Förster Schreiber & Wuyts 2020, ARA&A, 58, 661

Stijn Wuyts

Förster Schreiber & Wuyts 2020, ARA&A, 58, 661

Stijn Wuyts

z ~ 6 — end Epoch of Reionization

- z > 3 pre-JWST/ALMA/NOEMA census mostly UV-based
- 1 < z < 3 half of all stars in present-day Universe formed
- z < 0.8 last half of cosmic history: star formation activity declines, cold gas reservoirs deplete

Madau & Dickinson 2014; Tacconi+2020 Image credit: Natascha Förster Schreiber

Förster Schreiber & Wuyts 2020, ARA&A, 58, 661

Observational landscape

Axes of progress

Lookback survey design

Global

Census

Scaling relations

Evolution

ALTY

Stijn Wuyts

Resolved

Galaxy sizes

Morphology, shapes & substructure Disk settling **Kinematics - circular motions** Kinematics - non-circular motions **Kinematics - feedback**

Census and scaling relations

Förster Schreiber & Wuyts, ARAA, 2020; Tomczak+14,16; van der Wel+2014; Barro+2017; Wuyts+2016; Sanders+2018; Simons+2017; Turner+2017; Wisnioski+2019

Evolution

van Dokkum+2013; see also Papovich+2015; van de Voort+2016; Wellons+2017; Torrey+2017; Clauwens+2017

Evolution of population (at fixed M_{star}) vs individual galaxy

Select progenitor - descendants via fixed co-moving number density

Refinements to account for mergers and variance in growth rates

Evolution

Förster Schreiber & Wuyts, ARAA, 2020 (using stellar mass growth from abundance matching following Hill+2017)

Resolved studies of cosmic noon SFGs

#

Feedback

Förster Schreiber & Wuyts, ARAA, 2020

Oth order structure - galaxy sizes

van der Wel et al. 2014 (based on HST CANDELS survey, rest-optical)

Star formation profiles

NIR-IFUs reveal extended Hα disks + ALMA reveals compact dust cores in massive z~2 SFGs in massive z~2 SFGs

Even after best-effort dust correction

Tacchella+2018 (also Nelson+2021 @ z~1)

 $J_{125}H_{160}870\mu m$

Also new JWST/CEERS PAH 6.2 & 7.7µm sizes of obscured star formation using MIRI (Shen+2023; Magnelli+2023)

Stellar mass maps

1st order structure - galaxy light profiles

Wuyts et al. 2011 (also e.g. Bluck et al. 2014; Lang et al. 2014; Whitaker et al. 2015)

1st order structure - 3D intrinsic shapes

Zhang et al. 2022 (also e.g. van der Wel. 2014; Zhang et al. 2019; Zhang et al. 2023)

Intrinsic axis ratios

3D intrinsic shapes - quiescent galaxies

Zhang et al. 2022 (also e.g. van der Wel. 2009; Holden et al. 2012; Satoh et al. 2019)

3D intrinsic shapes - quiescent galaxies

Zhang et al. 2022 (also e.g. van der Wel. 2009; Holden et al. 2012; Satoh et al. 2019)

Strong mass- and redshift-independent trend between n_{Sersic} and median q

UVJ Quiescent Quiescent 0.80 *z*-range 0.2 < z < 0.5173 0.5 < z < 1.0781 0.75 -1.0 < z < 1.5643 1.5 < z < 2.0357 2.0 < z < 2.5187 0.70 + 2.5 < z < 3.016 3.0 < z < 4.012 P 0.65 0.60 0.55 $9.5 < \log M_{*}/M_{\odot} < 10.0$ - $10.0 < \log M_*/M_\odot < 10.5$ 0.50- 10.5 < log M_*/M_{\odot} < 11.0 -- 11.0 < log M_*/M_{\odot} < 12.0 0.45

 \boldsymbol{n}

Hill et al. 2019

3D intrinsic shapes - star-forming galaxies

Zhang et al. 2023 (also e.g. van der Wel. 2014; Zhang et al. 2019; Pandya et al. 2023 with JWST)

Zhang,SW+2023; also Patel+2012; Zuckerman+2021; Shapley+2022

Evolution of morphological types

Huertas-Company et al. 2023

Substructure - bar instabilities at cosmic noon

F115W

Guo & CEERS team 2023

Substructure - star-forming clumps

WFC3 (imaging+grism) → Resolved SED modelling for sizeable samples Wuyts+2012,2013; Guo+2015,2018; Zanella+2019; Huertas-Company+2020; Ginzburg+2021

Incidence of clumpy galaxies

Properties of UV-selected clumps:

- blue colors, high Ha EW \rightarrow low M/L ratios, enhanced sSFR, young ages
- low Ha/UV \rightarrow reduced dust attenuation
- modest contribution to UV > contribution to SFR > contribution to Mstar

Elmegreen+2005,2007; Genzel+2011; Förster Schreiber+2011; Wisnioski+2011 rest-UV, Ha (aided by velocity channels) + some initial NICMOS rest-optical

Substructure - star-forming clumps

Mestric+2022 166 clumps at $z \sim 2 - 6.2$ (magnification $2 < \mu < 82$) behind lensing cluster MACS-J0416 \rightarrow low clump masses & small (resolution-dependent) sizes see also Livermore+2012,2015; Dessauges-Zavadsky+2017; Rigby+2017; Cava+2018 also in simulations resolution-dependent clump sizes: Tamburello+2015,2017; Faure+2021 (+ see Huertas-Company+2020 for 3D vs 2D clumps)

Resolved studies of cosmic noon SFGs

#

Förster Schreiber & Wuyts, ARAA, 2020

Dynamics - settling of turbulent disks

Förster Schreiber & Wuyts, ARAA, 2020; also e.g. Glazebrook+2013; Wisnioski+2015, 2019; Stott+2016; Harrison+2017

Dynamics - settling of turbulent disks

Förster Schreiber & Wuyts, ARAA, 2020; also e.g. Glazebrook+2013; Wisnioski+2015, 2019; Stott+2016; Harrison+2017

Price et al. 2021 (also Cresci+09, Davies+11, Wuyts+16, Genzel+17; Übler+18; other codes: Galpak^{3D} Bouché et al. 2015; ^{3D}BAROLO Di Teodoro & Fraternali 2015)

Price et al. 2021

Dynamics - forward modeling of disk rotation

Model

 $V_{med} = 3.9$

0."5

 $\sigma_{med} = -0.0$

 $\sigma_{rms} = 13.7$

Dynamics - forward modeling of disk rotation

Förster Schreiber & Wuyts, ARAA, 2020

Theory: Lovell+2018; Dekel+2021; Übler+2021

Further observational perspectives: Tiley+2019; Sharma+2021; Lelli+2021

Baryon dominance within R_e for high Σ_{bar} disks

Dynamics - non-circular motions

Residual: circ only (1D model)

 $(\Delta V)_{med} = -12.5$

6

 $(\Delta V)_{rms} = 41.0$

Price+2021; also Genzel+2023

250

200

150

100

50

0

 $(\Delta V)_{med} = -13.2$

Kinematics - feedback

M82: blue-white: optical/near-infrared; red: ionized hydrogen gas

Galactic outflows

Drivers:

Star formation and/or AGN

Method:

Broad velocity components to emission lines or absorption lines (MgII, NaD)

For AGN, distinguish from Broad Line Regions (BLRs): presence broad components in forbidden lines & spatially resolve

Location:

Star-forming clumps and/or nucleus

Incidence: Above MS (SF) High-mass end (AGN)

Förster Schreiber & Wuyts, ARAA, 2020

also Newman+2012; FS+14,19; Swinbank+2019; Leung+2019; Herrera-Camus+2019; Davies+19,20; Spilker+2020; Kakkad+2020; Weldon+2022; Concas+2022

a Star-formation-driven outflows SINFONI+AO

zC-406690 (*z* = 2.2) 0.5 arcsec Hα broad: outflow Hα narrow: star formation PSF Rest-V band: stars (HST)

Galactic outflows - incidence

Avery, SW et al. 2021,2022

Winds from normal nearby galaxies **Ionized & neutral gas phase** Incidence, scaling relations & nature

also Roberts-Borsani & Saintonge 2019 + MEGAFLOW e.g. Langan+2023 for CGM-scale flows High-z counterpart: Förster Schreiber+2019; Swinbank+2019; Concas+2022

Galactic outflows - physics & scaling relations

"outflow velocity" $v_{out} = |\Delta v_{broad} - 2 \sigma_{broad}|$ $M_{out} \propto L_{broad} / n_{e,out}$ $M_{out} = M_{out} \times (v_{out} / R_{out})$ $\eta = \dot{M}_{out} / SFR$ "mass loading" $\dot{E}_{out} = \frac{1}{2} \dot{M}_{out} V_{out}^2$ $\dot{p}_{out} = \dot{M}_{out} V_{out}$

Förster Schreiber & Wuyts, ARAA, 2020 also Newman+2012; FS+14,19; Swinbank+2019; Leung+2019; Herrera-Camus+2019; Davies+19,20; Spilker+2020; Kakkad+2020; Weldon+2022; Concas+2022

- with n_e from [SII] doublet ratio
- where R_{out} requires AO "mass outflow rate"
- "energy injection rate"
- "momentum injection rate"

Galactic outflows - physics & scaling relations

 $og(\dot{M}_{out} [M_{\odot} yr^{-1}])$

Förster Schreiber & Wuyts 2020, ARA&A, 58, 661

Observational landscape

Axes of progress

Lookback survey design

Global

Census

Scaling relations

Evolution

ALTY

Powerful new facilities...

Resolved

Galaxy sizes

Morphology, shapes & substructure Disk settling **Kinematics - circular motions** Kinematics - non-circular motions **Kinematics - feedback**

HST - rest-UV

JWST - resolution, sensitivity, longer λ

upgrades in e.g. bandwidth

HARMONI - near-infrared integral field spectrograph 2nd generation: MOSAIC - multi-object spectrograph

Förster Schreiber & Wuyts, ARAA, 2020

4MOST (optical multi-fibre spectroscopy)

D F

ROMAN.

F

HUBBLE

Nancy Grace Roman Space Telescope (2.4m) - launch 2027

Credit: STScl

VIE W

Building galaxies

- Multi-scale
- Resolution
- **Direct observables** ≠ physical components

