Stellar evolution, Einstein and extreme astrophysics!

C&M Chaps 21 & 22 plus bits from chap 16, 17, 20
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Energy production in stars through nuclear fusion: E=mc?
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Proton-proton chain (p-p chain). Net reaction converts 4H into 1 He.



Energy From Fusion Reactions

4 H nuclei = 6.693 x 10%7 kg
1 He nucleus = 6.645 x 10?7 kg
difference = 0.048 x 1027 kg

This difference in mass is called the mass defect. When nuclei undergo
fusion, some of their mass 1s converted to energy. The same amount of
energy 1s needed to break the nucleus apart. This energy is called the binding
energy.

Mass defect can also be expressed as a fraction. E.g. here it 1s 0.007

The energy released from a single reaction from E=mc? is:
0.048 x 1027x (3x10%)? = 0.43 x 10! Joules.

Note that the units for this calculation are mass in kg, ¢ in m/s and energy in
Joules.



Example: How much energy is produced when the sun converts 500 g of
mass 1nto energy?

Using E=mc?, energy = 0.5 x (3x10%)> =4.5x10'°J.

How many megaton bombs 1s this equivalent to 1f a 1-megaton bomb
produces 4 x10'> J?

4.5x10'°/4x10"° =11 megaton bombs



Example: In a star, 100 kg of hydrogen 1s fused into helium. How much
energy 1s liberated? How many kg of helium are produced?

Here, the easiest thing to do 1s use the mass defect, 1.e. the fraction of mass
that 1s turned into energy. We saw that for H and He, this 1s 0.007.

Using E=mc?, E = 0.007 x 100 x 300000000% = 6.3x10!¢ J.

To calculate the amount of He produced, we again use the mass defect as a
fraction. The mass defect tells us that 0.007 of the 1nitial amount 1s
converted to energy. That is 0.007 x 100 kg = 0.7 kg. This amount is
therefore “missing”, so 100-0.7=99.3 kg of He are produced

Can test theory of energy production by counting the number of
neutrinos coming from the sun.



The solar neutrino problem

First neutrino observatory
1960s: Homestake goldmine, S.
Dakota. Underground tank
filled with cleaning fluid.

Cl+v -> Ar (radioactive)
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Super-Kamiokande neutrino observatory is filled with 50,000 tons of pure water.




Sudbury neutrino observatory, Ontario. Filled with heavy water.
Sensitive to all three types of neutrino.

2015 Nobel prize 1n physics to Canadian Arthur McDonald (Queens)



Hydrostatic equilibrium keeps stars in balance whilst they have effective
fusion.

pPressure p
gravity =y




Most important property 1s stellar mass. Governs lifetime, colours, sizes...
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At what wavelengths can we observe different stars?

We can use Wien's law to calculate the wavelength at which stars of different masses
(temperatures) will emit most of their energy.

Recall Wien's law: A (nm)= 2.9 x 10° / T(K)

Example

An IR survey centred at 2700 nm finds a large number of brown dwarfs. What can
we infer about their temperature?

Using Wien's law, T=2.9 x 10° /2700 = 1074 K

Methane molecules are destroyed at temperatures above about 1500 K. What is the
minimum wavelength at which we should pre-select objects that might contain

methane?

wavelength = 2.9¢6/1500 = 1933 nm. This is in the near infrared.



Post-main sequence evolution: formation of the red giant.

Inside a
5M ¢ red giant

Inert envelope
Mostly H and He
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After core H-burning, star
moves off main sequence.
Exact evolution depends on
mass. This figure shows
evolution of 3 solar mass star.
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Measuring the main sequence “turn-off” allows us to age
date stellar populations
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We are all stardust!

- Massive star near the end
of its Kfetime has an
“onlon-ike' structure
just prior to exploding
as a supemova

Hed Giant Star

Example of nucloar reactions
that build neutron-rich isotopes




What happens next depends on the star’s mass.....
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The death of sun-like stars. Planetary nebula.

Planetary Nebula Mz 3

Hubble

Heritage

NASA, ESA, and The Hubble Heritage Team (STScl/AURA) » Hubble Space Telescope WFPC2 ¢ STScl-PRC01-05




Example:
In a spectrum of the ring nebula (whose diameter is 1.7 lightyears), we find that the
Balmer H alpha line is shifted from its rest wavelength of 656.3 nm by 0.04 nm.

How old 1s the nebula?

1). Calculate the radius of the nebula. radius=diameter/2. So the radius is 0.85
lightyears.

2) Calculate the expansion velocity. To do this, we use the shift in wavelength of the
emission line which 1s caused by the Doppler shift.

velocity = change in wavelength
speed of light original wavelength

So, velocity = (0.04/656.3) x 300,000 = 18 km/s

3) Finally, to get the time required for the bubble to grow, we use time=distance/
velocity. However, we first have to convert the distance (0.85 lightyears) into km.
1 1y =9.5x10'% km, so 0.85 lyrs = 8x10!? km.

time = 8x10'2 /18 = 4.4x10" seconds

So the age of the nebula is about 4x10!" seconds, or about 14,000 years.



White dwarfs and degenerate matter
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The Chandrasekhar Limit
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Formation of a Type Ia supernova:

Type Ia SN do not have H in their
spectra and leave no remnant.




The death of the most massive stars.

When the light elements fuse, the “average” mass of a nucleon decreases.
That lost mass has been converted to energy. Similarly, energy released in
fission.
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[ron lies at the trough of this curve, so there 1s no nuclear process (fission
or fusion) that can create energy from iron.



Formation of a Type II SN:

Strong H lines observable in
the spectrum.

The Exploding Core of a Supernova

The core of a massive
supergiant has begun
to collapse at the lower
left corner of this model

Matter continues to fall
inward (blue and green)
as the core expands
outward (yellow)
creating a shock wave

To show the entire star
at this scale, this page
would have 1o be 30

kilormeters in diameter.

Only 0.4 s after beginning
violent convection in the
expanding core (red)
pushes outward

‘ The shock wave will blow

the star apart as a neutron
star forms at the extreme
lower left corner.
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Supernova 1987A

 The supernova |
in 1987
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Post-SN for a massive star: neutron stars

Neutron Star

Mass ~ 1.5 times the Sun
~12 miles in diameter

Solid crust
~1 mile thick

Heavy liquid interior
Mostly neutrons,
with other particles

Remnant of SN no longer supported by
thermal pressure of nuclear reactions, but by
degeneracy pressure from either electrons
(case of the white dwarf) or neutrons
(neutron star).
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Conservation of angular
momentum (L=Iw o« mr? w)
“shrinking” of stellar core into a
neutron star increases its velocity
-> fast spin.

Example: Sphere of radius I1m
rotates at 1 revolution/min. How
fast does it rotate if it contracts by
factor 10?

M, w; 17 = My gty
Mx1x1=Mxow:x(0.1)
o, = 100 rev/min.




Periodic radio pulses
found by graduate
student Jocelyn Bell
using antenna in
Cambridge.

Discovery of pulsars,
led to Nobel prize for
Anthony Hewish in
1974.



Remnant

brown dwarf

white dwarf

black dwarf

neutron star

black hole
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Typical mass
(solar masses)

less than 0.08

less than 1.4

less than 1.4

1.4-3 (approx.)

more than 3

Typical radius
(km)

70,000

10,000

10,000

10

10

Typical density
(kg/m?’)

1018

infinite at the
center

Support

electron
degeneracy

electron
degeneracy

electron
degeneracy

neutron
degeneracy

none

Context (section)

H fusion never started (19.3)

stellar core after fusion stops at C/O (20.3)

“cold” white dwarf (20.3)

remnant of a core collapse supernova (22.1)

remnant of a core collapse supernova with
massive progenitor (22.5)



Making a black hole: at the highest densities, the escape velocity exceeds
the speed of light. So if remnant’s mass exceeds limit for neutron
degeneracy, becomes a black hole.
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Re-arranging the eqn for escape velocity gives the size that a mass must
shrink to 1n order that light can not escape, the Schwarzschild radius:
R =2GM/ ¢’

Singularity




Example: What is the Schwarzschild radius of a 1 solar mass black hole?

R =2GM/ ¢?
2x6.67x10M"x199x10°/(3x10%*=29x10°m=2.9km

This 1s also the size the sun would have to shrink to to become a BH.

Example: What size would the Earth have to shrink to in order to become a
black hole?

R =2GM/ ¢?

2x6.67x 101 x6x10%*/(3x10%?=0.009 m=0.9 cm



How to find a (stellar mass) black hole?

Tt * Black hole
B-star companion
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In order to really understand black holes, we need to know a
little bit about Einstein's theories of relativity:.

Einstein's theory of special relativity: tells us about motion at near light speed

Einstein's theory of general relativity: tells us about gravity near large masses



A constant speed of light: The Michelson Morley Experiment (1887)

Mirror
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Coherent
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Source

Y

Light

Michelson-Morley
Experiment
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Light beams sent in different directions did not interfere, so they had not been slowed
due to relative motion in the putative ether.



Unlike everyday objects, light has a fixed speed, regardless of the speed of
1ts source, or observer.

Light beam

c relative

(\ =
Observer (mj ; 5

SeesC

1905: Einstein publishes special theory of relativity that extends the laws
of physics to the “relativistic” regime where velocities approach c.



Some Weird Predictions of Special Relativity

The faster an object moves.... e
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Why time seems to travel more slowly...

Fig 5

92000 How Stuff Works



The General Theory of Relativity - the equivalence principle

[ feel gravity,

| must be on

the surface of
a planet.

| feel gravity
| must be on
the surface of




Mass tells space-time how to curve, and the curvature tells mass
how to move and accelerate.




The 3 Tests of General Relativity

1) Bending of starlight

gravitational lensing.
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More spectacular....

Lensing of a distant quasar/galaxy by an intervening galaxy

Path of undeflected Apparent path of
light from quasar light to Earth

Line of sight ™ 1

Deflected light

Galaxy close to line of sight
acts as gravitational lens

False image
of quasar

Distant
quasar

False image
of quasar




Einstein rings occur when the background object 1s well aligned with the
foreground lens. Misalignments lead to multiple images.

.

J073728.45+321618.5 J095629.77+510006.6 J120540.43+491029.3 J125028.25+052349.0

J140228.21+632133.5 J162746.44-005357.5 J163028.15+452036.2 J232120.93-093910.2

Einstein Ring Gravitational Lenses
Hubble Space Telescope + Advanced Camera for Surveys

NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team STScl-PRC05-32




Animation (artificially) dims the visible light from the galaxy and then
shows how a background object would be gravitationally lensed at
different positions behind the galaxy.

Lensin d Galax




Even more spectacular....
Lensing by a massive cluster

Multiple images of background
galaxies:




Gravitational lensing: some modern applications.

Microlensing: transient events due to stellar mass objects in Galactic halo.

Gravitational Microlensing by Black Hole

Microlensed
xm:lgc

Microlensing helped to rule out dark stellar and sub-stellar mass objects (MACHOs:
Massive Compact Halo Object) as significant sources of dark matter in the Milky Way



Gravitational lensing: some modern applications.

Weak gravitational lensing: measuring dark matter and energy.

Galaxies randomiy
distributed

Slight alignment




Gravitational lensing: some modern applications.

Bullet cluster: two galaxy clusters 1n collision and evidence of dark matter




2) The precession of the perihelion of Mercury. That is, the drifting of
Mercury's closest approach to the sun.

MERCURY'S ORBIT




3) Gravitational redshift. Do not confuse this with cosmological

redshift!!
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Towards a complete understanding of gravity: gravity wave detectors

The LIGO Hanford Observatory in Washington State (left); and the LIGO Livingston Observatory (right) in

Louisiana.

Laser Interferometric Gravity Wave
Observatory (LIGO), twin
observatories for triangulation/
confirmation.
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Feb 11 2016: LIGO detection of black
hole merger.
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