see a coordinate system which is rotating about the z-axis, in such a 

manner that the two principal masses remain on the x-axis, and the origin of coordinates 

is the centre of mass C.  The mass ratio M1/M2 = q, so the coordinates of the two masses 

are as shown in the figure.  The constant distance between the two masses is a.  P is a 

point whose coordinates are (xa, ya , za), x, y and z being dimensionless.  The 

gravitational-plus-centrifugal effective potential V at P is 
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I shall write this for short: 

 

   ).( 22

2
1 yxBAqW +−−−=       16.2.3 

 

Here A and B are functions with obvious meaning from comparison with equation 16.2.2. 

 

We are going to need the first and second derivatives, so I list them here, in which, for 

example, Wxy is short for ./2 yxW ∂∂∂  

 

 ( ) ( ) ,])1()1(1)[1( 33
xBqxqAqxqqWx −+−+++−+−=     16.2.4 

 

 ,][)1( 332
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 ,][)1( 332 BqAzqWz ++=          16.2.6 

 

 ( ) ( ) ,1])1(3)1(13[)1( 3523522 −−+−+−+++−= BBqxqqAAqxqqWxx 16.2.7  

 

 ,1])1(3)1(3[)1( 352235222 −−++−++−= BByqqAAyqqqWyy   16.2.8 

 

 ,])1(3)1(3[)1( 352235222 BBzqqAAzqqqWzz −++−++−=     16.2.9 

 

 ,)()1(3 554
BqAyzqWW zyyz ++−==      16.2.10 

 

 ( ) ( ) ,])1()1(1[)1(3 553
BqxqAqxqzqWW xzzx +−−+++−==   16.2.11 
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 ( ) ( ) .])1()1(1[)1(3 553
BqxqAqxqyqWW yxxy +−−+++−==              16.2.12 

 

It is a little difficult to draw W(x, y, z), but we can look at the plane z = 0 and there look at 

W(x, y).  Figure XVI.8 is a contour plot of the surface, for q = 5, plotted by Mathematica 

by Mr Max Fairbairn of Sydney, Australia. We have already seen, in figure XVI.5, a 

section along the x-axis. 

 

 

 

 
 

 

 Figure XVI.9a shows a three-dimensional drawing of the equivalent potential surface in 

the plane, also plotted by Mathematica by Mr Fairbairn.  Figure XVI.9b is a model of the 

surface, seen from more or less above. This was constructed of wood by Mr David Smith 

of the University of Victoria, Canada, and photographed by Mr David Balam, also of the 

University of Victoria.  The mass ratio is q = 5.   

 

FIGURE XVI.8 
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We can imagine the path taken by a small particle in the field of the two principal masses 

by imagining a small ball rolling or sliding on the equivalent potential surface.  It might 

roll into one of the two deep hyperbolic potential wells representing the gravitational 

attraction of the two masses.  Or it might roll down the sides of the big paraboloid – i.e. it 

might be flung outwards by the effect of centrifugal force.  We must remember, however, 

that the surface represents the equivalent potential referred to a co-rotating frame, and 

that, whenever the particle moves relative to this frame, it experiences a Coriolis force at 

right angles to its velocity. 

 

FIGURE XVI.9a 

FIGURE XVI.9b 



 12 

The three collinear lagrangian points are actually saddle points.  Along the x-axis (figure 

XVI.5, they are maxima, but when the potential is plotted parallel to the y-axis, they are 

minima.  However, in this section, we shall be particularly interested in the equilateral 

points, whose coordinates (verify this) are .
2

3
,
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2

1
LL ±=
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= y

q
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x    You may 

verify from equations 16.2.4 and 5, (though you may need some patience to do so) that 

the first derivatives are zero there.  Even more patience and determination would be 

needed to determine from the second derivatives that the equivalent potential is a 

maximum there – though you may prefer to look at figures XVI.8 and 9 rather than wade 

through that algebra.  I have done the algebra and I can tell you that the first derivatives 

at the equilateral points are indeed zero and the second derivatives are as follows. 

 

.
1

1

4

33
,0,1,,

4
9

4
3










+

−
−===+=−=−=

q

q
WWWWWW xyzxyzzzyyxx

 

 

Because 1+=zzW , the potential at the equilateral points goes through a minimum as we 

cross the plane;  in the plane, however, W is a maximum, and it has the value there of 
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In the matter of notation, the equilateral points are often called the fourth and fifth 

lagrangian points, denoted by L4 and L5.  The question arises, then, which is L4 and 

which is L5?  Most authors label the equilateral point that leads the less massive of the 

two principal masses by 60
o
 L4 and the one that trails by 60

o
 L5.  This would be 

unambiguous if we were to restrict our interest, for example, to Trojan asteroids of 

planets in orbit around the Sun, or Calypso which leads Tethys in orbit around Saturn and 

Telesto which follows Tethys.  There would be ambiguity, however, if the two principal 

bodies had equal masses, or if the two principal bodies were the members of a close 

binary pair of stars in which mass transfer led to the more massive star becoming the less 

massive one.  In such special cases, we would have to be careful to make our meaning 

clear.  For the present, however, I shall assume that the two principal bodies have unequal 

masses, and the equilateral point that precedes the less massive body is L4. 

 

In figure XVI.10 we are looking in the xy-plane.  I have marked a point P, with 

coordinates (x, y, z); these are expressed in units of a, the constant separation of the two 

principal masses.  The origin of coordinates is the centre of mass C, and the coordinates 

(in units of a) of the two masses are shown.  The angular momentum vector ωωωω is directed 

along the direction of increasing z. 

 

Now imagine a particle of mass m at P.  It will be subject to a force given by the negative 

of the gradient of the potential energy, which is m times the potential.  Thus in the x-



 13 

direction,  .
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−=&&   In addition to this force, however, whenever it is in motion 

relative to the co-rotating frame it is subject to a Coriolis force .2 ωωωω×vm   Thus the x-

component of the equation of motion is .2 yam
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ma we find for the equation of motion in the x-direction 
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Similarly in the other two directions, we have 
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and    .
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These, then, are the differential equations that will track the motion of a particle moving 

in the vicinity of the two principal orbiting masses.  For large excursions, they are best 

solved numerically.  However, solutions close to the equilateral points lend themselves to 

a simple analytical solution, which we shall attempt here.  Let us start, then, by referring 

positions to coordinates with origin at an equatorial lagrangian point.  The coordinates of 

the point P with respect to the lagrangian point are (ξ, η, ζ ), where 

.,, zyyxx LL =ζ−=η−=ξ   Note also that ,xx &&&&&& =ξ=ξ  etc.  We are going to 

need the derivatives of the potential near to the lagrangian points, and, by Taylor’s 

theorem (or just common sense!) these are given by 
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  ,)()()()( LLLL zyyyxyyy VVVVV ζ+η+ξ+=    16.2.17 

 

  .)()()()( LLLL zzyzxzzz VVVVV ζ+η+ξ+=    16.2.18 

 

We have already worked out the derivatives at the lagrangian points (the first derivatives 

are zero), so now we can put these expressions into equations 16.2.13,14 and 15, to 

obtain 
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and    .2ζω−=ζ&&        16.2.21 

 

The last of these equations tells us that displacements in the z-direction are periodic with 

period equal to the period of the two principal orbiting bodies.  The motion is bounded 

and stable perpendicular to the plane.  An orbit inclined to the plane of the orbits 

containing M1 and M2 is stable. 

 

For ξ and η, let us seek periodic solutions of the form 

 

   η=ηξ=ξ 22 and nn &&&&            16.2.22a,b 

 

so that   ,and η=ηξ=ξ inin &&            16.2.23a,b 
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where n is real and therefore n
2
 is positive. 

 

Substitution of these in equations 16.2.19-21 gives 
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A trivial solution is ξ  =  η  =  0;  that is, the particle is stationary at the lagrangian point.  

While this is indeed a possible solution, it is unstable, since the potential is a maximum 

there.  Nontrivial solutions are found by setting the determinant of the coefficients equal 

to zero.  Thus 
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This is a quadratic equation in n
2
, and for real n

2
 we must have b

2
 > 4ac, or ,

)1(

27
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>

q

q
 

or  .01252 >+− qq   That is, q > 24.959 935 8  or q < 1/24.959 935 8  = 0.040 064 206. 

We also require n
2
 to be not only real but positive.  The solutions of equation 16.2.26 are 

 

 

   ( )222 )1/(27112 qqn +−±ω=  .    16.2.27 

 

For any mass ratio q that is less than 0.040 064 206 or greater than 24.959 935 8 both of 

these solutions are positive.  Thus stable elliptical orbits (in the co-rotating frame) around 

the equilateral lagrangian points are possible if the mass ratio of the two principal masses 

is greater than about 25, but not otherwise. 

 

If we consider the Sun-Jupiter system, for which q =  1047.35, we have that  

 

  n  =  0.996 757ω   or   n  =  0.080 464 5ω .   

 
The period of the motion around the lagrangian point is then 

 

  P  =  1.0033PJ        or   P  =  12.428PJ . 
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This description of the motion applies to asteroids moving closely around the equilateral 

lagrangian points, and the approximation made in the analysis appeared in the Taylor 

expansion for the potential given by equations 16.2.16-18.  For more distant excursions 

one might try analytical solutions by expanding the Taylor series to higher-order terms 

(and of course working out the higher-order derivatives) or it might be easier to integrate 

equations 16.2.19 and 20 numerically.  Many people have had an enormous amount of 

fun with this.   The orbits do not follow the equipotential contours exactly, of course, but 

in general shape they are not very different in appearance from the contours.  Thus, for 

larger excursions from the lagrangian points the orbits become stretched out with a 

narrow tail curving towards L1;  such orbits bear a fanciful resemblance to a tadpole 

shape and are often referred to as tadpole orbits.   For yet further excursions, an asteroid 

may start near L4 and roll downhill, veering around the back of the more massive body, 

through the L1 point and then upwards towards L5; then it slips back again, goes again 

through L1 and then up to L4 again – and so on.  This is a so-called horseshoe orbit. 

 

The drawings below show the equipotential contours for a number of mass ratios.  These 

drawings were prepared using Octave by Dr Mandayam Anandaram of Bangalore 

University, and are dedicated by him to the late Max Fairbairn of Sydney, Australia, who 

prepared figures XVI.8 and XVI.9a for me shortly before his untimely death.  Anand and 

Max were my first graduate students at the University of Victoria, Canada, many years 

ago.  These drawings show the gradual evolution from tadpole-shaped contours to 

horseshoe-shaped contours.  The mass-ratio q = 24.959 935 8 is the critical ratio below 

which stable orbits around the equilateral points L4 and L5 are not possible.  The mass-

ratios q = 81.3 and 1047 are the ratios for the Earth-Moon and Sun-Jupiter systems 

respectively.  The reader will notice that, in places where the contours are closely-spaced, 

in particular close to the deep potential well of the larger mass, Moiré fringes appear.  

These fringes appear where the contour separation is comparable to the pixel size, and the 

reader will recognize them as Moiré fringes and, we think, will not be misled by them. 

 

Dr Anandaram has also prepared a number of fascinating drawings in which sample 

orbits are superimposed, in a second colour, on the equipotential contours.  These include 

tadpole orbits in the vicinity of the equilateral points; “triangular” orbits of the Hilda 

asteroids, which are in 2 : 3 resonance with Jupiter; the almost “square” orbit of Thule, 

which is in 3 : 4 resonance with Jupiter; and half of a complete 9940 year libration period 

of Pluto, which is in 3 : 2 resonance with Neptune.  It is proposed to publish these in a 

separate paper dedicated to Max, the reference to which will in due course be given in 

these notes. 
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