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Observing galaxy evolution (the “traditional” way)

_ Physical properties
UV/optical/IR photometry & spectroscopy
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The current empirical picture for galaxy evolution

the star formation “main sequence” the redshift evolution of the main sequence
see e.g.: Schiminovich et al. (2007), Elbaz et al. (2007), Noeske et al. see e.g.: Whitaker et al. (2014), Tomczak et al. (2016), Speagle et al.
(2007), Daddi et al. (2007), Perez-Gonzalez et al. (2008), Peng et al. (2010) (2014), Leslie et al. (2020),....
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SFR ~ Mxa(1+z)°, where a~0.8, b~2.5

- Galaxies on the main sequence (MS) contribute ~90% of the star formation.

- Duty cycles on the MS are high at 40-70% implying that “catastrophic” events
like major mergers cannot be the main agent responsible for regulating star
formation.



Legacy surveys to quantify the ISM properties of galaxies at low-z

IRAM 30-m

Global measurements (targeted surveys for CO, HI, or dust):

x(COLD) GASS (PlIs A. Saintonge, B. Catinella)

950h IRAM 30-m Large Programmes +1500h Arecibo Programme

Integrated Mui and Mu2 measurements for 532 SDSS-selected galaxies with 0.01<z<0.05, M*>10° Msun

Saintonge et al. 2011a, 2011b, 2012, 2016, 2017, Catinella et al. 2010, 2013, 2018, Lutz et al. 2021, Accurso et al. 2017, Tiley et al 2016, Huang & Kauffmann 2014,
Saintonge & Catinella 2022,...

see also: FCRAO (Young et al. 1995), HRS (Boselli et al. 2010), ALLSMOG (Bothwell et al. 2014, Cicone et al. 2017),
MASCOT (Wylezalek et al. 2022), JINGLE (Saintonge et al. 2018) ...

Global measurements (blind surveys for HI):

Rather than targeting specific galaxies one by one, with radio telescopes it is possible to map out large
areas of sky to pick up many galaxies, without a priori information
Examples of such surveys include: HIPASS (Barnes et al. 2001), ALFALFA (Giovanelli et al. 2005),...

so{ @ DESI BGS/low-z at z<0.06
1 ALFALFA footprint
S 60
Resolved measurements: 9
~kpc scale CO and/or HI maps ~kpc scale dense gas maps c
Samples of ~50-100 galaxies, mostly massive Samples of ~10-20 galaxies, CO- S
star-forming spirals bright and massive _g 20 191,
HERACLES (Leroy et al. 2009), THINGS (Walter et EMPIRE (Jimenez-Donaire et al. O
al. 2008), EDGE (Bolatto et al. 2017), ALMaQUEST 2019), MALATANG (Tan et al. 2018) A 0
(Lin et al. 2020)
’
~ 100pc scale CO maps o/t
Total of <100 galaxies, all star-forming spirals | S . I
PHANGS-ALMA (Leroy et al. 2021), WISDOM (Davis et al. 2017), 0 100 200 300

PAWS (Schinnerer et al. 2013 Right Ascension (deq)



Gas and star formation as the drivers of galaxy evolution

O
o

What sets the star formation activity of galaxies? SFR My, My, SFR
When/where/how is it triggered/suppressed? SSFR = Y, — M. M., M
Starbursts g " Hi H2
1.01 sSDSS 0.02<7<0.06 mergers, instabilities,
gas accretion,... — fHI Rmol SFE
0.5 5 Discs in
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Gas and star formation as the drivers of galaxy evolution

log SFR [My yr™']

SDSS DR7 .
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Saintonge et al. (2016)
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Gas and star formation as the drivers of galaxy evolution

log SFR [Mg yr']
log SFR [My yr™']

SDSS DR7 .
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Saintonge et al. (2016)



Gas and star formation as the drivers of galaxy evolution

log SFR [Mg yr']
log SFR [My yr™']

SDSS DR7 .
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Gas and star formation as the drivers of galaxy evolution

log SFR [My yr™']

SDSS DR7 .
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Saintonge et al. (2016)



Gas contents and star formation activity across the galaxy population

What sets the star formation activity of galaxies? SFR SFR My, M;, SFR
When/where/how is it triggered/suppressed? S = —
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Saintonge et al. (2017), Saintonge & Catinella (2022, ARA&A)



Gas contents and star formation activity across the galaxy population

What sets the star formation activity of galaxies? SFR SFR My, M;, SFR
When/where/how is it triggered/suppressed? S — —
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Gas-driven galaxy evolution — observations & theory

slide courtesy of D. Scholte

Galaxies are complex systems with
many interacting components

Directly measuring the effect of the
processes driving their evolution is very
challenging.

halo

See also: Tinsley 1980, Tumlinson, Peeples & Werk 2017, Peroux & Howk 2020, Saintonge & Catinella 2023 € incl. referernices in review papers



Gas-driven galaxy evolution — observations & theory

slide courtesy of D. Scholte

Galaxies are complex systems with
many interacting components

Directly measuring the effect of the
processes driving their evolution is very
challenging.

However, we can infer the effect

of these processes through L
spectroscopic observables. Dark matter

halo

See also: Tinsley 1980, Tumlinson, Peeples & Werk 2017, Peroux & Howk 2020, Saintonge & Catinella 2023 € incl. references in review papers



Gas-driven galaxy evolution — observations & theory
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Star-forming (i.e. “main sequence”) galaxies

— Galaxies on the main sequence (MS) contribute

~90% of the star formation.
— Can we explain the shape and scatter of the MS

through the gas contents and star formation
efficiency?



Gas-driven galaxy evolution — observations & theory

Star-forming (i.e. “main sequence”) galaxies

— Equilibrium models suggest that galaxies are “gas

conversion engines”, regulated by mass conservation

principles
dM

gas

® = (1 — R + A)SFR A

dr
acgrétion stellar outflgws time evolution
rate mass of the gas
buildup reservoir
o
x M

halo(1 T Z)ﬂ X Mgas SFE

assuming that SFE and A are constant, then the model
predicts:

SFR s M4 (1 4+ 2% (a~0.8,b~2.5)

Let’s check this against our observations of the
shape and redshift evolution of the main sequence...

Feedback

Bouche et al. (2010), Dave et al. (2012), Lilly /et' al. (2013), Dekel & Mandelker (2014), Tacchella et al. (2016), ...



Gas-driven galaxy evolution — observations & theory

Let’s check this against our observations of the
shape and redshift evolution of the main sequence...
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Gas-driven galaxy evolution — observations & theory

Off-main sequence galaxies

1.0 — Wide range of processes can disrupt the equilibrium
Starbursts state, affecting both gas contents and star formation
mergers, instabilities, ..
. efficiency
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Saintonge et al. (2012), Saintonge & Catinella (2022)

see also e.g. Magdis et al. (2012), Sargent et al. (2014), Saintonge et al. (2012, 2016),
Tacconi et al. (2018, 2020), Scoville et al. (2017), Colombo et al. (2020), ...



Chemical composition of the ISM: the mass-metallicity relation

The more massive the galaxy, the more enriched in Within our gas-centric galaxy evolution model,
metals (here measured as the relative abundance of there should be a correlation between the shape
O compared to H) the ISM is. This relation is known and scatter of the MZR and the cold gas contents
as the mass-metallicity relation (MZR) of the galaxies:
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9.0 Enriched

Gas and the mass-metallicity relation e
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gas
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As predicted by the simple equilibrium models, both gas mass and SFR
are directly linked with the scatter of the MZR. Of the two, gas appears

Pristine

- gas
to be the more fundamental parameter driving the scatter o TMgm &
1 SFR
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See also: Brown et al. 2018, Ellison et al. 2008, Mannucci et al. 2010, Lara-Lopez et al. 2010




Gas-driven galaxy evolution — summary

The global star formation activity of a galaxy (i.e. its
The shape, scatter and redshift evolution of key galaxy scaling position in the SFR-M* plane) depends on:

relations (in particular the star formation main sequence and the (1) how much fuel it has (HI)
mass-metallicity relation) can be to first order explained by the (2) how much of it is available for star formation (Hy)

principle of a simple equilibrium model (3) the efficiency of the conversion of this gas into stars

(1A4éas T
®=(1-R+ASFR+—
[ = ]
. - . & accretion stellar  outflows time evolution E., f f
s rate mass of the gas 2 5l f
) buildup reservoir | |
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< \
O 78N
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a2 \\
" Gas availability and star formation
Q\O

efficiency are the two fundamental

quantities that determine the growth
of galaxies.

Feedback

see also Bouché et al. (2010), Davé et al. (2012), Lilly et al. (2013), Dekel & Mandelker (2014),

Tacchella et al. (2016), Saintonge et al. (2016), Lin et al. (2019), Feldmann (2020), Ellison et al.
(2020), Baker et al. (2022),...



What is driving the systematic star formation efficiency variations?

log(SFR) (M year-)

Star formation efficiency varies
systematically across the galaxy
population: why??
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What is driving the systematic star formation efficiency variations?

Star formation efficiency varies
systematically across the galaxy
population: why??
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Exploiting molecular gas tracers

Atomic-to-molecular conversion Cloud fragmentation & collapse

I shocks, collisions, 1
instabilities

gas pressure,
radiation field

The relation between gas surface density and SFR is
both tighter and more linear when using a dense gas
tracer:
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Testing star formation models

Anatomy of the N-PDF

Uncertainty

due to Map Area Chen et al. (2018)
(N/ NO)transition

. : volume density
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cloud in low pressuré environment (e.g. disc)

cloud in hiih pressure environment (e.g. ialactic centre)

Probability Distribution
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Testing star formation models
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Testing star formation models

: : volume density

C|OIEIC| in low pressuré environment (e.g. disc)

cloud in high pressure environment (e.g. galactic centre)

MODEL 1

fixed density SF threshold
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CO(1-0) HCN(1-0)



Testing star formation models

: : volume density

C|OIEIC| in low pressuré environment (e.g. disc)

cloud in high pressure environment (e.g. galactic centre)

MODEL 1

fixed density SF threshold

MODEL 2

.,gas emitting  .gas emitting
CO(1-0) HCN(1-0)



Testing star formation models

: : volume density

C|OIEIC| in low pressuré environment (e.g. disc)

cloud in high pressure environment (e.g. galactic centre)

MODEL 1

fixed density SF threshold

MODEL 2

only the densest part of each GMC,
irrespective of density, is star-forming

.,gas emitting  .gas emitting
CO(1-0) HCN(1-0)



Testing star formation models

. : volume density

C|OIEIC| in low pressuré environment (e.g. disc)
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Testing star formation models
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Testing star formation models

. : volume density

C|OIEIC| in low pressuré environment (e.g. disc)
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Open questions and active areas of research

Gas supply (from cosmological accretion to
molecular clouds)

- Why do galaxies of a given mass have such varied
gas reservoir masses?

- What is the role of the large scale environment?
(clusters/groups/isolated, filaments/nodes/voids, halo
mass, close neighbours...)

- How does gas get into galaxies? (Different modes of
accretion? Radial flows? Galactic fountains?) How
does this change with redshift and galaxy mass?

- What shuts down accretion? (AGN heating? Change
from cold- to hot-mode?)

- How is gas transported from the outer disc, all the
way to the circumnuclear regions? What is the role of
magnetic fields?

- How does AGN feeding proceed? How do their
feedback affect gas reservoirs?

Star formation

- What sets the star formation efficiency (SFE), at all
scales (from galaxy-integrated to cloud scales)?

- Are variations in SFE larger within galaxies, or from
galaxy-to-galaxy? Do local and global mechanisms
both contribute?

- Does star formation proceed differently in starbursts?
What Galactic environments are most similar?

- How does the global stability of the disc impact the
details of star formation?

- What are the main bottlenecks in converting the large
gas reservoirs of low mass galaxies into stars?

- How do gas kinematics impact on star formation?



The many physical- and time-scales of star formation and galaxy evolution

Z= z<0.5 0.5<z<3 z>3

&

MW and Local Group stable, rotation-dominated discs turbulent, Toomre-unstable discs non-equilibrium galaxies
accretion from galactic fountain accretion from galactic fountain cold accretion from the cold accretion from the cosmic web
and satellites and extended HI reservoirs cosmic web and minor mergers
galaxies in equilibrium (gas galaxies in equilibrium (gas galaxies in equilibrium (accretion galaxies not yet in equilibrium (gas

reservoir drying up) reservoir drying up) balanced by SF + outflows) reservoir filling up)

SF limited by gas reservoir SF limited by accretion rate SF at maximum efficiency (taep)

Daveé et al. (2012), Lilly et al. (2013), Saintonge et al. (2013), Tacconi et al. (2020), Saintonge & Catinella (2022)



Large spectroscopic surveys: stars, atomic gas, and molecular gas

SDSS



Large spectroscopic surveys: stars, atomic gas, and molecular gas

ALFALFA I

SDSS



Large spectroscopic surveys: stars, atomic gas, and molecular gas
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Large spectroscopic surveys: the future

IRAM 30-m

IRAM NOEMA
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Conclusions and outlook

- Information about the cold ISM is central to our
understanding of galaxy evolution. Since the ISM is multi-
phase and multi-scale, the more tracers the better

- Large statistical samples are crucial to disentangle
competing effects (even if at the cost of spatial
resolution). Broad coverage of parameter space is key.

- Galaxy evolution and star formation is a complex multi-
scale process; we need combination of large systematic
surveys and high resolution follow-up

- Physical and chemical properties of the ISM are highly
constraining for simulations but an underused tool

- Good progress connecting galaxy evolution with SF
physics, but significant ground to break in connecting
with CGM/IGM and cosmic web




