

C\&M Chap 2. (plus parallax from Chap. 1).

Geocentric theories

Aristotle ($\sim 400 \mathrm{BC}$)

Studying the motion of planets, such as their retrograde motion was a major problem for the geocentric system.

Retrograde motions:

Ptolemy ($\sim 200 \mathrm{AD}$) devised a complicated systems of epicycles.

Geocentric Solar System

Created with Starry Nightmw

Heliocentric models

First proposed by Aristarchus of Samus ~ 300BC, but ignored for 2000 years.

Retrograde motions of planets such as Mars naturally explained by heliocentric model.

First measurement of Earth's size

~ 200BC

β measured to be 7°.
Distance between cities $=5000$ stadia (1 stadium $\sim 0.16 \mathrm{~km}$).
Circumference $=360 / 7 \times 5000 \sim 250,000$ stadia.
Earth's radius $r=c / 2 \pi \quad r \sim 40,000$ stadia $=6366 \mathrm{~km}$.
Modern value $=6378 \mathrm{~km}-$ very accurate!

Measuring distances within the solar system: parallax

© 2005 Brooks/Cole - Thomson

© 2011 Pearson Education, Inc.

$\underline{\text { baseline }(\mathrm{AB})}=\underline{\text { parallax }}$
 $2 \pi x$ distance 360°

Example: Two observers on opposite sides of Earth observe Venus and measure an angular parallax of 1 arcmin. Taking Earth' s diameter to be $13,000 \mathrm{~km}$, what is the distance to Venus?

$$
\frac{\text { baseline }(\mathrm{AB})}{2 \pi \times \text { distance }}=\frac{\text { parallax }}{360^{\circ}}
$$

$$
\text { Distance }=\frac{13,000 \times 360}{2 \pi \times(1 / 60)}=4.6 \times 10^{7} \mathrm{~km}=46 \text { million } \mathrm{km}
$$

© 2011 Pearson Education, Inc.
The concept of parallax is the basis for the small angle formula.

$$
\frac{\text { angular diameter }(\operatorname{arcsecs})}{206,265}=\frac{\text { linear diameter }}{\text { distance }}
$$

Modern distance measurements use radar ranging, which measures time lag of a reflected signal.

Example: How long would a radar signal take to complete the round trip to Mars when the two planets are 0.7 AU apart?

Distance travelled $=0.7 \times 2 \mathrm{AU}=2.1 \times 10^{8} \mathrm{~km}$
$\left(1 \mathrm{AU}=1.5 \times 10^{8} \mathrm{~km}\right)$
Time $=2.1 \times 10^{8} / 3 \times 10^{5}$
$=700$ seconds.

In the early 1500 s, a Polish astronomer called Nicolaus Copernicus revolutionised astronomy. He was the first to have his heliocentric model widely accepted.

1) Jupiter has 4 moons

In the early 1600 s, having made some of the first observations of the sky with a telescope, Galileo published 3 major findings:

2) The moon has craters, "seas" and mountains

3) The Milky Way, a band of light that crosses the sky, contains thousands of individual stars.

Soon after, Galileo published 2 more major findings:

1) The sun had dark spots on its surface and was therefore imperfect (not very Greek!). These spots allowed him to determine that the sun rotated with a period of ~ 28 days.
2) Venus, just like the moon, showed phases. This was a crushing blow for the
Ptolemaic model which could not explain this.

Can only get a "full" Venus when sun is in between Earth and Venus.

In the early 1600s, Tycho Brahe's observations interpreted by Johannes Kepler.

Ellipses - 1

$\mathrm{a}=$ semi-major axis
$\mathrm{b}=$ semi-minor axis

$$
\text { Ellipse in } x-y: \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

e	b / a	ae / a
0	1	0
0.1	0.995	0.1
0.2	0.98	0.2
0.5	0.88	0.5

$\mathrm{e}=0.2$

$e=0.5$

$\mathrm{e}=0.9$

TABLE 3A Planetary Orbital Data							
Planet	Semi-Major Axis		Eccentricity (e)	Perihelion		Aphelion	
	(AU)	$\left(10^{6} \mathrm{~km}\right)$		(AU)	$\left(10^{6} \mathrm{~km}\right)$	(AU)	$\left(10^{6} \mathrm{~km}\right)$
Mercury	0.39	57.9	0.206	0.31	46.0	0.47	69.8
Venus	0.72	108.2	0.007	0.72	107.5	0.73	108.9
Earth	1.00	149.6	0.017	0.98	147.1	1.02	152.1
Mars	1.52	227.9	0.093	1.38	206.6	1.67	249.2
Jupiter	5.20	778.4	0.048	4.95	740.7	5.46	816
Saturn	9.54	1427	0.054	9.02	1349	10.1	1504
Uranus	19.19	2871	0.047	18.3	2736	20.1	3006
Neptune	30.07	4498	0.009	29.8	4460	30.3	4537

$\mathrm{e}=0.2$

$e=0.5$

$e=0.9$

Kepler' s laws

1. Planets move in elliptical orbits with the sun at one focus.
2. Equal areas are swept out in equal times during an orbit
3. The square of a planet's period is proportional to
 the semi-major axis cubed: $\mathrm{P}^{2} \propto \mathrm{a}^{3}$

A more general form of Kepler's 3rd law can be applied to the orbit of any body around a mass, not just the sun:

$$
\mathrm{P}^{2}=\frac{\mathrm{a}^{3}}{\mathrm{M}}
$$

Where M is the mass of the central body in solar masses (ie equal to 1 if we' re talking about orbits around the sun), a is the semi-major axis in AU and P is the period in years.

Example: Jupiter's semi-major axis is 5.2 AU, calculate its orbital period.
Answer: The central body in this problem is the sun, whose mass is (by definition) 1 solar mass, so
$\mathrm{P}^{2}=5.2^{3} / 1=140.6 \quad--->\quad \mathrm{P}=11.6$ years

Example: If the period of Saturn (semi-major axis 9.54 AU) is 29.5 years, what is the period of Mercury ($\mathrm{a}=0.39 \mathrm{AU}$)?

Example: If the period of Saturn (semi-major axis 9.54 AU) is 29.5 years, what is the period of Mercury ($\mathrm{a}=0.39 \mathrm{AU}$)?

$$
\begin{aligned}
& \mathrm{P}^{2} \propto \mathrm{a}^{3} \\
& \quad \frac{P_{s}^{2}}{a_{s}^{3}}=\frac{P_{m}^{2}}{a_{m}^{3}} \\
& P_{m}^{2}=\frac{(29.5)^{2}}{(9.54)^{3}}(0.39)^{3}=0.059 \\
& \quad \mathrm{P}_{\mathrm{m}}=0.24 \text { years }=89 \text { days } .
\end{aligned}
$$

Derivation of Kepler's 3rd law

- If centripetal force =gravitational force:

$$
\begin{aligned}
& \frac{\mathrm{mv}^{2}}{\mathrm{r}}=\frac{\mathrm{GMm}}{\mathrm{r}^{2}}, \mathrm{v}=2 \pi \mathrm{r} / \mathrm{P} \\
& \therefore \frac{4 \pi^{2} \mathrm{r}^{2}}{\mathrm{r} \mathrm{P}^{2}}=\frac{\mathrm{GM}}{\mathrm{r}^{2}} \\
& \therefore \mathrm{P}^{2}=\left(\frac{4 \pi^{2}}{\mathrm{GM}}\right) \mathrm{r}^{3} \quad \text { or } \mathrm{P}^{2} \propto \mathrm{a}^{3} \quad \begin{array}{l}
\text { for elliptical } \\
\text { orbits }
\end{array}
\end{aligned}
$$

P in yr, a in AU, M in solar masses:
$P^{2}=a^{3} / M$
where $M=m_{1}+m_{2} \cong M_{\text {sun }}$ for the solar system

Assuming circularity:

Sun

O2011 Pearson Education, In

Speed in an orbit comes from equating gravitational and centripetal forces:

$$
\frac{\mathrm{GMm}}{\mathrm{R}^{2}}=\frac{\mathrm{mv}}{\mathrm{R}} \quad \text { or } \quad \mathrm{v}^{2}=\frac{\mathrm{GM}}{\mathrm{R}}
$$

Can also approach the velocities by equating energies.

Energy Considerations

- Kinetic and potential energy of a mass m:

$$
K=\frac{1}{2} m v^{2} \text { and } U=-\frac{G M m}{r}
$$

- Total energy of orbit (no proof):

$$
E_{t o t}=K+U=-\frac{G M m}{2 a} \quad \text { a=semi-major axis }
$$

"the energy required to 'unbind' an object - move it to infinity"

Two orbiting bodies move around a common centre of mass.

Escape velocity.

Speed in an orbit comes from equating gravitational and centripetal forces:
$\frac{\mathrm{GMm}}{\mathrm{R}^{2}}=\frac{\mathrm{mv}^{2}}{\mathrm{R}}$
The escape velocity of a mass depends on its mass and the distance from the centre of mass. Equate initial and final kinetic and gravitational potential energies:
$(\mathrm{K}+\mathrm{U})_{\mathrm{I}}=(\mathrm{K}+\mathrm{U})_{\mathrm{f}}=0$ (moving to infinity)
$\frac{\mathrm{mv}^{2}}{2}=\frac{\mathrm{GMm}}{\mathrm{R}}$

$$
\mathrm{V}_{\mathrm{esc}}^{2}=2 \mathrm{GM} / \mathrm{R} \quad \text { (careful with units!) }
$$

Some examples of escape velocity.

The Earth from the ground: $\operatorname{sqrt}\left(2 \times 6.67 \times 10^{-11} \times 6 \times 10^{24} / 6378 \times 10^{3}\right)$

$$
=11202 \mathrm{~m} / \mathrm{s}=11 \mathrm{~km} / \mathrm{s}
$$

The Earth from a space station in a 1000 km high orbit: $\operatorname{sqrt}\left(2 \times 6.67 \times 10^{-11} \times 6 \times 10^{24} / 7378 \times 10^{3}\right)=10416 \mathrm{~m} / \mathrm{s}=10 \mathrm{~km} / \mathrm{s}$

Jupiter: $\operatorname{sqrt}\left(2 \times 6.67 \times 10^{-11} \times 2 \times 10^{27} / 71500 \times 10^{3}\right)=61 \mathrm{~km} / \mathrm{s}$

The sun: $\operatorname{sqrt}\left(2 \times 6.67 \times 10^{-11} \times 2 \times 10^{30} / 7 \times 10^{8}\right)=617 \mathrm{~km} / \mathrm{s}$

