## Outline

- Part I (Nov. 3rd - Monday): crash course on star formation, stellar structure and evolution, nucleosynthesis, simple stellar populations
- Part II (Nov. 6th - Thursday): population synthesis models, photometric and spectroscopic stellar population diagnostics, galaxy formation, SN rates in galaxies, star-formation histories, etc.


## Evolution of Simple Stellar Populations

Stars of a given mass evolve along an evolutionary track at various speeds. At any given time during the evolution of an SSP we can take a snapshot of the H-R diagram and derive the "isochrone".

Isochrone: L-T relation for stars of a defined age and chemical mix.



## Evolution of Simple Stellar Populations

Isochrone: L-T relation for stars of a defined age and chemical mix.
Consider a monotonic, linear new coordinate along each isochrone

$$
p=p\left(t, m, X_{i}\right)
$$

One can associate $p$ with a particular stellar evolutionary phase on the isochrone at the time

$$
d t\left(p, m, X_{i}\right)=\left.\frac{d t}{d p}\right|_{t, X_{i}} d p+\left.\frac{d t}{d m}\right|_{p, X_{i}} d m+\left.\frac{d t}{d X_{i}}\right|_{p, m} d X_{i}
$$

At a given age (i.e. $d t=0$ ) and assuming no change in chemical composition (i.e. $d X=0$ ) over time we obtain

$$
\left.\frac{d m}{d p}\right|_{t, X_{i}}=-\left.\left.\frac{d m}{d t}\right|_{p, X_{i}} \frac{d t}{d p}\right|_{m, X_{i}}
$$

## Simple Stellar Populations

Isochrone: L-T relation for stars of a defined age and chemical mix.


Goal: Find isochrone(s) that match data - watch degenracies!!
Create a synthetic stellar population based on set of evolutionary tracks and selection and error functions - build the isochrones by adopting a stellar mass function and binary spectrum.

## Stellar Mass Function



The stellar mass function describes the number of stars per mass interval defined as

$$
d N=c M^{-\gamma} d M
$$

This function is often referred to as the "initial mass function", and is called Salpeter IMF when the exponent is $\gamma \approx 2.35$.

Other functional forms of the stellar mass distribution include a changing exponent for various mass ranges.

Note: for most IMFs the majority of stellar mass is in low-mass stars!

## Simple Stellar Populations



## Composite Stellar Populations

The goal of population synthesis models is to predict the time evolution of the spectral energy distribution of a composite stellar population with defined star formation history + IMF(s), age-Z relations, etc.

Generally, the following assumptions apply:

1. The stellar models accurately predict the observed properties of stars of different masses as a function of their age and metallicity.
2. The stellar mass function, either independent of age and chemical mix or variable, is a realistic counterpart to the true IMF
3. The observational errors can be accurately measured and modeled
4. The theoretical stellar populations represent all the populations present in the observed composite stellar population

## Resolved Composite Stellar Population

At any given time the star formation rate includes the integral over a given stellar mass function for each SSP. These contributions are then summed up over time and modulated by the age-metallicity relation to derive the final star formation history.
$\Upsilon(t, Z)=\int_{0}^{t} \Xi(t) \Psi(t) d t$
Age-Z Relation



Williams et al. (2008)

## Resolved Composite Stellar Population




Williams et al. (2008)

## Resolved Composite Stellar Population



Williams et al. (2008)



## Unresolved Simple Stellar Population

At a given wavelength, the integrated light of an unresolved stellar population is composed of the various contributions $f_{\lambda}(m, t, Z)$ from stars of a given mass and metallicity, integrated over the IMF $\Phi(m)$.

$$
F_{\lambda}(t, Z)=\int_{m_{1}}^{m_{2}} f_{\lambda}(m, t, Z) \Phi(m) d m
$$



## Unresolved Simple Stellar Population

The evolution of broad-band photometric colors can be modeled and the best combination to break the age-metallicity degeneracy can be found.



## Unresolved Simple Stellar Population

The evolution of broad-band photometric colors can be modeled and the best combination to break the age-metallicity degeneracy can be found.



## GCS spectroscopy: Lick index system

(2) defined in the 80s by the Lick group (Burstein, Faber, Worthey et al.)
(2) $25+$ indices that cover 4100-6400 A

- Lick system provides "simple" means to calculate theoretical index predictions
- designed to investigate stellar populations of giant elliptical galaxies $\Rightarrow 8-12 \AA$ resolution




## Age-Metallicity Diagnostic Plots


metallicity indicator



Puzia et al. (2005)
best metallicity indicator: best age indicator: $H^{\prime}(t)=\sum_{i}^{n} c_{i} H_{i}(t, Z,[\alpha / \mathrm{Fe}])$

## M31 GC ages and chemical compositions




## GC ages, metallicities and $[\alpha / F e]$ ratios

©GCs in Es and Spirals have similar mean age

- GCs in E/Sp are on average older than GCs in SOs
©GCs in Es and SOs reach higher $[Z / H]$ than in spirals
©GCs in Es have highest mean $[\alpha / \mathrm{Fe}]$ ratios



## Comparison with SN ejecta models

monolithic models are solid $\left(10^{11} \mathrm{M} \odot\right)$ and dashed lines $\left(10^{12} \mathrm{M}\right)$

pair-inst. SNe (170-190 Mo)
taken from Heger \& Woosley (2002)
type-II SNe (13-70 M。)
taken from Nomoto et al. (1997)
hypernovae (>1052 erg)
taken from Nakamura et al. (2001)
type-Ia SNe
taken from Nomoto et al. (1997)

Puzia, Kissler-Patig, Goudfrooij (2006)
GCs in early-type galaxies show signatures of massive type-II and/or PI-SNe

## Stellar Mass Function and SN Rates

How many supernovae per year does a stellar population produce? Use power-law IMF, Salpeter slope $-2.35 \approx-7 / 3$

$$
\log N(M)
$$

## Stellar Mass Function and SN Rates

Number of stars

$$
\int \Phi(M) d M=c \int_{m_{l}}^{m_{u}} M^{-\gamma} d M=\left.\frac{c}{1-\gamma} M^{1-\gamma}\right|_{m_{l}} ^{m_{u}} \text { if } \gamma \neq 1
$$

Fraction of stars with $20 M_{\odot}>M>8 M_{\odot}$ over the IMF is then

$$
f_{N}=\frac{\int_{8}^{20} M^{-7 / 3} d M}{\int_{0.1}^{20} M^{-7 / 3} d M}=\frac{\# \text { supernovae }}{\# \text { stars }}
$$

$$
f_{N}=\frac{\left.M^{-4 / 3}\right|_{8} ^{20}}{\left.M^{-4 / 3}\right|_{0.1} ^{20}}=\frac{0.0184-0.0625}{0.0184-21.544}
$$

$$
f_{N}=0.002=0.2 \% \Rightarrow 500 \text { stars make } 1 \text { supernova! }
$$



## Stellar Mass Function and SN Rates

SNe are rare (depending on the slope of the IMF), but each is very massive.

What fraction of the mass goes into SNe?

$$
\begin{gathered}
f_{M}=\frac{\int_{8}^{20} M \cdot M^{-7 / 3} d M}{\int_{0.1}^{20} M \cdot M^{-7 / 3} d M} \\
f_{M}=\frac{\left.M^{-1 / 3}\right|_{8} ^{20}}{\left.M^{-1 / 3}\right|_{0.1} ^{20}}=\frac{0.368-0.5}{0.368-2.154}
\end{gathered}
$$

supernova mass fraction: $f_{M}=0.0738=7.4 \%$


## Stellar Mass Function and SN Rates

What is the mean SN mass?

$$
\begin{aligned}
\langle M\rangle & =\frac{\int_{8}^{20} M \cdot M^{-7 / 3} d M}{\int_{8}^{20} M^{-7 / 3} d M}=\frac{\left.\frac{1}{-1 / 3} M^{-1 / 3}\right|_{8} ^{20}}{\left.\frac{1}{-4 / 3} M^{-4 / 3}\right|_{8} ^{20}} \\
& =\frac{4(0.368-0.5)}{0.0184-0.0625}=11.97 \approx 12
\end{aligned}
$$

$$
\frac{1}{2}=\frac{\int_{8}^{\bar{M}_{\mathrm{SN}}} M \cdot M^{-7 / 3} d M}{\int_{8}^{20} M \cdot M^{-7 / 3} d M}=\frac{\bar{M}_{\mathrm{SN}}^{-1 / 3}-0.5}{0.368-0.5} \Rightarrow \bar{M}_{\mathrm{SN}} \simeq 12.23
$$

## SN Rates in Galaxies

We can now calculate the SN rate in a spiral galaxy with a typical star formation rate

$$
S F R=8 M_{\odot} \mathrm{yr}^{-1}
$$

where $7.4 \%$ of the stellar mass detonate in SN explosions. That implies

$$
8 \times 0.074 \simeq 0.6 M_{\odot} \mathrm{yr}^{-1}
$$

go into SN explosions!

Hence the SN rate is:


$$
\frac{0.6 M_{\odot} \mathrm{yr}^{-1}}{\bar{M}_{\mathrm{SN}}}=\frac{0.6 M_{\odot} \mathrm{yr}^{-1}}{12.23 M_{\odot}}=0.048 \mathrm{yr}^{-1} \approx 1 \mathrm{SN} / 20 \mathrm{yr}
$$

## SN Rates in Galaxies

The star formation rate drives the chemical enrichment history of a galaxy. Let's compare the mean star formation rates and the resulting SN rates for various galaxy types:

|  | star formation rate | supernova rate |
| :--- | :--- | :--- |
| Spiral Galaxy: | $\sim 8 M_{\odot} \mathrm{yr}^{-1}$ | $\sim 1 \mathrm{SN} / 20 \mathrm{yr}$ |

Elliptical Galaxy: $\quad \sim 5 \cdot 10^{-3} M_{\odot} \mathrm{yr}^{-1} \sim 6 \mathrm{SN} / 10^{6} \mathrm{yr}$

Irregular Galaxy: $\quad \sim 0-100 M_{\odot} \mathrm{yr}^{-1} \sim 60 \mathrm{SN} / \mathrm{yr}$

## SNe in the Milky Way

Last SN explosions in the Milky Way - the next one is overdue!

last type-II: Cassiopeia A (est. age 300 yrs)

type-Ia: Kepler's 1604

Supernova I987A
Progenitor star visible: ~20 Msol blue supergiant


Heritage


Supernova 1987A - 1994-2006 Hubble Space Telescope • WFPC2 • ACS

## Galaxy Formation

Galaxy formation starts with the ripples in the density field of the early Universe. We find anisotropies in the CMB temperature

$$
\frac{\Delta \rho}{\rho} \sim \frac{\Delta T}{T} \approx 10^{-5} K
$$

at the time of decoupling.

These fluctuations are the seeds for halo formation that grow governed by dark matter to form today's galaxies.

## How do we study the formation and evolution of galaxies?

1. By looking at galaxy formation directly: high-z star-forming galaxies: LyBG, Sub-m., EROs, etc.
2. By looking at large galaxy samples over a redshift range: statistical analysis of galaxy parameters: evolution of Luminosity (Mass) Function and Scaling Relations
3. By looking at "fossil records" in nearby galaxies: Stellar Remnants, X-ray Halos, and star clusters

## Galaxy Formation

The three key galaxy formation models:

1. Monolithic Collapse (top down): collapse of individual gas clouds early in the history of the Universe.
2. Hierarchical Merging (bottom-up): formation of galaxies through the merging and accretion of many smaller ones.
3. Secular Evolution: formation as a result of internal processes, such as the actions of spiral arms and bars.

## Jean's criterion for gravitational instability

Which ripples will collapse?


Gravity pulls matter in. Pressure pushes it back out.
When pressure wins $\rightarrow$ stable oscillations (sound waves).
When gravity wins $\rightarrow$ collapse.
Cooling lowers pressure, triggers collapse.
Applies to both Star Formation and Galaxy Formation.

## When does Gravity win?

Let's consider $N$ molecules of mass $m$, in a sphere of size $R$, at Temp. T

Gravitational Energy: $\quad E_{G} \propto \frac{G M M}{R^{2}}$

Thermal Energy:

$$
E_{T} \propto N k_{B} T
$$

$$
M=N m \propto R^{3} \rho
$$

Ratio:

$$
\frac{E_{G}}{E_{T}} \propto \frac{G M^{2}}{R N k_{B} T} \propto \frac{G \rho R^{3} m}{R k_{B} T}
$$

Jeans Length: $R_{J}=\sqrt{\frac{k_{B} T}{G \rho m}}$

Gravity wins when $R>R_{J}$.

## When does Gravity win?

Let's consider $N$ molecules of mass $m$, in a sphere of size $R$, at Temp. T

Gravitational Energy: $\quad E_{G} \propto \frac{G M M}{R^{2}}$

Thermal Energy:

$$
E_{T} \propto N k_{B} T
$$

$$
M=N m \propto R^{3} \rho
$$

Ratio:

$$
\frac{E_{G}}{E_{T}} \propto \frac{G M^{2}}{R N k_{B} T} \propto \frac{G \rho R^{3} m}{R k_{B} T}
$$

Jeans Length: $R_{J}=\sqrt{\frac{k_{B} T}{G \rho m}}$

Gravity wins when $R>R_{J}$.

## Jean's instability - recap.

Gravity tries to pull material in.
Pressure tries to push it out.

Gravity wins for $R>R_{J}--->$ large regions collapse.
Pressure wins for $R<R_{J} \quad \rightarrow->$ small regions oscillate.
Jeans Length: $\quad R_{J}=\sqrt{\frac{k_{B} T}{G \rho m}}$
Ergo: Large cool dense regions collapse!


## Collapse Timescale

## Ignore Pressure!

Gravitational acceleration: $\quad g \propto \frac{G M}{R^{2}} \propto \frac{R}{t^{2}} \quad M \propto \rho R^{3}$
Time to collapse: $\quad t_{G} \propto \sqrt{\frac{R}{g}} \propto \sqrt{\frac{R^{3}}{G M}} \propto \frac{1}{\sqrt{G \rho}}$
This is the gravitational timescale, or dynamical timescale.

Note: denser regions collapse faster.
collapse is independent of size.

## Oscillation Timescale

## Ignore Gravity!

Pressure waves travel at sound speed: $\quad c_{S} \propto \sqrt{\frac{P}{\rho}} \propto \sqrt{\frac{k_{B} T}{m}}$

Sound crossing time: $\quad t_{S} \propto \frac{R}{c_{S}} \propto R \sqrt{\frac{m}{k_{B} T}}$

Ergo: Small hot regions oscillate more rapidly!

Note that before decoupling $P_{\text {rad }} \gg P_{\text {gas }}$ and $c_{S} \sim \sqrt{3} c$.

## Ratio of Timescales

Collapse time: Sound crossing time:

$$
t_{G} \propto \frac{1}{\sqrt{\rho G}} \quad t_{S} \propto \frac{R}{c_{S}} \text { where } c_{S} \propto \sqrt{\frac{k_{B} T}{m}}
$$

Ratio of timescales:

$$
\frac{t_{S}}{t_{G}} \propto \frac{R \sqrt{G \rho}}{c_{S}} \propto R \sqrt{\frac{G \rho m}{k_{B} T}} \propto \frac{R}{R_{J}}
$$

Jeans length (again!)

$$
R_{J} \propto \frac{c_{S}}{\sqrt{G \rho}}
$$

## Sizes and Timescales



## Jeans Mass and Length

Jeans Length : (smallest size that collapses)

$$
R_{J} \propto \sqrt{\frac{k_{B} T}{G \rho m}}
$$

Jeans Mass: (smallest mass that collapses)

$$
M_{J} \propto \rho R_{J}^{3} \propto \rho\left(\frac{k_{B} T}{G \rho m}\right)^{3 / 2} \propto T^{3 / 2} \rho^{-1 / 2}
$$

It requires cool dense regions to collapse stars, but galaxy-mass/size regions can collapse sooner.

## Conditions at Decoupling

Today: $\quad T_{0}=2.7 K \quad \rho_{0}=10^{-28} \mathrm{~kg} / \mathrm{m}^{3}$

In an expanding Universe: $T \propto R^{-1} \quad \rho \propto R^{-3} \propto T^{3}$

At decoupling we have $T=3000 \mathrm{~K}$

$$
\rho=10^{-28}\left(\frac{3000}{2.7}\right)^{3}=1.4 \times 10^{-19} \mathrm{~kg} / \mathrm{m}^{3}
$$

That is about the density of $2 M_{\odot} \mathrm{pc}^{-3}$

## Size and Mass of first Galaxies

$$
T=3000 K \quad \rho=1.4 \times 10^{-19} \mathrm{~kg} \mathrm{~m}^{-3} \Rightarrow 2 M_{\odot} \mathrm{pc}^{-3}
$$

Jeans Length : $R_{J} \simeq\left(\frac{k_{B} T}{G \rho m}\right)^{1 / 2}=\frac{1.6 \times 10^{18} \mathrm{~m}}{3.2 \times 10^{16} \mathrm{~m} / \mathrm{pc}}=50 \mathrm{pc}$

Jeans Mass: $\quad M_{J} \simeq \rho R_{J}^{3} \simeq 2 M_{\odot} \mathrm{pc}^{-3} \cdot(50 p c)^{3}$

$$
\simeq 3 \times 10^{5} M_{\odot}
$$

More than a star, but less than a galaxy, close to a globular cluster mass.


## Globular Clusters



3-D view of GCs in the Milky Way

47 Tuc with HST

## Time to form first galaxies

At decoupling: $\quad \rho=1.4 \cdot 10^{-19} \mathrm{~kg} \mathrm{~m}^{-3}$

Collapse timescale: $\quad t_{G} \simeq \frac{1}{\sqrt{\rho G}}=3.3 \cdot 10^{14} \mathrm{~s}=10^{7} \mathrm{yr}$

Expect first galaxies to form $10^{7}$ yr after decoupling - for all sizes!!

$$
R_{J} \propto\left(\frac{k_{B} T}{G \rho m}\right)^{1 / 2} \approx 50 p c \quad M_{J} \propto \rho R_{J}^{3} \approx 10^{6} M_{\odot}
$$

More small ripples than large waves.
--> Universe dominated by globular clusters (?!)

## Caveats

Dimensional Analysis --> we left out dimensionless factors (factor $\sim 10$ ).
We also ignored: angular momentum
--> slows and can halt the collapse --> Spiral galaxies cosmological expansion
--> delays collapse until: expansion time > collapse time

So, how did galaxies form?!
--> "Dark Matter halos" (collapse before!! decoupling) -> baryons follow.
If large enough, i.e. $\quad R>R_{J}$ - and massive enough, i.e. $M>M_{J}$ Smallest halos that collapse: globular-cluster-ish Tiny halo regions stable: can't form stars (yet!).

A Schematic Outline of the Cosmic History

-The Big Bang
The Universe filled with ionized gas
*The Universe becomes neutral and opaque
The Dark Ages start

Galaxies and Quasars begin to form
The Reionization starts

## Uniform neutral IGM <br> (Inter-Galactic Medium)

Proto-globular clusters
Rare larger objects:
proto-galaxies
proto-clusters
$T_{C M B}=2.7(1+z) \mathrm{K}$
No stars!

The Cosmic Renaissance
The Dark Ages end
-Reionization complete, the Universe becomes transparent again

Galaxies evolve

The Solar System forms

Today: Astronomers figure it all out!



## Elliptical Galaxies

## Elliptical Galaxy M87



Hubble
Heritage
Heritage

Elliptical Galaxy NGC ir32


Hubble
Heritage
NASA, ESA, and the Hubble Heritage (STScl/AURA)-ESA/Hubble Collaboration
Hubble Space Telescope ACS • STScI-PRC08-07

## Elliptical Galaxies

...in a nutshell.

Red
Few emission lines
Little dust or gas
High surface brightness ---------->
No net rotation
Found in high density environment ->

Old stars
Low SFR
Gas converted to stars.
Form via mergers
with low net $v / \sigma$
galaxy clusters

Have many GCs

## Spiral Galaxies



Hentrble
NASA, ESA and The Huble Heritage Team (STScl/AURA) • Hubble Space Telescope ACS • STScl-PRC07-19

Barred Spiral Galaxy NGC I3Oo


Hertable

Spiral Galaxy NCC 44 I 4


PRC99-25- Hubble Space Telescope WFPC2 • Hubble Heritage Team(AURASTSCINASA
Spiral Galaxy NCC 3370


## Spiral Galaxies

...in a nutshell.

Red halo, blue disc
Emission \& absorption lines ---------->

Dust lanes \& HI


Moderate surface brightness and Rotating disk

In clusters \& field


Old and young stars.
Star formation

+ old stars
Gas available to form stars

Form via collapse with high $v / \sigma$

Can survive mergers.

Have fewer GCs

## Irregular Galaxies

Dwarf Irregular Galaxy NGC 1705


Hertagle
Hertage

Sagittarius Dwarf Irregular Galaxy


NASA, ESA, and The Hubble Heritage Team (STScl/AURA)
Hubble Space Telescope ACS • STScl-PRC04-31b

## Irregular Galaxies

...in a nutshell.

| Blue | ----------> | Young stars |
| :---: | :---: | :---: |
| Strong emission lines | ----> | High SFR |
| Sub-mm signal |  | Large gas reservoir |
| Rotating |  | High $v / \sigma$ |
| Mainly in field | --------- | Easily disrupted. |

Have few GCs

## Star-Formation Rates (SFR)

...in a nutshell.
Consider a condensation of primordial mix $[X=0.75, Y=0.25, Z=0.0$ ]
Total mass: $\quad M_{g a s}$
Star formation: Mgas $\rightarrow M_{\text {stars }}$
How quickly? With what efficiency?


## Closed Box Model

$M_{0}=$ initial gas mass
$M_{G}(t)=$ gas mass at time $t$
$M_{s}(t)=$ mass converted to stars

$\beta=$ fraction of $M_{s}$ returned to gas (SNe, stellar winds, PNe )

$$
\begin{aligned}
M_{G} & =M_{0}-M_{S}+\beta M_{S} \\
& =M_{0}-(1-\beta) M_{S}=M_{0}-\alpha M_{S}
\end{aligned}
$$

$\alpha=1-\beta=$ fraction of $M_{s}$ retained in stars
= star formation efficiency
in density speak: $\rho_{G}=\rho_{0}-\alpha \rho_{S}$

## Closed Box Model

$$
\begin{aligned}
& \mu(t) \equiv \frac{M_{G}(t)}{M_{0}} \quad=\text { mass fraction of } M_{0} \text { in gas } \\
& S(t) \equiv \frac{M_{S}(t)}{M_{0}} \quad=\text { mass fraction of } M_{0} \text { turned into stars }
\end{aligned}
$$

$$
\begin{aligned}
M_{G} & =M_{0}-\alpha M_{S} \\
\mu & =1-\alpha S
\end{aligned}
$$

Since $\alpha<1, S(t) \rightarrow S_{\infty}>1$


## SFR in Ellipticals

Assume $d S(t) / d t \propto \mu$ which means more gas $\rightarrow$ more stars form

$$
\begin{array}{ll}
\mu(t)=1-\alpha S(t) & \\
\frac{d \mu}{d t}=-\alpha \frac{d S}{d t}=-\alpha C \mu & \frac{d S}{d t}=C \mu \\
\frac{d \mu}{\mu}=-\alpha C d t=-\frac{d t}{t} & C=\frac{1}{\alpha t_{\star}} \\
\ln \mu=-\frac{t}{t_{\star}}+A & A=0 \text { gives } \mu(0)=1
\end{array}
$$

Gas: $\mu(t)=e^{-t / t_{\star}}$
Stars: $\alpha S(t)=1-e^{-t / t_{\star}}$

## Star Formation Timescales

$t_{\star}=e$-folding timescale
= time to turn mass Mo/e into stars.
Typically, $t_{\star} \approx 0.5-5 \mathrm{Gyr}$

What is $t_{\star}=2 \mathrm{Gyr}$, how long would it take to turn $90 \%$ of gas into stars?

Consider:

$$
\mu(t)=e^{-t / t_{\star}}=0.1
$$

then

$$
\begin{aligned}
t & =-t_{\star} \ln (\mu) \\
& =-2 \ln (0.1)=4.6 \mathrm{Gyr}
\end{aligned}
$$

$$
\mu(t)=e^{-t / t_{\star}}
$$




## SFR in Spirals

Assume SFR = constant

$$
\begin{aligned}
& \frac{d S}{d t}=\frac{\dot{M}}{M_{0}} \\
& \frac{d \mu}{d t}=-\alpha \frac{d S}{d t}=-\alpha \frac{\dot{M}}{M_{0}}
\end{aligned}
$$

$\dot{M}=$ mass converted per year


## SFR in Irregulars

Episodic SF: typically bursts of 100 Msol $/$ yr for 0.5 Gyr at intermittent intervals:

$$
\frac{d S}{d t}=f \frac{\dot{M}}{M_{0}}
$$

where $f$ is the fraction of time spent in starburst mode

$$
\frac{d \mu}{d t}=-\alpha f \frac{\dot{M}}{M_{0}}
$$

Gas: $\mu(t)=1-\alpha f \frac{\dot{M}}{M_{0}} t$
Stars: $S(t)=f \frac{\dot{M}}{M_{0}} t$

## Star-Formation Histories - recap.

...in a nutshell.


Ellipticals form most of their stars early on in short starburst. Their stars all roughly same age (co-eval); closest to SSP.

Spirals and Irregulars have prolonged, complex SF histories.

## Star-Formation Histories - Summary

$$
\begin{aligned}
& \mu_{\mathrm{ell}}=e^{-t / t_{\star}} \\
& \mu_{\mathrm{sp}}=1-\alpha \frac{\dot{M}}{M_{0}} t
\end{aligned}
$$

$$
\text { where } t_{\star} \text { is the e-folding time }
$$

where $\alpha$ is the star-formation efficiency and $\dot{M}$ the gas mass conversion rate

$$
\mu_{\mathrm{irr}}=1-\alpha f \frac{\dot{M}}{M_{0}} t
$$

where $f$ is the time in starburst mode

## Further reading



Nucleosynthesis and Chemical Evolution of Galaxies
B.E.J. Pagel

Cambridge UP, 1997, \$110.M. Salaris \& S. Cassisi Wiley, 2005, \$70.-

## Evolution of Stars and

 Stellar Populations

Galactic Astronomy J. Binney \& M. Merrifield Princeton UP, 1998, \$50.-

## Galactic Dynamics

 J. Binney \& S. Tremaine Princeton UP, 2nd edition 2008, \$50.-