The effect of dust inside of the galaxies on their light

SAMIR SALIM (INDIANA UNIVERSITY)

Dust in galaxies

Diminishes the light of stars
Affects our determinations of bulk:

ages of stars (look older)
star formation rates (looks lower)
stellar mass (looks lower)
metallicity (looks more metal rich)

Dust content

understand galaxy evolution

- Extinction = the effect of dust on a point source (a star)
- Distant star + foreground layer (cloud) of dust
 - part of the light is <u>absorbed</u>
 - part is <u>scattered</u>
- Extinction = absorption + scattering

- Dust layer near the star, compared to us (star sees dust with large solid angle)
- If we measure only the light of star: extinction is same as before
- If we measure the light of star+cloud: some scattered light is recovered
 - star+cloud = extended object

received scattered light depends on the mutual position of star and dust cloud

- Galaxy: star is imbedded in dust layer
 - light can scatter backwards and reach us
- We observe "a galaxy" = star+dust layer

Galaxy: there are many stars; stars with different luminosities

We see combined effect of <u>relative distribution of stars and dust (aka "geometry"</u>)

Galaxy: dust can be patchy and have non-uniform density

- Same galaxy seen from different angles => different geometry
 - Iocal geometry = relative star/dust distribution (irrespective of viewing angle)
 - global geometry = viewing angle

- Extinction = effect of dust on a point source
 - absorption + scattering loss
- Attenuation = effect of dust on an extended object
 - = extinction + local & global geometry
 - = (absorption + scattering loss) + scattering gain

Attenuation in a band: practical definition

Magnitude of entire galaxy (integrated mag), as observed (e.g. in V band):

Dust content (dust density: grains per volume)

Orientation (without changing dust content)

 $A_V(\text{face} - \text{on}) < A_V(\text{edge} - \text{on})$

Orientation = galaxy inclination

- Attenuation
 - = dust content + orientation
 - dust content related to galaxy SFR (star formation rate)

- Attenuation
 - = dust content + orientation
 - dust content related to galaxy SFR

- Attenuation (like extinction) depends on wavelength
- Attenuation in different bands (V, B, R, UV)
 - more generally, attenuation at some wavelength

$$A_{\lambda} = m_{\lambda} - m_{\lambda,0}$$

- Shorter wavelength affected more
 reddening
- A_{λ} = attenuation curve (or law)
- A_λ/A_V = (normalized) attenuation curve

- E.g.
 - Av = 0.1, A₁₅₀₀ = 0.5
 - Av = 1, A₁₅₀₀ = 5
 - different normalization
 - same attenuation curve
 - normalization need not be in V

- Is attenuation curve universal?
- Is slope similar for all galaxies
 - e.g. UV to optical slope
 - $S = A_{1500} / Av$
- Is the strength of UV bump similar for all galaxies?
 - is it present at all?
- If not, how much variation is there?
- Does any galaxy property govern it?

- Is attenuation curve universal?
- Is slope similar for all galaxies
 - e.g. UV to optical slope
 - $S = A_{1500} / Av$
- Is the strength of UV bump similar for all galaxies?
 - is it present at all?
- If not, how much variation is there?
- Does any galaxy property govern it?

Effect on SFR and on specific SFR (SFR/M*)
 systematic effects and noise

2 -9 SSFR (curve B) m SFR (curve -10 0 -11log log $\sigma = 0.31$ $\sigma = 0.32$ -12-12-22 -11-10-8log SSFR (curve A) log SFR (curve A)

Dust <u>extinction</u> curves

- Attenuation = extinction + geometry
- 1. Average extinction curves differ among MW, LMC, SMC
- Individual sightlines within MW differ: 1 < S < 3
- Drivers:
 - differences in dust composition
 - differences is dust size distribution
- Extinction curves beyond local group not generally known

How to determine DAC?

Extinction curve determination: pair method

- observe two stars of (same spectral type), one behind dust, one dust free
- What is the dust-free SED of a galaxy?
 - SED (spectral energy distribution) = a spectrum or multi-band photometry

How to determine DAC?

- Empirical approach
 - compare SEDs of galaxies with various amounts of dust as inferred from emission lines
 - Calzetti et al. 1994
 - aggregate curve of starbursting galaxies
 - shallow curve (S=2.5)
 - no UV bump
 - No other DAC until recently
- Theoretical (model) approach
 - SED fitting

SED fitting

- Produce model (predicted) photometry based on stellar evolution + star formation history
- Standard approach: <u>assume</u> DAC with various amounts of dust
- Compare observed broad-band photometry with model predictions

Attenuation curve from SED fitting?

- Why is DAC assumed in SED fitting?
- Dust-age-metallicity degeneracy
 - older age of stars or higher metallicity produce similar reddening as the dust
- Degeneracy can be broken with IR data

Attenuation curve from SED fitting?

- UV/optical light absorbed by dust heats the grains => dust emits in the mid and far IR
- Energy balance: energy absorbed in UV+optical = energy emitted in IR

DAC at low redshift

- Galaxy survey data
 - z < 0.3
 - GALEX UV
 - SDSS optical
 - WISE mid-IR
 - 230,000 galaxies
- Wide range of slopes
- 2 < S < 15
 (Calzetti: S = 2.5; SMC: 5)

- Slope vs Av correlation
 - galaxies with higher Av have shallower DAC

- Predicted by radiative transfer models (Pierini et al. 2004; Seon & Draine 2016)
 - Low opacity: scattering dominates (highly λ dependent)
 - High opacity: absorption dominates (grey)

Bump vs slope relation also seen in simulations

Dust content (dust density: grains per volume)

- Is dust opacity a factor independent of geometry?
 - depends on the definition
- Which factor is more important?

Attenuation curves - diversity

Primary dependence is on the dust column

 At fixed Av (dust column) curve slope does not depend on stellar mass

Attenuation curves - diversity

Primary dependence is on the dust column

 At fixed Av (dust column) curve slope does not depend on sSFR

Attenuation curves - diversity

Primary dependence is on the dust column

 At fixed Av (dust column) curve slope does not depend on the axis ratio

Disentangling attenuation and extinction curves?

Residual scatter in slope-Av relation

Observed slope-Av relation is broader than the simulated one

Evolution of the attenuation curve?

High-z results often inconsistent

- Important: compare all studies at the same Av
- DAC may not evolve much

Summary

- Extinction vs. attenuation
- Is there a diversity of attenuation curves?
- What is the average curve?
- What does the slope depend on?
- What does it not depend on?
- Evolution

