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4 The Schrödinger wave equation

We have noted in previous lectures that all particles, both light and matter, can be described as a
localised wave packet.

• De Broglie suggested a relationship between the effective wavelength of the wave function
associated with a given matter or light particle its the momentum. This relationship was
subsequently confirmed experimentally for electrons.

• Consideration of the two slit experiment has provided an understanding of what we can and
cannot achieve with the wave function representing the particle: The wave function Ψ is not
observable. According to the statistical interpretation of Born, the quantity Ψ∗Ψ = |Ψ2| is
observable and represents the probability density of locating the particle in a given elemental
volume.

To understand the wave function further, we require a wave equation from which we can study
the evolution of wave functions as a function of position and time, in general within a potential
field (e.g. the potential fields associated with the Coulomb or strong nuclear force).

As we shall see, manipulation of the wave equation will permit us to calculate “most probable”
values of a particle’s position, momentum, energy, etc. These quantities form the study of me-
chanics within classical physics. Our quantum theory has now become quantum mechanics –
the description of mechanical physics on the quantum scale. The particular sub-branch of quantum
mechanics accessible via wave theory is sometimes referred to as wave mechanics.

The time–dependent Schrödinger wave equation is the quantum wave equation

ih̄
∂Ψ(x, t)

∂t
= − h̄2

2m

∂2Ψ(x, t)

∂x2
+ V (x, t) Ψ(x, t), (1)

where i =
√
−1, m is the mass of the particle, h̄ = h/2π, Ψ(x, t) is the wave function representing the

particle and V (x, t) is a potential energy function. It is straight forward to extend the Schrödinger
equation to three spatial dimensions

ih̄
∂Ψ

∂t
= − h̄2

2m

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2

)
+ V Ψ. (2)

The Schrödinger equation is postulated – it is not derived – yet the predictions based upon it are
verified via experiment. It provides a correct description of physical observables. The same could
be said for Newton’s equation

F = m
d2x

dt2
. (3)
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This is another example of an equation that is postulated – not derived – yet provides a correct
description of physical observables. However, Newton’s equation is valid at macroscopic scales,
whereas the Schrödinger is valid at microscopic, or quantum scales.

Note that the Schrödinger equation as presented here is non–relativistic. A relativistic form of
the Schrödinger equation exists but is not considered in this course.

4.1 Investigating the Schrödinger equation

The Schrödinger is nominally similar to the classical wave equation

∂2Ψ

∂x2
=

1

v2

∂2Ψ

∂t2
, (4)

with the exception that the Schrödinger equation contains only a 1st order time derivative. This is
the first clue that wave solutions to the Schrödinger equation will not be identical to solutions of
the classical wave equation.

T–Rex Example 6.1: Is the Schrödinger equation linear?

If the Schrödinger equation is linear, then, if Ψ1 and Ψ2 represent valid solutions, there must exist
a valid solution of the form

Ψ(x, t) = aΨ1(x, t) + bΨ2(x, t), (5)

where a and b are (real or complex) constants. The derivatives of Ψ may be written as

∂Ψ

∂t
= a

∂Ψ1

∂t
+ b

∂Ψ2

∂t

∂Ψ

∂x
= a

∂Ψ1

∂x
+ b

∂Ψ2

∂x

∂2Ψ

∂x2
= a

∂2Ψ1

∂x2
+ b

∂2Ψ2

∂x2
. (6)

Substituting these expressions into the Schrödinger equation for Ψ, we obtain

ih̄

(
a
∂Ψ1

∂t
+ b

∂Ψ2

∂t

)
= − h̄2

2m

(
a
∂2Ψ1

∂x2
+ b

∂2Ψ2

∂x2

)
+ V (aΨ1 + bΨ2). (7)

Rearranging this expression yields

a

(
ih̄
∂Ψ1

∂t
+
h̄2

2m

∂2Ψ1

∂x2
− V Ψ1

)
= b

(
ih̄
∂Ψ2

∂t
+
h̄2

2m

∂2Ψ2

∂x2
− V Ψ2

)
. (8)
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As Ψ1 and Ψ2 are valid solutions to the Schrödinger equation, then the terms within the parentheses
are exactly zero, the equation makes sense and Ψ must also be a valid solution to the wave equation.
Given the Schrödinger equation is linear we know that the principle of superposition is valid and
we can confidently create wave packets from linear wave superposition that are themselves valid
solutions of the Schrödinger equation. Recall from Lecture 3 that wave superposition, demonstrated
as interference fringes, is required to describe the results of the two-slit experiment.

T–Rex Example 6.2: Investigating valid solutions to the Schrödinger equation

In Lecture 3 we investigated solutions to the classical wave equation of the form

Ψ(x, t) = A sin(kx− ωt+ φ) (9)

where k is the wave number, ω is the angular frequency and φ is a phase constant. The wave
is moving in the positive x–direction. This “classical” wave is not a valid solution to the time–
dependent Schrödinger equation.

We start by considering the three derivative terms

∂Ψ

∂t
= −ωA cos(kx− ωt)

∂Ψ

∂x
= kA cos(kx− ωt)

∂2Ψ

∂x2
= −k2A sin(kx− ωt) = −k2Ψ. (10)

Inserting these relations into the time–dependent Schrödinger equation we obtain

−ih̄ω cos(kx− ωt) =

(
h̄2k2

2m
+ V

)
Ψ

=

(
h̄2k2

2m
+ V

)
A sin(kx− ωt), (11)

which is never satisfied (cos x 6= sinx).

We now consider a more general wave function

Ψ(x, t) = Aei(kx−ωt) = A[cos(kx− ωt) + i sin(kx− ωt)]. (12)

We note that this general wave solution is complex yet still represents a wave moving in the positive
x–direction. In general, the amplitude A can also be complex. In order to demonstrate that this
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wave function is a valid solution to the time–dependent Schrödinger equation, we follow the same
approach as before, i.e.

∂Ψ

∂t
= −iωAei(kx−ωt) = −iωΨ

∂Ψ

∂x
= ikΨ

∂2Ψ

∂x2
= i2k2Ψ = −k2Ψ. (13)

Inserting these relations into the time–dependent Schrödinger equation we obtain

ih̄(−iωΨ) = − h̄2

2m
(−k2Ψ) + VΨ

(
h̄ω − h̄2k2

2m
+ V

)
Ψ = 0. (14)

We can understand this equation by noting that E = hf = h̄ω and p = h̄k to obtain(
E − p2

2m
− V

)
Ψ = 0. (15)

The term in parentheses represents the conservation of energy (i.e. E−KE−V = 0) and therefore
Aei(kx−ωt) represents a valid solution to the time–dependent Schrödinger equation.

4.2 Probability and normalisation

In the previous lecture we introduced the idea of probabilities based upon the wave function. The
probability P (x) dx of observing a particle between x and x+ dx is

P (x) dx = Ψ∗(x, t)Ψ(x, t) dx. (16)

The probability of observing the particle between x1 and x2 is

P =
∫ x2

x1

Ψ∗Ψ dx. (17)

The particle must exist somewhere; this condition is imposed by normalising the wave function
according to ∫ ∞

−∞
Ψ∗(x, t)Ψ(x, t) = 1. (18)
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T–Rex Example 6.4 Normalising the wave function

Consider the wave function Ψ(x, t) = Ae−α|x|. Normalise the wave function and determine the
probability of observing the particle between 0 < x < 1/α, and between 1/α < x < 2/α.

The wave function is normalised as follows∫ ∞

−∞
A2e−2α|x| dx = 1. (19)

As the wave function is symmetric about zero we may re–write it as

2
∫ ∞

0
A2e−2α|x| dx = 1 =

2A2

−2α
[e−2αx]∞0

1 =
−A2

α
(0− 1) =

A2

α
. (20)

The coefficient A =
√
α and the wave function may be written as

Ψ =
√
αe−α|x|. (21)

The probability of locating the particle between 0 < x < 1/α may be written as

P =
∫ 1/α

0
αe−2αx

=
α

−2α
[e−2α]

1/α
0

= −1

2
(e−2 − 1) = 0.432. (22)

Compute the value of the probability of localising the particle between 1/α < x < 2/α as an
exercise.

4.3 Properties of valid wave functions

In order that the wave function corresponds to physical (i.e. real) situations, it must satisfy a
number of extra conditions in addition to the Schrödinger equation - these are sometimes referred
to as boundary conditions:

1. In order to avoid infinite probabilties, Ψ must be finite everywhere.

2. In order to avoid multiple probability values, Ψ must take a single value at each position and
time.

3. For finite potentials, ∂Ψ/∂x must also be continuous (things are different when V is infinite).

4. In order to normalise the wave function one must have limx→±∞ Ψ → 0.
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4.3.1 The free wave function

The wave function Ψ(x, t) = Aei(kx−ωt) represents a valid solution to the Schrödinger equation. The
wave function is referred to as the free wave function as it represents a particle experiencing zero
net force (constant V ). However, the free wave function cannot be normalised as it is a continuous
(not localised) wave, i.e. ∫ ∞

−∞
Ψ∗(x, t)Ψ(x, t) =

∫ ∞

−∞
A2dx

= ∞. (23)

One can understand this result via the uncertainty principle: the free wave function possesses a
definite value k and ω (∆k = ∆ω = 0). Thereforewe must have ∆x = ∆t = ∞. Despite this
condition, the free wave function remains a useful basic solution to the Schrödinger equation as all
valid wave functions can be constructed from a sum or integral of free wave functions, for example

ΨTOT =
∫ ∞

−∞
e−x2/2σei(kx−ωt) dx, (24)

represents a Gaussian wave packet.

4.4 The time independent Schrödinger equation

We have so far considered the time dependent Schrödinger equation. However, in the case where
the potential term is constant, i.e. V (x, t) = V (x), the Schrödinger equation can be separated into
position and time dependent components

Ψ(x, t) = ψ(x)f(t). (25)

Inserting this wave function into the time dependent Schrödinger equation, we obtain

ih̄ψ(x)
∂f(t)

∂t
= − h̄

2f(t)

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x)f(t). (26)

Dividing by ψ(x)f(t) yields

ih̄
1

f(t)

df(t)

dt
= − h̄2

2m

1

ψ(x)

d2ψ(x)

dx2
+ V (x). (27)

The lhs of this equation is a function of time only, the rhs is a function of position only; therefore
each must be equal to a constant value, named B. To determine the value of B, we consider the
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lhs only

ih̄
1

f(t)

df(t)

dt
= B

ih̄
∫ df

f
=

∫
B dt

ih̄ ln f = Bt+ C, (28)

where C is an integration constant which can be set to zero by specifying f(t = 0) = 0. Therefore

ln f =
Bt

ih̄

f(t) = eBt/ih̄ = e−iBt/h̄. (29)

If we compare this result to the free particle wave function we note that f(t) = e−iωt and that
B = h̄ω = E, the total energy. Note that this can also be seen from a dimensional analysis of the
term f(t) = e−iBt/h̄; t has units of seconds and h̄ has units of energy times time – therefore B must
have units of energy. This is a general result. We may now write

ih̄
1

f(t)

df(t)

dt
= E, (30)

and we can now form the time independent Schrödinger equation as

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = E ψ(x). (31)

Returning to the general form of the wave function we may write

Ψ(x, t) = ψ(x)e−iωt (32)

The probability density of this wave function is

Ψ∗Ψ = ψ2(x)(eiωte−iωt)

= ψ2(x). (33)

The probability distribution is constant in time. In classical physics this phenomena is referred to
as a standing wave. In quantum mechanics, we refer to this as a stationary state. Therefore we
can use the time independent Schrödinger equation to study stationary or stable states in quantum
systems.
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4.5 Expectation values

If the wave function represents localised particles, we require a method for computing the predicted
values of observable quantities (e.g. position, momentum, total energy) from the wave function.

The determination of observable quantities from the wave function is based upon expectation
values. The idea of an expectation value is based upon the statistical interpretation of the wave
function. If we make many measurements of a particle described by a given wave function, the
average of many measurements will converge upon the expectation value.

Any observable quantity for which we can compute an expectation value from the wave function
is referred to as a physical observable. Physical observables must be represented by real – not
imaginary – numbers.

Imagine that we observe the position of a particle constrained to move along the x–axis. We observe
the particle at x1, N1 times, at x2, N2 times, and so on. The average position of the particle is

x̄ =
x1N1 + x2N2 + x3N3 + x4N4 + · · ·

N1 +N2 +N3 +N4 + · · ·
=

∑
i xiNi∑
iNi

. (34)

If P (x) describes the probability of observing the particle at some x (distributed continuously) we
may re–write the above equation in integral form

x̄ =

∫∞
−∞ xP (x) dx∫∞
−∞ P (x) dx

. (35)

Within our quantum mechanical formalism P (x) = Ψ∗(x, t)Ψ(x, t) and the expectation value of x
is now

〈x〉 =

∫∞
−∞ Ψ∗(x, t)xΨ(x, t)dx∫∞
−∞ Ψ∗(x, t)Ψ(x, t)dx

=
∫ ∞

−∞
Ψ∗(x, t)xΨ(x, t)dx, (36)

for a normalised wave function. the expectation value of a general function g(x) for a normalised
wave function is

〈g(x)〉 =
∫ ∞

−∞
Ψ∗(x, t) g(x) Ψ(x, t)dx. (37)

The expectation value of a stationary state may be written as

〈x〉 =
∫ ∞

−∞
ψ∗(x)eiωt xψ(x)e−iωtdx

=
∫ ∞

−∞
ψ∗(x)xψ(x)dx. (38)

When we state that the wave function provides a complete description of a physical system, we
mean that the expectation value of physical observables (real quantities) can be computed using
the wave function. The wave function cannot provide the value of individual measurements.
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4.5.1 The momentum operator

How do we compute the expectation value of the momentum? Any knowledge of the momentum
must also be consistent with the uncertainty principle. Consider the free particle wave function,
Ψ(x, t) = ei(kx−ωt). Taking the derivative w.r.t. x, we have

∂Ψ

∂x
=

∂

∂x
[ei(kx−ωt)] = ikei(kx−ωt) = ikΨ. (39)

The wave number k = p/h̄, such that
∂Ψ

∂x
= i

p

h̄
Ψ, (40)

and rearranging the equation yields

p[Ψ(x, t)] = −ih̄ ∂
∂x

[Ψ(x, t)]. (41)

We therefore define the momentum operator as

p̂ = −ih̄ ∂
∂x
. (42)

In mathematical language, an operator transforms one function into another, e.g. the operator Â
operates on f(x) such that Â f(x) = g(x). Every physical observable has an associated operator
that is used to determine the expectation value of the observable. The general formalism is

〈A〉 =
∫ ∞

−∞
Ψ∗(x, t) ÂΨ(x, t) dx. (43)

The expectation value of the momentum is therefore

〈p〉 = −ih̄
∫ ∞

−∞
Ψ∗(x, t)

∂Ψ(x, t)

∂x
dx. (44)

As we have seen earlier, position x is its own operator.

4.5.2 The energy operator

We next consider the total energy of the wave function. Take the time derivative of the free particle
wave function

∂Ψ

∂t
=

∂

∂t
ei(kx−ωt) = −iωei(kx−ωt) = −iωΨ. (45)

Substituing ω = E/h̄ we have

E[Ψ(x, t)] = ih̄
∂

∂t
[Ψ(x, t)], (46)
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and we define the energy operator as

Ê = ih̄
∂

∂t
. (47)

The expectation value of the energy is then

〈E〉 = ih̄
∫ ∞

−∞
Ψ∗(x, t)

∂Ψ(x, t)

∂t
dx. (48)

Though the above results have been generated using the free particle wave function, they are valid
in general as well.

T–Rex example 6.6: Use energy conservation to generate the Schrödinger equation

The total energy of a particle may be written as

E = K + V =
p2

2m
+ V. (49)

We now permit the operators associated with each observable to act upon the wave function.
Considering the lhs of the above equation

ÊΨ = ih̄
∂Ψ

∂t
. (50)

The rhs of the equation becomes

[
1

2m
(p̂)2 + V

]
Ψ =

1

2m

(
−ih̄ ∂

∂x

)2

Ψ + V Ψ

= − h̄2

2m

∂2Ψ

∂x2
+ V Ψ. (51)

Equating the lhs with the rhs of the original energy conservation equation we obtain the time
dependent Schrödinger equation.

ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂x2
+ V Ψ. (52)

It is important to note that this is not a derivation of the Schrödinger equation. Instead it shows
the consistency of the energy and momentum terms just defined.

4.6 The infinite square well potential

We now wish to solve the time independent Schrödinger equation for several simple potentials. In
doing so we will investigate the behaviour of the quantum wave function and the expected value of
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physical observables. The infinite square well potential is essentially a particle in a box. However,
on this occasion our analysis will be more rigourous.

The infinite square well describes the potential term

V (x) = ∞ x ≤ 0, x ≥ L

= 0 0 < x < L, (53)

and the particle is restricted to the interval 0 < x < L. This can be seen clearly by considering the
time independent Schrödinger equation

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = E ψ(x). (54)

When V (x) = ∞ we must have ψ(x) = 0 (to avoid an infinity in the equation) and therefore
ψ∗ψ = 0 with the consequence that the particle cannot exist in this region. When V (x) = 0, ψ(x)
now represents the free particle wave function and we re–write the time independent Schrödinger
equation as

− h̄2

2m

d2

dx2
ψ(x) = Eψ(x)

d2ψ(x)

dx2
= −2mE

h̄2 ψ(x). (55)

We note that p = h̄k and E = p2/2m. Therefore, p2 = 2mE and k2 = (2mE)/h̄2 and we may
re–write the above equation as

d2ψ(x)

dx2
= −k2ψ(x). (56)

A general solution to this equations takes the form

ψ(x) = A sin kx+B cos kx. (57)

However, does such a solution match the boundary conditions for an acceptable wave function? As
the potential term is discontinuous in x, dψ(x)/dx need not be a continuous function. However,
ψ(x) must be a continuous function, i.e. ψ(x = 0) = 0 and ψ(x = L) = 0. Taking the first condition
we see that

ψ(x = 0) = A sin(0) +B cos(0) = 0 ⇒ B = 0. (58)

At x = L we have
ψ(x = L) = A sin(kL) = 0 ⇒ kL = nπ. (59)
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The wave function is therefore

ψ(x) = A sin
(
nπx

L

)
forn = 1, 2, 3, . . . and 0 < x < L. (60)

The important point to note here is that the range of permitted wavefunctions is quantised. We
next have to normalise the wave function over all space, i.e.∫ ∞

−∞
ψ∗ψdx = 1

∫ 0

−∞
ψ∗ψdx+

∫ L

0
ψ∗ψdx+

∫ ∞

L
ψ∗ψdx = 1

0 +
∫ L

0
A2 sin2

(
nπx

L

)
dx+ 0 = 1 (61)

We solve this integral by applying the change of variable u = nπx/L and writing∫ L

0
A2 sin2

(
nπx

L

)
dx =

∫ nπ

0
A2 sin2 u du

dx

du
. (62)

The integral in Equation 61 then reduces to

A2 L

nπ

[
−1

2
cosu sinu+

u

2

]nπ

0
= 1

A2 L

nπ

[
−1

2
cos(nπ) sin(nπ) +

nπ

2

]
= 1

A =

√
2

L
. (63)

Hence the normalised wave function may be written

ψ(x) =

√
2

L
sin

(
nπx

L

)
forn = 1, 2, 3, . . . and 0 < x < L. (64)

The wave function is exactly the same as a classical time independent standing wave and the particle
in a box therefore corresponds to a stationary state.

T–Rex Example 6.7: Show that the wave function Ψn(x, t) for a particle in an infinite
square well corresponds to a standing wave in a box.

To generate the time dependent wave function we form the quantity

Ψn(x, t) = ψ(x)eiωnt

=

√
2

L
sin(knx)e

iωnt. (65)
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However, sin(knx) can be written as

sin(knx) =
eiknx − e−iknx

2i
, (66)

so that the wave function becomes

Ψn(x, t) =

√
2

L

(
ei(knx−ωnt) − e−i(knx+ωnt)

2i

)
. (67)

This is simply the superposition of two waves, one travelling in the positive x–direction and one
travelling in the negative direction. A standing wave will result with an angular frequency ωn.

End of Example 6.7

The energy associated with each stationary state comes from a consideration of the wave number

kn =
nπ

L
=

√
2mEn

h̄2 n = 1, 2, 3, . . . , (68)

where the subscript n indicates that kn and En depend upon the value of n – the principal
quantum number. We may write the energy of each quantum state as

En = n2 π2h̄2

2mL2
= n2 π2(h̄c)2

2(mc2)L2
=

(eV nm)2

eV nm2
= eV. (69)

Once again, we note that the possible energy values of the particle are quantised. In this case,
energy quantisation arises solely from the boundary conditions. Each state available to the wave
function ψn(x), is characterised by a unique energy state En, and probability density |ψn|2 (see
T-Rex Figure 6.3). A number of additional points should be emphasized

• The particle cannot have E = 0 (or at least only in the case where the particle does not
exist but this is not an interesting possibility). The lowest available energy state is E1 cor-
responding to n = 1. This is referred to as the ground state. Though this effect is only
noticeable for quantum situations, the same rules holds in the macroscopic world. A tennis
ball constrained to lie within a court cannot have E = 0. However, in this case, E1 is so small
as to be unmeasureable in most practical circumstances. Once again, this view agrees with
the principle that macroscopic objects possess very large quantum numbers.

• In general we see that the energy of the confined particle is inversely proportional to both the
mass m and the square of the confinement scale L. Therefore, confining a given particle to
a smaller region imposes a greater minimum energy. Taking the case of an electron we can
write

E1 =
π2(h̄c)2

2(mc2)L2
=

(π2)(197.3 eV nm)2

(2)(511, 000 eV)(L2)
≈ 0.4

(L/nm)2
eV. (70)

Therefore, if we confine an electron in a one dimensional box of length 0.1 nm we obtain a
ground state energy E1 ≈ 40 eV, a reasonable approximation to atomic electron energies.
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• The probability density P (x) to observe the particle at a given x is

P (x) = ψ∗ψ =
2

L
sin2

(
nπx

L

)
. (71)

In the classical limit this probability is P (x) = 1/L for 0 < x < L. For large values of n there
will be many wave oscillations within the box. As the average value of sin2 θ over one cycle is
1/2. Therefore, in the limit of large quantum numbers we obtain the classical result.

T–Rex Example 6.8: Calculate the expected values of x, x2, p and p2 for a particle in
an infinite square well existing in the first excited state.

The first excited state corresponds to n = 2. The wave funtion for this case is

ψ2(x) =

√
2

L
sin

(
2πx

L

)
(72)

1. The expectation value of 〈x〉2 is

〈x〉2 =
2

L

∫ L

0
x sin2

(
2πx

L

)
dx. (73)

Once again, we solve this using a change of variable u = 2πx/L and noting that dx/du = L/2π.
The intergral then becomes

〈x〉2 =
2

L

(
L

2π

)2 ∫ 2π

0
u sin2 u du

=
2

L

(
L

2π

)2
[
u2

4
− u

sin 2u

4
− cos 2u

8

]2π

0

=
2

L

(
L

2π

)2 [
π2 − 1

8
+

1

8

]

=
L

2
. (74)

Note that the expected position of the particle is in the middle of the box although the value
of the wave function is zero at this point.

2. The expectation value of 〈x2〉2 is

〈x2〉2 =
2

L

∫ L

0
x2 sin2

(
2πx

L

)
dx

=
(

1

3
− 1

8π2

)
L2 = 0.32L2, (75)
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Note that the integral is solved with a change of variable to convert the integrand to a standard
form and is then worked in a straightforward (if lengthy) manner.

3. The expectation of the momentum 〈p〉2 is given by

〈p〉2 = (−ih̄) 2

L

∫ L

0
sin

(
2πx

L

) [
d

dx
sin

(
2πx

L

)]
dx

= −4πih̄

L

∫ L

0
sin

(
2πx

L

)
cos

(
2πx

L

)
dx

= 0. (76)

The average, or expected value of the momentum is zero – as the particle is moving left as
often as it is moving right.

4. However, the expectation value of 〈p2〉2 behaves in a different manner and is given by

〈p2〉2 =
2

L

∫ L

0
sin

(
2πx

L

)(
−ih̄ d

dx

)(
−ih̄ d

dx

)
sin

(
2πx

L

)
dx

= (−ih̄)2 2

L

∫ L

0
sin

(
2πx

L

)(
2π

L

d

dx

)
cos

(
2πx

L

)
dx

= −(−h̄2)
8π2

L3

∫ L

0
sin

(
2πx

L

)
sin

(
2πx

L

)
dx

=
4π2h̄2

L2
. (77)

This value can be compared to the value of E2, i.e.

E2 =
4π2h̄2

2mL2
=
〈p2〉2
2m

, (78)

which is simply the statement E = p2/2m+ V , for which in this case we have V = 0.

Finally, what happens if we consider the uncertainty relation for this wave function? We can form

the uncertainty relation by noting that ∆x = (〈x2〉 − 〈x〉2)1/2
and ∆p = (〈p2〉 − 〈p〉2)1/2

. In this
case, we find that

∆p∆x =
2πh̄

L

(
L2

3
− L2

4

)1/2

=
2πh̄

L

L

2
√

3
= h̄

π√
3
>
h̄

2
. (79)
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4.7 The finite square well potential

The infinite square well provides a useful first example of how to manipulate the time independent
Schrödinger equation. However, infinite potentials are not very realistic. A more reasonable example
of the potentials encountered in nature is the finite square well potential where we observe the
following

= V0 x ≤ 0 region I

V (x) = 0 0 < x < L region II

= V0 x ≥ L region III

We consider a particle of energy E < V0. In classical physics the particle is completely bound within
the potential. However, within quantum theory we will see that there exists a possibility that the
particle can exist outside the potential well.

We begin by considering the time independent Schrödinger equation for regions I and III outside
the square well

− h̄2

2m

d2ψ

dx2
= (E − V0)ψ. (80)

We can re–write this equation using α2 = 2m(V0 − E)/h̄2, as positive constant, as

d2ψ

dx2
= α2ψ. (81)

Solutions to this equation take the form eαx and e−αx, i.e. exponential terms rather than sinusoidal.
We can use the boundary condition ψ(x) → 0 as x → ±∞ to select physically reasonable wave
functions. In the region x > L we can reject the positive exponential term as otherwise we would
have ψ(x) → ∞ as x → ±∞. Similarly we can reject the negative exponential term at x < 0.
Therefore we can write

ψI(x) = Aeαx x < 0

ψIII(x) = Be−αx x > L.

The constants A and B represent probability amplitudes that we must solve for using the boundary
conditions.

Within the potential well, in region II, the time independent Schrödinger equation takes the form

d2ψ

dx2
= −k2ψ, (82)

where k =
√

(2mE)/h̄2. The general sinusoidal wave function that satisfies this equation can be
written as

ψII(x) = Ceikx +De−ikx 0 < x < L. (83)
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Note that when we looked at the infinite square well, we were able to use the boundary conditions
to simplify this oscillatory solution to a sine term. However, with the finite square well, we no
longer have ψ(x) = for x = 0 or x = L.

We now use the boundary conditions to solve for the probability amplitudes A,B,C and D. We will
not solve for them in detail but rather illustrate the overall method. We require the wave function
ψ(x) and its derivative dψ/dx be continuous functions of x. There are two “boundaries” in the finite
square well (between regions I and II and between II and III). Therefore we can generate a total
of four equations to solve for four unknown probability amplitudes. We examine each condition in
turn

• ψ(x) must be continuous. Therefore

ψI(x = 0) = ψII(x = 0)

A = C +D, (84)

and

ψII(x = L) = ψIII(x = L)

CeikL +De−ikL = Be−αL. (85)

• ψ′(x) = dψ/dx must be continuous. Therefore

ψ′I(x = 0) = ψ′II(x = 0)

αAeαx|x=0 = ikCikx|x=0 − ikDe−ikx|x=0

αA = ikC − ikD, (86)

and

ψ′II(x = L) = ψ′III(x = L)

ikCikL − ikDe−ikL = αBe−αL. (87)

We will not work further through the maths here. Instead, we emphasize a number of qualitative
points.
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• The form of the total wave function (I+II+III) for the finite square well is shown in T–Rex
Figure 6.5. The most important result is that where there exists a finite potential, there
exists a finite possibility to observe the particle outside the well. The greater the energy of
the particle, the greater the probability of existing outside the potential well (see below). This
is in contrast to the results derived for the infinite square well and for any classical analysis
of a particle trapped in a box.

• Once again we note that the energy levels are quantized and that E = 0 is not permitted.

• If we compare wave solutions for the finite and infinite square wells, we see that the De Broglie
wavelength of a given solution (n = 1, 2, 3, . . .) is longer in the finite well compared to the
infinite well. This in turn implies that the momenta and energy of each state are smaller for
the finite potential. In addition, the number of energy levels is curtailed to E < V0.

• The finite probability for the particle to exist outside the well is linked to the idea of quantum
tunneling (more later). The extent to which the particle will be observed outside the well is
given by the probability P (x)dx = ψ∗(x)ψ(x)dx. In regions III we can write

ψ2(x) = B2e−2αx ∝ e−2α = e−2
√

2m(V0−E)h̄2

. (88)

With a similar expression for region I. We see that the probability to observe the particle
outside the well is smaller for larger potentials and also that the probability is larger for
higher energy states. The interval of distance δx over which the probability drops by a factor
e is equal to 1/2α, i.e.

δx =
1

2α
=

h̄

2
√

2m(V0 − E)
. (89)

We call δx the penetration depth. In general, the presence of h̄ in the numerator ensures that
δx corresponds to a very small distance.

Worked problem: consider a particle with an energy E bound within a finite square well of
height V0 and width 2L such that −L ≤ x ≤ +L. As the potential energy is symmetric about the
mid-point of the well, the permitted stationary states will be either symmetric or anti-symmetric
about the mid-point.

1. Show that for E < V0 the boundary conditions restrict the permitted energies of symmetric
waves to be

k tan kL = α, (90)

where α =
√

(2m/h̄2)(V0 − E), and k =
√

2mE/h̄2 is the wave number of the oscillation
interior to the well.
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Solution: The time independent Schrödinger equation reduces to

d2ψ

dx2
=

2m

h̄2 (V (x)− E)ψ. (91)

Within the potential V (x) = 0 and we obtain solutions of the form sin kx and cos kx where
k2 = 2mE/h̄2. Waves that are symmetric about the mid-point of the well take the form

ψ(x) = A cos kx , (92)

for −L ≤ x ≤ +L. Outside the well, we have V (x) = V0 and solutions to the wave equation
take the form exp(±αx). Boundary conditions force us to reject growing exponentials. In
addition, the condition that the total wave function be symmetric about the mid-point of the
well restricts us to

ψ(x) = Ce−α|x|, (93)

where α = 2m(V0−E)/h̄2 and for x < −L and x > L. We next apply the boundary conditions
at x = L. Continuity of ψ provides

A cos kL = Ce−αL. (94)

Continuity of dψ/dx provides

−Ak sin kL = −Cαe−αL. (95)

Dividing these two expressions leads to the desired expression for the permitted energies

k tan kL = α. (96)

2. Show that the energy condition above can be written as

k sec kL =

√
2mV0

h̄
. (97)

Solution: Inspection of k and α indicates that

k2 + α2 =
2mV0

h̄2 (98)

We can therefore re–write the answer to part (1) as

k tan kL =

√
2mV0

h̄2 − k2. (99)

We multiply this expression by L and square both sides. We note that tan2 θ+1 = sec2 θ and
take the square root of the resulting expression to obtain

k sec kL =

√
2mV0

h̄
, (100)

as required.
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3. Apply this result to compute the ground state energy of an electron trapped with a defect in
a crystal that displays an effective potential of 5eV and a width of 0.2nm.

Solution: Multiplying each side of the answer to part (2) by L generates

kL sec kL =

√
2mV0L

h̄
. (101)

We calculate the quantity

2mV0L

h̄2 =
2mc2V0L

h̄2c2
= (2)(511 keV)(5 eV)(0.1 nm)/(197.3 eV nm)2 = 1.3127, (102)

and note that we now have an equation of the form

kL sec kL =
√

1.3127 = 1.1457. (103)

Expressions of this form can be solved numerically. A simple trial and error approach yields
kL = 0.799 from which we deduce that k = 7.99 nm−1. The energy of a non–relativistic
electron possessing thie wave number is

E =
h̄2k2

2m
=

(h̄c)2k2

2mc2
=

(197 eV nm)2(7.99 nm−1)2

(2)(511 keV)
= 2.432 eV. (104)

4.8 The three dimensional infinite square well

We are steadily improving our understanding of the Schrödinger equation to the point where we
can tackle realistic atomic physics problems. The next stage is to understand the application of the
Schrödinger equation in three dimensions. We return to the three dimensional infinite square well
as a simple case.

Assuming that there will exist stationary states in three dimensions, we consider the time indepen-
dent Schrödinger equation . However, the spatial component of the wave function is a function of
three spatial coordinates, i.e. ψ = ψ(x, y, z). Applying the conservation of energy to the time inde-
pendent Schrödinger equation and using our knowledge of operators, we can arrive at an expression
of for the Schrödinger equation in three dimensions. Starting with the conservation of energy we
write

E = K + V =
p2

2m
+ V. (105)

Multiplying by the wave function ψ we obtain

Eψ =
p2

2m
ψ + V ψ. (106)
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To write p2 as an operator, we note that p2 = p2
x + p2

y + p2
z and therefore apply the momentum

operator in three dimensions. i.e.

p̂x = −ih̄∂ψ
∂x

p̂x
2 = −h̄2∂

2ψ

∂x2
, (107)

with similar expressions for y and z. Therefore,

p̂2ψ = −h̄2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ = −h̄2∇2ψ, (108)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (109)

is the Laplacian operator. Therefore, we may re–write our conservation of energy equation as

Eψ = − h̄2

2m
∇2ψ + V ψ, (110)

which corresponds to the time independent Schrödinger equation in three dimensions.

Turning to the three dimensional infinite square well, we consider a box of sides equal to L1, L2, L3.
The sides of the box are infinitely rigid such that V = 0 inside the box and V = ∞ outside. The
additional point that guides us to a valid wave function is the fact that the box is free to move in
any dimension within the box – the x, y, z components of the wave function must be independent
of each other. Within the box the Schrödinger equation takes the form

− h̄2

2m
∇2ψ = Eψ, (111)

and we guess a solution of the form

ψ(x, y, z) = A sin(k1x) sin(k2y) sin(k3z), (112)

where A is a normalisation constant and the wave numbers k1, k2, k3 are determined by applying
the boundary conditions of the infinite well. In each dimension we have can apply the boundary
condition of the form ψ(x) = 0 for x = 0 and x = L1 such that

k1L1 = n1π ⇒ k1 =
n1π

L1

, (113)
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with similar expressions in the y and z dimensions. We calculate the permitted energy levels directly
from the Schrödinger equation . To do this we must first compute the spatial derivatives of the
wave function (we show this explicitly for x only), i.e.

∂ψ

∂x
=

∂

∂x
[A sin(k1x) sin(k2y) sin(k3z)]

= k1A cos(k1x) sin(k2y) sin(k3z)

∂2ψ

∂x2
=

∂

∂x
[k1A cos(k1x) sin(k2y) sin(k3z)]

= −k2
1A sin(k1x) sin(k2y) sin(k3z)

= −k2
1ψ. (114)

As the derivatives for y and z are similar, the Schrödinger equation within the box becomes

h̄2

2m
(k2

1 + k2
2 + k2

3)ψ = Eψ, (115)

which indicates that

E =
h̄2

2m
(k2

1 + k2
2 + k2

3). (116)

Inserting the values of k1, k2, k3 derived from the boundary conditions, we obtain the following
expression for the permitted energy levels

En1n2n3 =
π2h̄2

2m

(
n2

1

L2
1

+
n2

2

L2
2

+
n2

3

L2
3

)
. (117)

Unsurprisingly, we now require three quantum numbers to describe the possible energy states of a
three dimensional system.

In the case where we have a cubic well, i.e. L = L1 = L2 = L3, the energy states can be written as

En1n2n3 =
π2h̄2

2mL2
(n2

1 + n2
2 + n2

3). (118)

The ground state energy occurs when n1 = n2 = n3 = 1,

Egs =
3π2h̄2

2mL2
. (119)
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There is only one combination of n1, n2, n3 that generates the ground state. What about the first
excited state? The first excited state can be achieved with the following configurations

n1 n2 n3

1 1 2
1 2 1
2 1 1

(120)

Therefore, three different quantum states generate the same energy level – they are said to be
degenerate states. In this case the three dimensional symmetry of the potential box creates the
degeneracy. The degeneracy can be broken if the symmetry of the system is broken. Symmetry
can be broken in a number of ways: if the lengths of the side of the potential are unequal then
the degenerate energy states will take different values. Symmetry can also be broken by external
factors – an electric or a magnetic field say. As the electric /magnetic field is a vector, it introduces
a preferred axis into the system such that wave terms aligned with the field will respond differently
to wave terms aligned perpendicular. This is exactly what happens to the energy levels of an atom
when subjected to an electric (Stark effect) or magnetic (Zeeman effect) field – the addition of a
vector force/potential breaks the degeneracy between the energy states.
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Worked problem: Consider an electron trapped in a crystal defect modelled as a three dimensional
infinite square well of length L = L1 = L2 = L3 = 0.5 nm.

1. Compute the probability of observing the ground state electron within x̄ ± L/4, ȳ ± L/4,
z̄ ± L/4.

Solution: To compute any probability based upon the wave function, we must first determine
the value of the normalisation constant, i.e.∫ L

0

∫ L

0

∫ L

0
ψ∗(x, y, z)ψ(x, y, z) dx dy dz = 1. (121)

As the wave function involves no cross terms of the form sin(xy) etc., we can seperate the three
dimensional wave function into three one dimensional functions, i.e. ψ(x, y, z) = f(x)g(y)h(z).
This permits us to write the above normalisation expression into a more convenient form

A2

[∫ L

0
sin2 k1x dx

] [∫ L

0
sin2 k2y dy

] [∫ L

0
sin2 k3z dz

]
= 1. (122)

This equation is very similar to the case where we normalised the wave function for a one di-
mensional infinite square well. In this case, each integral contained within the square brackets
contributes (L/2) such that

A2
(
L

2

)(
L

2

)(
L

2

)
= 1 (123)

and

A =
(

2

L

)3/2

, (124)

which is simply the cube of the normalisation constant determined for the one dimensional
case. The average position of the particle in each dimension is simply L/2, once again, the
same result as for the one dimensional case. To compute the probability of observing the
electron within x̄± L/4, ȳ ± L/4, z̄ ± L/4, we therefore form the quantity

P (x̄± L/4, ȳ ± L/4, z̄ ± L/4) =
∫ 3L/4

L/4

∫ 3L/4

L/4

∫ 3L/4

L/4
ψ∗(x, y, z)ψ(x, y, z) dx dy dz

=
(

2

L

)3
[∫ 3L/4

L/4
sin2 k1x dx

]
[plus similar terms for y and z].

We note that for the ground state electron k1 = π/L and we concentrate upon the form of
the x integral, i.e.

∫ 3L/4

L/4
sin2 k1x dx =

L

π

[
x

2
− 1

4
sin 2x

]3L/4

L/4
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=
L

π

([
3π

8
− 1

4
sin

(
3π

2

)]
−
[
π

8
− 1

4
sin

(
π

2

)])

=
L

4
. (125)

Therefore, the probability integral over each dimension contributes a term L/4 and we may
re–write the three dimensional probability integral as

P (x̄± L/4, ȳ ± L/4, z̄ ± L/4) =
(

2

L

)3(L
4

)3

=
1

8
. (126)

2. Compute the ground state energy of the electron.

Solution: The ground state of a three dimensional well is described by the quantum numbers
n1 = n2 = n3 = 1. Inserting these values into the expression for the energy levels of a particle
in a three dimensional infinite square well, we obtain

E111 =
3π2h̄2

2mL2
=

3π2(h̄c)2

2(mc2)L2
=

3π2

2

(197.3 eV nm)2

(511 keV)(0.5 nm)2 = 4.51 eV. (127)

3. What wavelength of photon will cause the ground state electron to make a transition to the
first excited state?

Solution: The first excited state corresponds to an energy

E211 =
π2h̄2

2mL2
[22 + 12 + 12] = 2E111. (128)

Note that any one of the three possible first excited states would give the same answer. In
order to cause the electron to change from the ground state to the first excited state the
photon energy must be

Ephoton =
hc

λ
= E211 − E111 = E111, (129)

Therefore,

λ =
hc

E111

=
1240 eV nm

×4.51 eV
= 273 nm. (130)


