CHAPTER 16
THE RESTRICTED THREE-BODY PROBLEM

[An earlier version of these notes included matenmathe theory of the equivalent
potential. Much of the material was not immeduatelevant to our subject of celestial

mechanics, and it has now been moved, and expatalet, notes on Classical
Mechanics (http://orca.phys.uvic.ca/~tatum/classradatiml), as Chapter 21.]

16.1 The Collinear Lagrangian Points

C

(M)
()

®

L1 L3 Lo

FIGURE XVI.4
We are going to consider the following problem. ormassesM; andM, are revolving

around their mutual centre of mass C in circuldiiter at a constant distaneeapart.
The orbital period is given by

2.3
2 - ApTa 16.1.1
G(M,+M,)
and the angular orbital speed is given by
W = G(Ml—::Mz) 16.1.2
a
| establish the following notation.
. Ml —
Mass ratio: — =d. 16.1.3
MZ
- M, _
Mass fraction: —— =m 16.1.4
M, + M,
They are related by q = n 16.1.5




and m = 9 . 16.1.6

We note the following distances:
M,C = (1-ma, M.,C = na. 16.1.7

We ask ourselves the following question: Are tharg/ points on the line passing
through the two masses where a third body of néxddignass could orbit around C with
the same period as the other two masses; i.e.utdwremain on the line joining the two
main masses?

In fact there are three such points, and they aosvk as the collinear lagrangian points.
(The collinear points were discussed by Euler eelomgrange, but Lagrange took the
problem further and discovered an additional twentsonot collinear with the masses,
and the five points today are generally all knoventlae lagrangian points. We shall
discuss the additional points in section 16.2.have marked the three points in figure
XVI.4 with the letters L, L, and Ls. There are evidently 3! = 6 ways in which | could
choose the subscripts. Often today, the inneatagjan point is labelled;land the outer
points are labelled 1and ls. This seems to me to lack logic, and | choosklel the
inner point L, and the outer points associated wih and M, are then L and L
respectively.  Incidentally, I am not making amgsumption about which of the two
main bodies is the more massive.

Let us deal first with L Let us suppose that the distance from Citis ka
A particle of massn at Ly is subject (in a co-rotating reference frame)heé forces,

namely the gravitational attractions from the twaimbodies, and the centrifugal force
acting away from C. If this body is to be in edaium, we must have

GM;m >+ GM,m ~ = mxaw’. 16.1.8
[(x -1+ ma] [(x + ma]

On making use of equations 16.1.2 and 16.1.4, mekthat this equation becomes

n 1-n

>+ 5 =X 16.1.9
(x-1+m (x+m

After manipulation, this becomes

3 +ax+ax +ax’+ax +x° =0, 16.1.10



where a = -1+3m-3nf , 16.1.11
a =2- 4m+nf - 2m +nf, 16.1.12
a, = - 1+ 2m- 6nf + 4n7, 16.1.13
3, = 1- 6m+ 6n 16.1.14
and a = -2+4m 16.1.15

Although equation 16.1.10 is a quintic equatiomas just one real root for positine

The positions of k.and Lg can be found by exactly similar arguments — y@i have to
take care with the directions and distances ofwitegravitational forces.

For Ly, the coefficients are the same as fardxcept

a, =-2+4m+nt - 2 +nf, 16.1.16
a =-1- 2m+ 6nt - 4m 16.1.17
and a, = 2- 4m 16.1.18

For Ls, the coefficients are

a, = 1- 3m+3nf - 3n?, 16.1.19
a = 2-4m+5nf - 2 + 7, 16.1.20
a, = 1- 4m+6nf - 4nt, 16.1.21
a, = 1- 6m+ 6nf 16.1.22
and a, =2- 4m 16.1.23

(Reminder: When computing any of these polynomiaiste them in terms of nested
parentheses. See Chapter 1, Section 1.5.)

It is also of interest to see the equivalent padaerigravitational plus centrifugal). The
expression for gravitational potential energy suaual; GMm/r, wherer is the distance
from the masdM. The expression for the centrifugal potential rggeis - %mwzrz,

wherer is the distance from the centre of mass. Thethegaf the derivative of this



expression isnw’r, which is the usual expression for the centrifuigate. When we
apply these principles to the system of two masseker consideration, we obtain the
following expression for the equivalent potentiai{ch, in this section, I'll just calV/
rather thar\/").

GM, GM, ez

) |x+1- ma |x- ma

16.1.24

On making use of equations 16.1.2 and 16.1.4, mekthat this equation becomes

_ 2
w=._m _1Im X 16.1.25
[x+1-m| |[x-m| 2
where w=y CM*M,) 16.1.26
a

Setting the derivatives of this expression to zgik@s, of course, the positions of the
lagrangian points, for these are equilibrium poimtere the derivative of the potential is
zero. Figure XVI.5 shows the potential for a mes$so g = 5. Note that, in the line
joining the two masses, the equivalent potentiadhatlagrangian points is a maximum,
and therefore these points, while equilibrium pmirtre unstable. We shall see in section
16.6 that the points are actually saddle pointdil&\several spacecraft are in orbit or are
planned to be in orbit around the collinear lagrangooints (e.g. SOHO at the interior
lagrangian point, and MAP at,), continued small expenditure of fuel is presumabl
needed to keep them there.

It will be of interest to see how the positionstbé lagrangian points vary with mass
fraction. Indeed mass can be transferred frommamber of a binary star system to the
other during the evolution of a binary star systéie shall discuss a little later how this
can happen. For the time being, without worryibgw the exact mechanism, we’ll just
vary the mass fraction and see how the positiorthetagrangian points vary as we do
so. However, if mass is transferred from one meroba binary star system to the other,



FIGURE XVI.5

Equivalent potential

and if there are no external torques on the systeerangular momentuinof the system
will be conserved, and, to ensure this, the sejparatof the two stars changes with mass
fraction.

Exercise Show that, for a given orbital angular momentunof the system, the
separatiora of the components varies with mass fraction adngrtb

L2

a = : 16.1.27
GM3nt (1- m?

HereM = M; + Mais the total mass of the system. In figure XVI.Bave used this
equation, plus equations 16.1.10 and 16.1.7, topatenthe distances of MC, and the
three lagrangian points from;Mis a function of mass fraction. The unit of dis&in
figure XVI.6 is 16L% /(GM®)which is the separation of the two masses whertvioe
masses are equal. Each of these distances hasiraum value for a particular mass
fraction. These minimum distances, and the masgiéms for which they occur, are as
follows:



Least value Mass fraction

M,C 0.421875  0.66666

ML 1.690392 0.524579
MyM 1.000000 0.500000
MiLs 0.489038 0.446273
ML 4 0.677756 0.436062

"0.421875 = 27/64 exactly

FIGURE XVI.6
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How can mass transfer actually occur in a binaay sgstem? Well, stars are not points —
they are large spherical bodies. When the hydrogeexhausted in the core by

thermonuclear reactions, a star expands hugelgvée the main sequence”) and when it
expands so much that the outer layers of its athergpreach the inner lagrangian point,
matter from the large star spills over into theeothtar. The more massive of the two
stars in a binary system generally evolves fa#tés;the first to leave the main sequence
and to expand so that its atmosphere reaches ttex lagrangian points. One can

imagine the more massive star gradually fillingitsgpotential well of figure XVI.5, until

it overflows and drips over the potential hill dfetinner point, and then falls into the

potential well of its companion.



One way of interpreting figure XVI.6 is to imagi that M starts with a large mass
fraction close to 1, and therefore near the topfighire XVI.6. Now imagine that this
star loses mass to its companion, so that the fasson decreases. We start moving
down the M line of figure XVI.6. We see the inner poing toming closer and closer. If
the surface of the star meets While Ls is still approaching (i.e. if the mass fraction is
still greater than 0.446273), then further massdtier will make Iz approach ever faster,
and mass transfer will therefore be rapid. Whenntfass fraction is less than 0.5, the star
that was originally the more massive star is by negs massive than its companion.
When the mass fraction has been reduced below Br&4Gurther mass transfer will
push L; away, and therefore further mass transfer will be slow.

In these calculations | assumed that the stansbe treated gravitationally as if they
are point sources — and so they can be, howevege ldrey are, as long as they are
spherically symmetric. By the onset of mass tmnsthe mass-losing star is quite
distorted and is far from spherical. However, ttistortion affects mostly the outer
atmosphere of the star, and, provided that thetgréalk of the star is contained within a
roughly spherically-symmetric volume, the point suapproximation should continue
to be good. The other assumption | made was thatab angular momentum is
conserved. There are two reasons why this mighb@so — but for both of them there is
likely to be very little loss of orbital angular mentum. One possibility is that mass
might be lost from the system — through one or otireboth of the external collinear
lagrangian points. But figure XVIL5 shows that tpetentials of these points are
appreciably higher than the internal point; therefimass transfer takes place well before
mass loss. Another reason why orbital angular nmbome might be conserved is as
follows. When matter from the mass-losing starassferred through the inner point to
the mass-gaining star, or flows over the inner i hill, it does not move in a straight
line directly towards the second star. This entimalysis has been referred to a co-
rotating reference frame, and when matter movas fiy towards M, it is subject to a
Coriolis force(see section 4.9 of Classical Mechanics), whicldsenharound M in an
accretion disc During this process the total angular momentumthe system is
conserved (provided no mass is lost from the systeat this must now be shared
between the orbital angular momentum of the twosstad the angular momentum of the
accretion disc. However, as long as the lattarrslatively small contribution to the total
angular momentum, conservation of orbital angulasm@antum remains a realistic
approximation.

16.2 The Equilateral Lagrangian Points

There is no general analytical solution in termsswhple algebraic functions for the
problem of three gravitating bodies of comparabésses. Except in a few very specific
cases the problem has to be solved numericallyweNer in therestrictedthree-body

problem, we imagine that there are two bodies ohgarable masses revolving around
their common centre of mass C, and a third bodyegligible mass moves in the field of



the other two. We considered this problem paytiatl section 16.1, except that we
restricted our interest yet further in confiningr attention to the line joining to two
principal masses. In this section we shall widein attention. One question that we
asked in section 16.1 was: Are there any pointsraviaethird body of negligible mass
could orbit around C with the same period as themotwo masses? We found three such
points, the collinear lagrangian points, on the ljaoining the two principal masses. In
this section we shall discover two additional pgjrthe fourth and fifth lagrangian points.
They are not collinear witiM; and M,, but are such that the three masses are at the
corners of an equilateral triangle.

We shall work in a co-rotating reference frame inick there are two deep hyperbolic
potential wells of the form GM,/r, and - GM,/r, from the gravitational field of the

two principal masses sunk into the nose-up parédeipotential of the form ir2w?,

whose negative derivative is the centrifugal fops unit mass. Here is the usual
cylindrical coordinate, ana’ = G(M, + M,)/a’

A
P(xa, ya, za)
y

O . x

C qa
__a M, - ,0: 0

M, g+ 1 0: 0 2 qgq+1
FIGURE XVI.7

In figure XVI.7 we see a coordinate system whichoigting about the-axis, in such a
manner that the two principal masses remain orx{das, and the origin of coordinates
is the centre of mass C. The mass ritiéM, = g, so the coordinates of the two masses
are as shown in the figure. The constant distdnet@een the two massesas P is a
point whose coordinates area( ya , za), X, y and z being dimensionless. The
gravitational-plus-centrifugal effective potentidht P is



_ GM, GM, G(M, + M,)(X* + y°)
V=- ) T ) 7 2a .
a x+ + +yV+7 a x- 4 + Yy +7
q+l q+l
16.2.1
Va : .
LetW =———— (dimensionless). Then
G(M; + M,)
_ q 1 X+
W =-, > 2 ” Sz ] 5 ’ s Sz T 2 .
@+ x@+)f + (v + 2@+ [(a- x@+D) + (v + 2)(q+D)
16.2.2

| shall write this for short:
W = - Aq - B- 1(x* + y?). 16.2.3
HereA andB are functions with obvious meaning from comparigath equation 16.2.2.

We are going to need the first and second derigatigo | list them here, in which, for
example Wy is short for 7AW/ xly .

W, = - (q +D[- gl +x(q+1))A* + (q- x(q+1))B°] - x, 16.2.4
W, = (q+1)°ygA’ + B - vy, 16.2.5
W, = (q+1)*4gA’ + B°], 16.2.6
W, =- (q+2?Bql+x(q+)) A° - gA® +3(q- x(q+1))’B° - B%] - 1,16.2.7
W, =-(q+1)?°[Bq(q+D)*y*A’ - qA’ + 3(q+1)°y°B° - B’] - 1, 16.2.8

L =-(q+1)*[3q(q+)°Z°A° - gA’ + 3(q+1)*z°B° - B’], 16.2.9

e = W, =-3(q+1)°yz(qA" + B°), 16.2.10

W, =W, =-3(q+1)°z[q@l + x(q + ))A® - (q- x(q+1))B°], 16.2.11



10

W, =W, =-3(q+D°y[q(l + x(q + )A° - (q- x(q+1))B°]. 16.2.12

It is a little difficult to drawM(X, v, 2), but we can look at the plare= Oand there look at
W(x, y). Figure XVI.8 is a contour plot of the surfabey, q = 5, plotted byMathematica
by Mr Max Fairbairn of Sydney, Australia. We haeeady seen, in figure XVI.5, a
section along thg-axis.

1.5 ]
1 .

FIGURE XVI.8
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Figure XVI.9a shows a three-dimensional drawinghef equivalent potential surface in
the plane, also plotted byathematicaby Mr Fairbairn. Figure XVI1.9b is a model of the
surface, seen from more or less above. This wadrcoted of wood by Mr David Smith
of the University of Victoria, Canada, and photgdred by Mr David Balam, also of the
University of Victoria. The mass ratiogs= 5.
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FIGURE XVI.9a

FIGURE XVI.9b

We can imagine the path taken by a small partrickie field of the two principal masses
by imagining a small ball rolling or sliding on tleguivalent potential surface. It might
roll into one of the two deep hyperbolic potentralls representing the gravitational
attraction of the two masses. Or it might roll aotlie sides of the big paraboloid —i.e. it
might be flung outwards by the effect of centrifufgsce. We must remember, however,
that the surface represents the equivalent poteetfierred to a co-rotating frame, and

that, whenever the particle moves relative to fitsime, it experiences a Coriolis force at
right angles to its velocity.
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The three collinear lagrangian points are actuabjdge points. Along the-axis (figure
XVI.5, they are maxima, but when the potential listied parallel to the-axis, they are
minima. However, in this section, we shall be igatarly interested in the equilateral

1 q-1 V3

oints, whose coordinates (verify this) ate = = , — . You ma
p (verify this) axg 2 q+1 L > y

verify from equations 16.2.4 and 5, (though you magd some patience to do so) that
the first derivatives are zero there. Even moreepaé and determination would be

needed to determine from the second derivatives t@ equivalent potential is a

maximum there — though you may prefer to look gaifes XV1.8 and 9 rather than wade
through that algebra. | have done the algebral @aa tell you that the first derivatives

at the equilateral points are indeed zero andehersl derivatives are as follows.

w, =-32, w, o =-2, W, = +1, W_=W_ =0, W:-_3\/§q_1_
4 4 \y 4 q+1

I
I+

BecausalV,, = +1, the potential at the equilateral points goesughoa minimum as we
cross the plane; in the plane, howeWeis a maximum, and it has the value there of

_ 30" +59+3
2(q +1)°

In the matter of notation, the equilateral pointe aften called the fourth and fifth
lagrangian points, denoted by, Bnd ls. The question arises, then, which is dnd
which is Ls? Most authors label the equilateral point thatdtethe less massive of the
two principal masses by 804 and the one that trails by Qs. This would be
unambiguous if we were to restrict our interest, édaample, to Trojan asteroids of
planets in orbit around the Sun, or Calypso wheads Tethys in orbit around Saturn and
Telesto which follows Tethys. There would be ambiguiowever, if the two principal
bodies had equal masses, or if the two principalidsowere the members of a close
binary pair of stars in which mass transfer leth®s more massive star becoming the less
massive one. In such special cases, we would toalee careful to make our meaning
clear. For the present, however, | shall assumitlie two principal bodies have unequal
masses, and the equilateral point that preceddeghenassive body is,L

In figure XVI.10 we are looking in they-plane. | have marked a point P, with
coordinatesX, y, 2); these are expressed in unitsapthe constant separation of the two
principal masses. The origin of coordinates isdietre of mass C, and the coordinates
(in units ofa) of the two masses are shown. The angular momewtatorw is directed
along the direction of increasirg

Now imagine a particle of massat P. It will be subject to a force given by tiegative
of the gradient of the potential energy, whichrmigimes the potential. Thus in the
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direction, max = - mﬂT . In addition to this force, however, whenevelsitri motion
afx

relative to the co-rotating frame it is subjectatdCoriolis force2mv” w . Thus thex-

component of the equation of motionrsax = - mﬂ + 2mway. Dividing through by

afix
mawe find for the equation of motion in tikedirection

Y X
M, - 1 0, 0
q+
FIGURE XVI.10
x=- WV oy, 16.2.13
a® fx
Similarly in the other two directions, we have
= IV o 16.2.14



and z=-—=——. 16.2.15

These, then, are the differential equations thdttveick the motion of a particle moving
in the vicinity of the two principal orbiting masse For large excursions, they are best
solved numerically. However, solutions close te dguilateral points lend themselves to
a simple analytical solution, which we shall attérere. Let us start, then, by referring
positions to coordinates with origin at an equaidagrangian point. The coordinates of
the point P with respect to the lagrangian pointe af, h, z), where
X=Xx-X, h=y-vy, z =1z Notealsothak=x x = x etc. We are going to
need the derivatives of the potential near to @grdngian points, and, by Taylor’s
theorem (or just common sense!) these are given by

Vx = (VX)L + X(\/XX)L + h(Vyx)L + Z(\/ZX)L ’ 16216
Vy = (Vy)L + X(ny)L + h(Vyy)L + Z(sz)L ’ 16217
VZ = (Vz)L + X(\/XZ)L + h(Vyz)L + Z(\/ZZ)L : 16218

We have already worked out the derivatiaeghe lagrangian points (the first derivatives
are zero), so now we can put these expressionsemiations 16.2.13,14 and 15, to
obtain

x - 2wh = w? 3x + 33@- 1, 16.2.19
4q +1)
hoeomx = 3@-D 2h 16.2.20
49 +1)
and zZ=-wz. 16.2.21

The last of these equations tells us that displacgsnin thez-direction are periodic with
period equal to the period of the two principalibng bodies. The motion is bounded
and stable perpendicular to the plane. An orbdimed to the plane of the orbits
containingM; andM, is stable.

Forx andh, let us seek periodic solutions of the form

n>x and h = n°h 16.2.22a,b

X

so that X inx and h = inh , 16.2.23a,b
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wheren is real and therefone? is positive.

Substitution of these in equations 16.2.19-21 gives

(% + 3wA)x + 2wni + 3 a1,y 16.2.24
4 g+l
and ouni - V3 412y (n? +2wA)h = 0. 16.2.25

4 g+l

A trivial solution isx = h = 0; that is, the particle is stationary at ldxgrangian point.
While this is indeed a possible solution, it is tabée, since the potential is a maximum
there. Nontrivial solutions are found by settihg teterminant of the coefficients equal
to zero. Thus

A
nt - win? + 2T 16.2.26
4(q+1)
This is a quadratic equation i, and for reah? we must havé?’ > 4ac, or 1> _( 2:2)2 :
q

or g° - 25q+1> 0. Thatis,q>24.959 935 8 ay< 1/24.959 935 8 = 0.040 064 206.
We also requir@’ to be not only real but positive. The solutiofieguation 16.2.26 are

2n® = wz(li \/1- 27q/(1+q)2). 16.2.27
For any mass ratiq that is less than 0.040 064 206 or greater tha®584935 8 both of
these solutions are positive. Thus stable ellgticbits (in the co-rotating frame) around
the equilateral lagrangian points are possiblaafrhass ratio of the two principal masses
is greater than about 25, but not otherwise.
If we consider the Sun-Jupiter system, for which 1047.35, we have that
n = 0.996 75w or n = 0.080 464 % .

The period of the motion around the lagrangian figithen

P = 1.003P; or P = 12.42®;.
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This description of the motion applies to asteromsving closely around the equilateral
lagrangian points, and the approximation made & ahalysis appeared in the Taylor
expansion for the potential given by equations l®-2A8. For more distant excursions
one might try analytical solutions by expanding freelor series to higher-order terms
(and of course working out the higher-order denxest) or it might be easier to integrate
equations 16.2.19 and 20 numerically. Many pedplee had an enormous amount of
fun with this. The orbits do not follow the eqaipntial contours exactly, of course, but
in general shape they are not very different ineapance from the contours. Thus, for
larger excursions from the lagrangian points theiterbecome stretched out with a
narrow tail curving towards it. such orbits bear a fanciful resemblance to @dbkd
shape and are often referred to as tadpole orbisr yet further excursions, an asteroid
may start near Land roll downhill, veering around the back of there massive body,
through the Lk point and then upwards towards; then it slips back again, goes again
through Ly and then up toJagain — and so on. This is a so-called horsesHoe

The drawings below show the equipotential contdors number of mass ratios. These
drawings were prepared usifgctave by Dr Mandayam Anandaram of Bangalore
University, and are dedicated by him to the latexMairbairn of Sydney, Australia, who
prepared figures XVI.8 and XVI.9a for me shortlyfdre his untimely death. Anand and
Max were my first graduate students at the Uniwersi Victoria, Canada, many years
ago. These drawings show the gradual evolutiom ftadpole-shaped contours to
horseshoe-shaped contours. The mass-gatid?24.959 935 8 is the critical ratio below
which stable orbits around the equilateral poingsahd Ls are not possible. The mass-
ratiosq = 81.3 and 1047 are the ratios for the Earth-Maod Sun-Jupiter systems
respectively. The reader will notice that, in glaevhere the contours are closely-spaced,
in particular close to the deep potential well o targer mass, Moiré fringes appear.
These fringes appear where the contour separaticonnparable to the pixel size, and the
reader will recognize them as Moiré fringes andthwek, will not be misled by them.

Dr Anandaram has also prepared a number of faswgnharawings in which sample
orbits are superimposed, in a second colour, oedagotential contours. These include
tadpole orbits in the vicinity of the equilaterabipts; “triangular” orbits of the Hilda
asteroids, which are in 2 : 3 resonance with Jupite almost “square” orbit of Thule,
which is in 3 : 4 resonance with Jupiter; and &l complete 9940 year libration period
of Pluto, which is in 3 : 2 resonance with Nepturieis proposed to publish these in a
separate paper dedicated to Max, the referencehtchwvill in due course be given in
these notes.
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q=M1/M2 =1 : Equipotential contours and Lagrangian points
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