Outline

Part I (Nov. 3rd – Monday): crash course on star formation, stellar structure and evolution, nucleosynthesis, simple stellar populations

Part II (Nov. 6th – Thursday): population synthesis models, photometric and spectroscopic stellar population diagnostics, galaxy formation, SN rates in galaxies, star-formation histories, etc.

Evolution of Simple Stellar Populations

Stars of a given mass evolve along an evolutionary track at various speeds. At any given time during the evolution of an SSP we can take a snapshot of the H-R diagram and derive the "isochrone".

Isochrone: L-T relation for stars of a defined age and chemical mix.

Evolution of Simple Stellar Populations Isochrone: L-T relation for stars of a defined age and chemical mix. Consider a monotonic, linear new coordinate along each isochrone

 $p = p(t, m, X_i)$

One can associate p with a particular stellar evolutionary phase on the isochrone at the time

$$dt(p,m,X_i) = \left. \frac{dt}{dp} \right|_{t,X_i} dp + \left. \frac{dt}{dm} \right|_{p,X_i} dm + \left. \frac{dt}{dX_i} \right|_{p,m} dX_i$$

At a given age (i.e. dt=0) and assuming no change in chemical composition (i.e. dX=0) over time we obtain

$$\frac{dm}{dp}\Big|_{t,X_i} = -\left.\frac{dm}{dt}\right|_{p,X_i} \left.\frac{dt}{dp}\right|_{m,X}$$

mass-loss

inverse. evolutionary flux

Simple Stellar Populations

Isochrone: L-T relation for stars of a defined age and chemical mix.

Goal: Find isochrone(s) that match data – watch degenracies!!

Create a synthetic stellar population based on set of evolutionary tracks and selection and error functions – build the isochrones by adopting a stellar mass function and binary spectrum.

Stellar Mass Function

The stellar mass function describes the number of stars per mass interval defined as

 $dN = cM^{-\gamma}dM$

This function is often referred to as the "initial mass function", and is called Salpeter IMF when the exponent is $\gamma\approx 2.35$.

Other functional forms of the stellar mass distribution include a changing exponent for various mass ranges.

Note: for most IMFs the majority of stellar mass is in low-mass stars!

Simple Stellar Populations

Brown et al. (2003)

Composite Stellar Populations

The goal of population synthesis models is to predict the time evolution of the spectral energy distribution of a <u>composite stellar population</u> with defined star formation history + IMF(s), age-Z relations, etc.

Generally, the following assumptions apply:

- 1. The stellar models accurately predict the observed properties of stars of different masses as a function of their age and metallicity.
- 2. The stellar mass function, either independent of age and chemical mix or variable, is a realistic counterpart to the true IMF
- 3. The observational errors can be accurately measured and modeled
- 4. The theoretical stellar populations represent all the populations present in the observed composite stellar population

Resolved Composite Stellar Population

At any given time the star formation rate includes the integral over a given stellar mass function for each SSP. These contributions are then summed up over time and modulated by the age-metallicity relation to derive the final star formation history.

Resolved Composite Stellar Population

Resolved Composite Stellar Population

Unresolved Simple Stellar Population

At a given wavelength, the integrated light of an unresolved stellar population is composed of the various contributions $f_{\lambda}(m, t, Z)$ from stars of a given mass and metallicity, integrated over the IMF $\Phi(m)$.

$$F_{\lambda}(t,Z) = \int_{m_1}^{m_2} f_{\lambda}(m,t,Z) \Phi(m) dm$$

Unresolved Simple Stellar Population

The evolution of broad-band photometric colors can be modeled and the best combination to break the age-metallicity degeneracy can be found.

Unresolved Simple Stellar Population

The evolution of broad-band photometric colors can be modeled and the best combination to break the age-metallicity degeneracy can be found.

GCS spectroscopy: Lick index system

 defined in the 80s by the Lick group (Burstein, Faber, Worthey et al.)

25+ indices that cover
 4100–6400 Å

Lick system provides
 "simple" means to
 calculate theoretical index
 predictions

Ø designed to investigate
 stellar populations of
 giant elliptical galaxies
 ⇒ 8-12 Å resolution

metallicities, chemical compositions, ages

Age-Metallicity Diagnostic Plots

metallicity indicator

Puzia et al. (2005)

best metallicity indicator: best age indicator:

$$[MgFe]' = \sqrt{Mgb \cdot (0.72 \,\text{Fe}5270 + 0.28 \,\text{Fe}5335)}$$

$$H'(t) = \sum_{i}^{n} c_{i} H_{i}(t, Z, [\alpha/\text{Fe}])$$

M31 GC ages and chemical compositions

Puzia, Perrett, Bridges (2005)

GC ages, metallicities and $[\alpha/Fe]$ ratios

GCs in Es and Spirals have similar mean age

GCs in E/Sp are on average older than GCs in SOs

GCs in Es and SOs reach higher [Z/H] than in spirals

@GCs in Es have highest mean [α/Fe] ratios

Puzia et al. (2006)

Comparison with SN ejecta models

monolithic models are solid (10¹¹ M_{\odot}) and dashed lines (10¹² M_{\odot})

pair-inst. SNe (170-190 Mo) taken from Heger & Woosley (2002)

type-II SNe (13-70 M °) taken from Nomoto et al. (1997)

hypernovae (>10⁵² erg) taken from Nakamura et al. (2001)

type-Ia SNe taken from Nomoto et al. (1997)

Puzia, Kissler-Patig, Goudfrooij (2006)

GCs in early-type galaxies show signatures of massive type-II and/or PI-SNe

How many supernovae per year does a stellar population produce? Use power-law IMF, Salpeter slope $-2.35 \approx -7/3$

Number of stars

$$\int \Phi(M) dM = c \int_{m_l}^{m_u} M^{-\gamma} dM = \frac{c}{1-\gamma} M^{1-\gamma} \begin{vmatrix} m_u \\ m_l \end{vmatrix}$$
 if $\gamma \neq 1$

Fraction of stars with $20M_\odot > M > 8M_\odot$ over the IMF is then

$$f_N = \frac{\int_8^{20} M^{-7/3} dM}{\int_{0.1}^{20} M^{-7/3} dM} = \frac{\# \text{supernovae}}{\# \text{stars}}$$

$$f_N = \frac{M^{-4/3} \left|_{8}^{20}\right|}{M^{-4/3} \left|_{0.1}^{20}\right|} = \frac{0.0184 - 0.0625}{0.0184 - 21.544}$$

 $f_N = 0.002 = 0.2\% \Rightarrow$ 500 stars make 1 supernova!

SNe are rare (depending on the slope of the IMF), but each is very massive.

What fraction of the <u>mass</u> goes into SNe?

$$f_M = \frac{\int_8^{20} M \cdot M^{-7/3} dM}{\int_{0.1}^{20} M \cdot M^{-7/3} dM}$$

$$f_M = \frac{M^{-1/3} |_8^{20}}{M^{-1/3} |_{0.1}^{20}} = \frac{0.368 - 0.5}{0.368 - 2.154}$$

supernova mass fraction: $f_M = 0.0738 = 7.4\%$

What is the mean SN mass?

$$\langle M \rangle = \frac{\frac{5}{8} M \cdot M^{-7/3} dM}{\frac{20}{5} M^{-7/3} dM} = \frac{\frac{1}{-1/3} M^{-1/3} |_{8}^{20}}{\frac{1}{-4/3} M^{-4/3} |_{8}^{20}}$$
$$= \frac{4(0.368 - 0.5)}{0.0184 - 0.0625} = 11.97 \approx 12$$

median SN mass:

 $\Rightarrow \bar{M}_{\rm SN} \simeq 12.23$

0.5

$$\frac{1}{2} = \frac{\int_{8}^{M_{\rm SN}} M \cdot M^{-7/3} dM}{\int_{8}^{20} M \cdot M^{-7/3} dM} = \frac{\bar{M}_{\rm SN}^{-1/3} - 0.5}{0.368 - 0.5}$$

SN Rates in Galaxies

We can now calculate the SN rate in a spiral galaxy with a typical star formation rate

 $SFR = 8M_{\odot} \mathrm{yr}^{-1}$

where 7.4% of the stellar mass detonate in SN explosions. That implies

 $8 \times 0.074 \simeq 0.6 M_{\odot} \mathrm{yr}^{-1}$

go into SN explosions!

Hence the SN rate is:

 $\frac{0.6M_{\odot} \text{yr}^{-1}}{\bar{M}_{\text{SN}}} = \frac{0.6M_{\odot} \text{yr}^{-1}}{12.23M_{\odot}} = 0.048 \text{yr}^{-1} \approx 1\text{SN}/20 \text{yr}$

SN Rates in Galaxies

The star formation rate drives the chemical enrichment history of a galaxy. Let's compare the mean star formation rates and the resulting SN rates for various galaxy types:

	star formation rate	supernova rate
Spiral Galaxy:	$\sim 8 M_{\odot} \mathrm{yr}^{-1}$	$\sim 1 \mathrm{SN}/20 \mathrm{yr}$
Elliptical Galaxy:	$\sim 5 \cdot 10^{-3} M_{\odot} \mathrm{yr}^{-1}$	$\sim 6 \text{ SN}/10^6 \text{yr}$
Irregular Galaxy:	$\sim 0 - 100 M_{\odot} \mathrm{yr}^{-1}$	$\sim 60 \; \mathrm{SN/yr}$

SNe in the Milky Way

Last SN explosions in the Milky Way – the next one is overdue!

type-Ia: Tycho's 1572

type-Ia: SN 1006

type-Ia: Kepler's 1604

last type-II: Cassiopeia A (est. age 300 yrs)

all images are from Chandra X-ray observatory

Supernova 1987A

Progenitor star visible: ~20 M_{sol} blue supergiant

PRC99-04 • Space Telescope Science Institute • Hubble Heritage Team (AURA/STScI/NASA)

Hubble Space Telescope • WFPC2 • ACS

NASA, ESA, P. Challis, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics)

STScI-PRC07-10b

Galaxy Formation

Galaxy formation starts with the ripples in the density field of the early Universe. We find anisotropies in the CMB temperature

$$\frac{\Delta\rho}{\rho} \sim \frac{\Delta T}{T} \approx 10^{-5} K$$

at the time of decoupling.

These fluctuations are the seeds for halo formation

that grow governed by dark matter to form today's galaxies.

How do we study the formation and evolution of galaxies?

1. By looking at galaxy formation directly: high-z star-forming galaxies: LyBG, Sub-m., EROs, etc.

2. By looking at large galaxy samples over a redshift range: statistical analysis of galaxy parameters: evolution of Luminosity (Mass) Function and Scaling Relations

3. By looking at "fossil records" in nearby galaxies: Stellar Remnants, X-ray Halos, and star clusters

Galaxy Formation

The three key galaxy formation models:

1. Monolithic Collapse (top down): collapse of individual gas clouds early in the history of the Universe.

2. Hierarchical Merging (bottom-up): formation of galaxies through the merging and accretion of many smaller ones.

3. Secular Evolution: formation as a result of internal processes, such as the actions of spiral arms and bars.

Jean's criterion for gravitational instability

Which ripples will collapse ?

Gravity pulls matter in. Pressure pushes it back out. When pressure wins -> stable oscillations (sound waves). When gravity wins -> collapse. Cooling lowers pressure, triggers collapse. Applies to both Star Formation and Galaxy Formation.

When does Gravity win?

Let's consider N molecules of mass m, in a sphere of size R, at Temp. T

Gravitational Energy: $E_G \propto \frac{GMM}{R^2}$

Thermal Energy: $E_T \propto N k_B T$ $M = N m \propto R^3
ho$

Ratio:

$$\frac{E_G}{E_T} \propto \frac{GM^2}{RNk_BT} \propto$$

Jeans Length: $R_J=\sqrt{}$

$$\left(\frac{k_B T}{G
ho m} \right)$$

Gravity wins when $R > R_J$.

 $\frac{G\rho R^3 m}{Rk_B T}$

When does Gravity win?

Let's consider N molecules of mass m, in a sphere of size R, at Temp. T

Gravitational Energy: $E_G \propto \frac{GMM}{R^2}$

Thermal Energy: $E_T \propto N k_B T$ $M = N m \propto R^3
ho$

Ratio:

$$\frac{E_G}{E_T} \propto \frac{GM^2}{RNk_BT} \propto$$

Jeans Length: $R_J=\sqrt{}$

$$\left(\frac{k_B T}{G
ho m} \right)$$

Gravity wins when $R > R_J$.

 $\frac{G\rho R^3 m}{Rk_B T}$

Jean's instability – recap.

Gravity tries to pull material in.

Pressure tries to push it out.

Gravity wins for $R > R_J$ ----> large regions collapse. Pressure wins for $R < R_J$ ----> small regions oscillate.

Jeans Length: $R_J = \sqrt{rac{k_B T}{G
ho m}}$

Ergo: Large cool dense regions collapse!

Collapse Timescale

Ignore Pressure!

Gravitational acceleration: $g \propto \frac{GM}{R^2} \propto \frac{R}{t^2}$ $M \propto \rho R^3$ Time to collapse: $t_G \propto \sqrt{\frac{R}{g}} \propto \sqrt{\frac{R^3}{GM}} \propto \frac{1}{\sqrt{G\rho}}$

This is the gravitational timescale, or dynamical timescale.

Note: <u>denser regions collapse faster</u>. collapse is <u>independent of size</u>.

Oscillation Timescale

Ignore Gravity!

Pressure waves travel at sound speed:

Sound crossing time:
$$t_S \propto \frac{R}{c_S} \propto R \sqrt{\frac{m}{k_B T}}$$

Ergo: Small hot regions oscillate more rapidly!

Note that before decoupling $\,P_{
m rad}>>P_{
m gas}\,$ and $\,c_S\sim\sqrt{3}c\,.$

Ratio of Timescales

Collapse time:

Sound crossing time:

$$t_S \propto \frac{R}{c_S}$$
 where $c_S \propto \sqrt{\frac{k_B T}{m}}$

Ratio of timescales:

 $t_G \propto \frac{1}{\sqrt{\rho G}}$

$$\frac{t_S}{t_G} \propto \frac{R\sqrt{G\rho}}{c_S} \propto R\sqrt{\frac{G\rho m}{k_B T}} \propto \frac{R}{R_J}$$

Jeans length (again!)

$$R_J \propto \frac{c_S}{\sqrt{G\rho}}$$

Sizes and Timescales

Jeans Mass and Length

Jeans Length : (smallest size that collapses)

$$R_J \propto \sqrt{\frac{k_B T}{G\rho m}}$$

Jeans Mass: (smallest mass that collapses)

$$M_J \propto \rho R_J^3 \propto \rho \left(\frac{k_B T}{G\rho m}\right)^{3/2} \propto T^{3/2} \rho^{-1/2}$$

It requires cool dense regions to collapse stars, but galaxy-mass/size regions can collapse sooner.

Conditions at Decoupling

Today: $T_0 = 2.7K$ $\rho_0 = 10^{-28} kg/m^3$

In an expanding Universe: $T \propto R^{-1}$ $ho \propto R^{-3} \propto T^3$

At decoupling we have T=3000 K

$$\rho = 10^{-28} \left(\frac{3000}{2.7}\right)^3 = 1.4 \times 10^{-19} kg/m^3$$

That is about the density of $~2\,M_\odot~{
m pc}^{-3}$

Size and Mass of first Galaxies T = 3000K $\rho = 1.4 \times 10^{-19} \text{kg m}^{-3} \Rightarrow 2 M_{\odot} \text{ pc}^{-3}$

Jeans Length : $R_J \simeq \left(\frac{k_B T}{G\rho m}\right)^{1/2} = \frac{1.6 \times 10^{18} m}{3.2 \times 10^{16} m/pc} = 50 \, pc$

Jeans Mass: $M_J\simeq
ho R_J^3\simeq 2M_\odot {
m pc}^{-3}\cdot (50\,pc)^3$ $\simeq 3 imes 10^5 M_\odot$

More than a star, but less than a galaxy, close to a globular cluster mass.

Globular Clusters

3-D view of GCs in the Milky Way

47 Tuc with HST

Time to form first galaxies At decoupling: $ho=1.4\cdot10^{-19}kg\ m^{-3}$

Collapse timescale: $t_G \simeq \frac{1}{\sqrt{\rho G}} = 3.3 \cdot 10^{14} s = 10^7 {
m yr}$

Expect first galaxies to form 10⁷ yr after decoupling – <u>for all sizes</u>!!

$$R_J \propto \left(\frac{k_B T}{G\rho m}\right)^{1/2} \approx 50 \, pc \qquad M_J \propto \rho R_J^3 \approx 10^6 M_{\odot}$$

More small ripples than large waves.

--> Universe dominated by globular clusters (?!)

Caveats

Dimensional Analysis --> we left out dimensionless factors (factor ~ 10). We also ignored: <u>angular momentum</u>

--> slows and can halt the collapse --> Spiral galaxies

cosmological expansion

--> delays collapse until: expansion time > collapse time

So, how did galaxies form?!

--> "Dark Matter halos" (collapse before!! decoupling) -> baryons follow.
 If large enough, i.e. <u>R > RJ</u> - and massive enough, i.e. <u>M > MJ</u>
 Smallest halos that collapse: globular-cluster-ish
 Tiny halo regions stable: can't form stars (yet!).

A Schematic Outline of the Cosmic History

400

500

S.G. Djorgovski et al. & Digital Media Center, Caltech

Baryons

Dark Matter

Millenium Simulation, Springel et al. (2003)

Elliptical Galaxies

Elliptical Galaxy NGC 1132

Elliptical Galaxy M87

NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration Hubble Space Telescope ACS • STScI-PRC08-07

Elliptical Galaxies

...in a nutshell.

Red----->Few emission lines----->Little dust or gas----->High surface brightness---->No net rotation---->Found in high density environment ->

Old stars Low SFR Gas converted to stars. Form via mergers with low net v/σ galaxy clusters

Have many GCs

Spiral Galaxies

Spiral Galaxy M81

Hubble Heritage

NASA, ESA, and The Hubble Heritage Team (STScI/AURA) • Hubble Space Telescope ACS • STScI-PRC07-19a

Barred Spiral Galaxy NGC 1300

Hubble Heritage

Spiral Galaxy NGC 4414

Hubble Heritage

PRC99-25 • Hubble Space Telescope WFPC2 • Hubble Heritage Team(AURA/STScI/NASA)

Spiral Galaxy NGC 3370

NASA, The Hubble Heritage Team and A. Riess (STScl) • Hubble Space Telescope ACS • STScl-PRC03-24

Spiral Galaxies

---->

...in a nutshell.

Red halo, blue disc ----->

Emission & absorption lines ----->

Dust lanes & HI

Moderate surface brightness -----> and Rotating disk In clusters & field -----> Old and young stars.

Star formation + old stars

Gas available to form stars

Form via collapse with high v/σ

Can survive mergers.

Have fewer GCs

Irregular Galaxies

Dwarf Irregular Galaxy NGC 1705

Sagittarius Dwarf Irregular Galaxy

NASA, ESA, and The Hubble Heritage Team (STScl/AURA) Hubble Space Telescope ACS • STScl-PRC04-31b

Hubble Heritage

Irregular Galaxies

--->

--->

...in a nutshell.

Blue	
Strong emission lines	
Sub-mm signal	
Rotating	
Mainly in field	

Young stars High SFR Large gas reservoir High v/σ Easily disrupted.

Have few GCs

Star-Formation Rates (SFR)

...in a nutshell.

Consider a condensation of primordial mix [X=0.75, Y=0.25, Z=0.0] Total mass: M_{gas} Star formation: M_{gas} ---> M_{stars} How quickly? With what efficiency?

Closed Box Model

 $M_{0} = initial gas mass$ $M_{G}(t) = gas mass at time t$ $M_{S}(t) = mass converted to stars$ $\beta = fraction of M_{S} returned to gas (SNe, stellar winds, PNe)$

 $M_{G} = M_{0} - M_{S} + \beta M_{S}$ $= M_{0} - (1 - \beta)M_{S} = M_{0} - \alpha M_{S}$

 $\alpha = 1-\beta$ = fraction of M_S retained in stars = <u>star formation efficiency</u>

in density speak: $ho_G=
ho_0-lpha
ho_S$

Closed Box Model

$$\mu(t) \equiv \frac{M_G(t)}{M_0}$$

= mass fraction of M_0 in gas

 $\mu(t)$

1

$$S(t) \equiv \frac{M_S(t)}{M_0}$$

= mass fraction of M_0 turned into stars

S(t)

 S_{∞}

$$M_G = M_0 - \alpha M_S$$

$$\mu = 1 - \alpha S$$

Since $\alpha < 1, \ S(t) \to S_{\infty} > 1$

SFR in Ellipticals

Assume $dS(t)/dt \propto \mu$ which means more gas -> more stars form

 $\mu(t) = 1 - \alpha S(t)$

A = 0 gives $\mu(0) = 1$

Gas: $\mu(t) = e^{-t/t_{\star}}$ **Stars:** $\alpha S(t) = 1 - e^{-t/t_{\star}}$

Star Formation Timescales

1

 t_{\star} = e-folding timescale = time to turn mass M_0/e into stars. Typically, $t_{\star} \approx 0.5 - 5 {
m Gyr}$

What is $t_{\star} = 2 \,\text{Gyr}$, how long would it take to turn 90% of gas into stars?

Consider:

$$\mu(t) = e^{-t/t_{\star}} = 0.1$$

then

 $t = -t_{\star} \ln(\mu)$ = $-2 \ln(0.1) = 4.6 \,\text{Gyr}$

SFR in Spirals

Assume SFR = constant

M = mass converted per year

Gas:
$$\mu(t) = 1 - \alpha \frac{M}{M_0} t$$

Stars: $S(t) = \frac{M}{M_0}t$

SFR in Irregulars

Episodic SF: typically bursts of 100 M_{sol}/yr for 0.5 Gyr at intermittent intervals:

$$\frac{dS}{dt} = f \frac{\dot{M}}{M_0}$$

where f is the fraction of time spent in starburst mode

$$\frac{d\mu}{dt} = -\alpha f \frac{\dot{M}}{M_0}$$

Gas:
$$\mu(t) = 1 - \alpha f \frac{M}{M_0} t$$

$$\mu(t) = 1 - \alpha S(t)$$

Stars:
$$S(t) = f \frac{\dot{M}}{M_0} t$$

Star-Formation Histories - recap.

...in a nutshell.

Ellipticals form most of their stars early on in short starburst. Their stars all roughly same age (co-eval); closest to SSP.

Spirals and Irregulars have prolonged, complex SF histories.

Star-Formation Histories – Summary

$$\mu_{\rm ell} = e^{-t/t_{\star}}$$

where t_{\star} is the e-folding time

where α is the star-formation efficiency and \dot{M} the gas mass conversion rate

$$\mu_{\rm irr} = 1 - \alpha f \frac{M}{M_0} t$$

where f is the time in starburst mode

Further reading

EVOLUTION OF STARS AND STELLAR POPULATIONS

Evolution of Stars and Stellar Populations M. Salaris & S. Cassisi Wiley, 2005, \$70.-

Galactic Astronomy J. Binney & M. Merrifield Princeton UP, 1998, \$50.-

Nucleosynthesis and Chemical Evolution of Galaxies B.E.J. Pagel Cambridge UP, 1997, \$110.-

James Binney and Scott Tremaine

GALACTIC DYNAMICS

Second Edition

Galactic Dynamics J. Binney & S. Tremaine Princeton UP, 2nd edition 2008, \$50.-

cleosynthesis and Chemical Evolutio

BERNARD E. J. PAGEL

