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2 Measuring the universe

We have seen so far that the cosmological model is expressed is highly geometric terms, i.e. a
homogeneous and isotropic line element defined by a time varying scale factor and a spatial curvature
term. Correspondingly, tests of the cosmological model are highly geometric in nature. The basic
aim of many of these tests is to relate quantities based upon the metric (e.g. distance and volume)
to the sole cosmological observable – redshift. Note that in the previous lecture we discussed
very broad tests/observations of cosmological model, i.e. total mass density and age. In contrast to
this, the tests we will discuss today all aim to constrain the cosmological model via the behaviour
of the metric. Two concepts will dominate the discussion;

1. Using the RW metric to determine distance, time and volume as a function of redshift in the
universe.

2. Isolating the effect of the metric upon observed quantities from “secondary physics”, e.g. stel-
lar evolution, galaxy merging, etc., and observational biases, e.g. the k–correction, magnitude
estimation and sample statistics.

2.1 Definitions of distance, volume and time

Distances, volumes and times in the universe cannot be observed “directly”. There is no universal
ruler or clock with which to measure such quantities. Therefore, quantities such as distance, etc.
are defined in terms of their relationship to observed quantities.

Distances and volumes are defined by considering the path of a photon as it travels through the
expanding universe from a distant source to the observer. Photon trajectories in spacetime are
referred to as null geodesics which satisfy ds2 = 0 by definition. We further consider a photon
travelling along a purely radial trajectory, i.e. dθ = dφ = 0. Returning to the RW line element we
may therefore write

c dt =
a(t) dr√
1− kr2

c dt

a(t)
=

dr√
1− kr2

. (1)

In considering a photon emitted at coordinates (t = t1, r = 0) and received at (t = t0, r = r) we
generate the following integral ∫ t0

t1

c dt

a(t)
=

∫ r

0

dr′√
1− kr′2

(2)

The coordinate radius describing the co-moving distance between the source and observer is defined
as

S(r) =

∫ r

0

dr√
1− kr2

. (3)
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Evaluating S(r), one obtains

= arcsin r for k = +1,

S(r) = r for k = 0, (4)

= arcsinh r for k = −1.

The physical radius giving the source-observer separation at a particular epoch, t, is a(t) S(r).
Therefore, as we shall see below, when we consider the distance between objects in an expanding
universe, we must also consider the time evolution of the scale factor. This leads us to evaluate the
integral presented in Equation 2.

2.1.1 Angular diameter distance

Angular diameter distance, dA, is defined as the ratio of an object’s physical transverse size to its
apparent angular size (in radians). For an object of fixed (not expanding with the Hubble flow)
transverse size, y, and apparent angular size, δθ, the angular diameter distance to the object is
defined as

dA = y/δθ. (5)

For two photons emitted at a time, t1, from either end of the object, the light paths are defined by
two close, radial null geodesics (Figure 1). In this case, the transverse size (or length) of the object
is simply δθ multiplied by the radial distance to the observer as calculated at the time of emission,
i.e.

y = δθ × a1S(r) or
y

δθ
= a1S(r). (6)

However, recalling a0/a1 = 1 + z, one obtains

dA = a0S(r)/1 + z. (7)

The angular diameter distance is therefore obtained from the solution to Equation 2. Note that the
solution to this general integral will be discussed after all of the distance/volume measures have
been defined.

2.1.2 Luminosity distance

Luminosity distance is defined such that the ratio between bolometric luminosity and the observed
bolometric flux of a given object is

dL =

√
Lbol

4πfbol
. (8)

The radiation from this object reaches us having travelled a radial distance a0S(r) and is dis-
tributed over a pseudo–spherical surface (of constant time) of surface area 4π(a0S(r))2. However,
two additional factors are required.
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Figure 1: The angle between radial light paths in a 2-dimensional curved universe

1. The energy of each photon decreases proportionally with the redshift factor,

Eγ,0 = hν0 =
hνe

1 + z
. (9)

2. The rate of reception of photons (remember we are dealing with a flux here) decreases by a
further factor 1 + z if one considers that ∆t0/∆te = a0/ae = 1 + z.

Therefore, the original flux versus luminosity relation may be re–written as

fbol =
Lbol

4π(a0S(r))2(1 + z)2 , (10)

i.e. dL = (a0S(r)) · (1 + z). Note that dL = (1 + z)2 dA. We have so far restricted the discussion
of luminosity distance to bolometric quantities. The k–correction must be considered when dealing
with spectral flux and luminosity and will be discussed later.

2.1.3 Co–moving volume

The co–moving volume defines a region of the universe in which the number density of non–evolving
objects expanding with the Hubble flow is constant with redshift. The co–moving volume computed
over the full sky out to a radial coordinate r is therefore,

Vc = 4πa3
0

∫ r

0

r′2dr′√
1− kr′2

. (11)
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2.2 Solving for distance versus redshift

General solutions to the distance versus redshift relations are best given by Hogg (astro–ph/9905116).
However, the analytic solutions for an EdS universe with k = 0 are given here. Recall that the
solution for the term a0S(r), involved in the computation of dL, dA, and Vc, is based upon the
following relation obtained from the RW line element∫ t0

te

c dt

a(t)
=

∫ r

0

dr′√
1− kr′2

. (12)

For k = 0 the RHS of this equation reduces to r. Taking the LHS one obtains∫ t0

te

c dt

a(t)
=

c t
2/3
0

a0

∫ t0

te

dt

t2/3
←−

[
a(t)

a0

=

(
t

t0

)2/3
]

=
3 c t

2/3
0

a0

[t1/3]
t0

te

=
3 c t

2/3
0

a0

[t
1/3
0 − t1/3e ] (note that (t0/te)

2/3 = 1 + z)

=
3 c t

2/3
0

a0

[
t
1/3
0 − t

1/3
0√

1 + z

]

=
3 c t0
a0

[
1− 1√

1 + z

]
a0r =

2c

H0

[
1− 1√

1 + z

]
←−

[
t0 =

2

3
H−1

0

]
. (13)

Returning to the previous geometric definitions, we can now write explicit distance and volume
formulae for the EdS case, i.e.

Angular diameter distance:

dA(z) =
2c

H0

1

(1 + z)

[
1− 1√

1 + z

]
. (14)

Luminosity distance:

dL(z) =
2c

H0

(1 + z)

[
1− 1√

1 + z

]
. (15)
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Co–moving volume element:

Vc = 4πa3
0

∫ r

0

r′2 dr′
√

1− kr′2
. (16)

For k = 0, Vc = 4π/3 · (a0r)
3, therefore

Vc =
32π

3

(
c

H0

)3(
1− 1√

1 + z

)3

. (17)

Note that this volume is computed over the full sky, i.e. 41,253 deg2 or 4π Sr.

It is then simple to define the differential co-moving volume element as

dVc
dz

dz = Vc(z + dz)− Vc(z). (18)

2.2.1 Look back time

The look back time is the difference in the age of the universe between the epochs of photon
emission and observation, i.e. tL = t0 − t1. For specific cases one may solve this equation directly.
For example, for the EdS case, i.e. k = 0, a ∝ t2/3, we can write

tL = t0 −
(
a1

a0

)3/2

t0

= t0

(
1− 1

(1 + z)3/2

)

=
2

3
H−1

0

(
1− 1

(1 + z)3/2

)
, (19)

recalling that t0 ' 2/3H−1
0 .

2.3 Characteristic scales

The above equations introduce a characteristic universal distance and volume in addition to the
characteristic time discussed in Lecture 1:

Hubble distance ≡ c

H0

= 3000 h−1Mpc

Hubble volume ≡
(
c

H0

)3

= 2.7× 1010 h−3Mpc3

Hubble time ≡ 1

H0

= 9.78× 109 h−1yr, (20)

where H0 = 100 h kms−1 Mpc−1 introduces a useful “cosmology free” unit.
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2.4 Toward observational tests

The variation of dA, dL and Vc with redshift are dependent – in a unique manner – upon the com-
bination of Ω0, Λ0 and H0 (we consider only matter dominated universes at present). Immediately,
three observational approaches are evident:

1. Observe a population of objects of fixed physical size with increasing redshift to determine
the form of dA(z) (or dA(z,Ω0,Λ0, H0)).

2. Observe a population of objects of fixed absolute luminosity with increasing redshift to deter-
mine dL(z).

3. If one can first determine the luminosity function of a population of objects, measuring the
galaxy number distribution as a function of apparent magnitude, N(< m), constrains the
combination of dL(z) and dVc/dz.

2.5 Mapping dL(z) via the Hubble diagram

Consider the distance modulus equation that relates the apparent magnitude m of a source of
absolute magnitude M , viewed at a distance d,

m = M + 5 log

(
d

10 (pc)

)
. (21)

This equation was originally formulated for stellar (i.e. Galactic) studies. To cast this equation in
cosmological form one considers the apparent magnitude variation with redshift, m(z), of a source
of absolute magnitude M ,

mλ(z) = Mλ + 25 + 5 log[dL(z)] +Kλ(z) + Eλ(z), (22)

where the subscript “λ” indicates that we are now considering spectral rather than bolometric
brightness measures. Several terms require explanation:

1. 25 + 5 log[dL(z)(Mpc)] is the cosmological distance modulus.

2. Kλ(z) is the k–correction that accounts simultaneously for the changing rest frame bandwidth
and the changing portion of the source spectral energy distribution (SED) sampled with
varying redshift (see next section).

3. Eλ(z) describes the effect of luminosity evolution with redshift in the source (we will see later
how this combines with Kλ(z)). Note that any “standard candle” that displays a non-zero Eλ
term is not standard.

4. Note that an extinction term is not present explicitly. Extinction may be best represented by
modifying the rest frame source SED.
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2.5.1 The k–correction

Consider the spectral flux fλ received from a source described by an SED of the form S(λ), observed
using a filter of spectral response R(λ),

fλ =

∫ ∞
0

S(λ)R(λ) dλ, or

Mλ = −2.5 log

[∫ ∞
0

S(λ)R(λ) dλ

]
. (23)

Note that this integral is computed in the observer’s frame and recall that the SED units are
expressed as [energy time−1 area−1 angstrom−1]. Consider now the same source, observed
using the same filter, located at a redshift z. The change in observed magnitude arising from the
redshift of the SED w.r.t. the filter may be expressed as

Kλ(z) ≡ M(z)−M(z = 0)

= −2.5 log

[∫∞
0
S(λrf × 1 + z)R(λobs) d(λobs/1 + z)∫∞

0
S(λobs)R(λobs) dλobs

]

= 2.5 log(1 + z)− 2.5 log

[∫∞
0
S(λrf × 1 + z)R(λobs) dλobs∫∞

0
S(λobs)R(λobs) dλobs

]
(24)

Note the factor of 1 + z in the dλ term in the numerator. This comes from recalling the SED units.
The term [angstrom−1obs] is expressed as [(angstromrf × 1 + z)−1]. This is where the extra factor
of (1 + z) comes from. For a spectrally flat SED, the second term in Equation 24 equals zero.

2.5.2 The [e+ k](z) correction

A number of observational and theoretical studies point to the fact that astronomical sources (here
generalised to galaxies – composite stellar populations) evolve with time. Evolution of the spectral
flux of a given source may be accounted for by modifying the term S(λ) to S(λ, t(z)). The above
k–correction may be re–written as a general, evolution plus k–term, i.e.

[e+ k](z) = 2.5 log(1 + z)− 2.5 log

[∫∞
0
S(λrf × 1 + z, t(z))R(λobs) dλobs∫∞

0
S(λobs, t(z = 0))R(λobs) dλobs

]
(25)

The study of galaxy evolution as an end in itself (rather than as test particles in cosmological tests)
developed during the 1970s (see papers by Larson and Tinsley). Early work expressed Eλ(t) in
forms such as L ∝ t−4/3, based upon approximations to stellar evolution calculations. However,
the advent of isochrone synthesis models (e.g. Bruzual and Charlot 1993 and later papers) using
comprehensive stellar spectrum libraries permits S(λ, t) to be computed directly.
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2.5.3 A few caveats when constructing the Hubble diagram

1. Malmquist bias

Hubble and Humason (1932, 1934) rapidly extended the distance over which the m(z) test
could be performed by observing the characteristic, or mean, magnitude of distant clusters
and groups of galaxies. However, when computing the mean magnitude of a sample of objects
(in the above case assumed to be at the same distance), unless one includes information on
the limiting magnitude sensitivity of the survey, ml, and the magnitude distribution function
of the sources (galaxies), f(m), one will systematically over estimate the characteristic
brightness 〈m〉 and consequently under estimate the distance. For example, consider the
case where one defines

〈m〉 =

∫∞
−∞m f(m) dm∫∞
−∞ f(m) dm

, (26)

as 〈m〉 approaches ml, 〈m〉is systematically overestimated (Figure 2). One must instead
compute the quantity,

〈m〉 =

∫ ml

−∞m f(m) dm∫ ml

−∞ f(m) dm
. (27)

Which requires an understanding of ml and f(m).

Figure 2: Malmquist bias in action.

2. Aperture Bias

Galaxy magnitudes are typically measured within a fixed angular aperture as viewed on a
given image (e.g. CCD frame or photograph). However, this angular aperture corresponds to
a varying physical scale in the galaxy rest frame and a varying fraction of the galaxy surface
brightness distribution µ(r) will lie within the observed aperture limits (Figure 3).

The integrated magnitude of a source may be defined as

m =

∫ rlim

0

2π r µ(r) dr, (28)
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Figure 3: Changing aperture sizes with redshift.

for a circularly symmetric source. The question is then how should one correct the integrated
magnitude of a sample of objects observed over a range of redshifts, to a uniform, rest frame
physical scale? Different solutions to this problem include

(a) Define a “constant light fraction” radius based upon the radial distribution of light in
each object. An example is the Kron radius (Kron 1980). The first image moment (or
flux weighted radius) can be computed as r̄ =

∑
r2
i fi/

∑
rifi where ri is the radial value

of each object pixel (measured from the central pixel and fi is the corresponding flux.
Once can then define a circular or elliptical aperture based upon this radius, e.g. setting
rKron = 2.5× r̄ is claimed to enclose > 90% of the source flux.

(b) Apply a fixed angular aperture that corresponds to the limiting isophote of the detector
image. This is observationally practical as there typically exists one µlimit per image.
However, in order to correct all images to a given scale one must integrate the assumed
form of µ(r) out to some (large) radius. This is the idea behind model magnitudes. It
is particularly effective when one is certain of the model used to describe the surface
brightness distribution of the objects, e.g. SNe Ia total magnitudes are computed using
a PSF model (also known as PSF-magnitudes).

(c) Apply a fixed metric aperture. An aperture of fixed rest frame scale, r = θap dA(z), is
applied to all galaxies. This is suitable for galaxy redshift surveys (say), where redshifts
are available for all sources. However, one must assume the form of dA(z).

(d) Choose θap to be sufficiently large such that approximately all the flux from a particular
galaxy is received. This is a good calibration technique but aperture sizes are limited in
crowded (i.e. deep) images.

3. Peculiar velocities

Peculiar velocities arise from galaxy motions along the line of sight toward the observer and are
caused by gravitational interactions with the local matter (i.e. galaxy) distribution. Peculiar
velocities are not associated with the Hubble flow. Peculiar velocities appear as an additional
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term in the observed redshift,

czobs = vpec(1 + zcosm) + czcosm, (29)

where vpec is considered in the galaxy rest frame. Locally, one may re–write the Hubble
relation as

vrec = H0 d+ vpec. (30)

Therefore, correct determination of the local galaxy velocity field is crucial to determining an
unbiased value of H0. Peculiar velocities are manifest in a number of observations:

(a) The local group: within a few Mpc of the Milky Way, the kinematic properties of the
local group (LG) of galaxies (dominated by the Milky Way and M31) dominate over the
Hubble flow. Radial velocity measurements of LG members permit accurate orbits to be
computed in a fairly straightforward manner.

(b) The local velocity field: physical distances to local spiral and elliptical galaxies may be
obtained via Tully–Fisher and Dn − σ relations. Having measure the observed redshift,
peculiar radial velocities may be computed and the velocity field obtained via integration.
Analyses such as this indicate that the LG is falling towards the Virgo cluster of galaxies
(approximately 15 Mpc distant) with a velocity of 250 kms−1.

(c) Motion of the LG w.r.t. the CMB: analysis of the CMB dipole indicates that the bulk
motion of the LG w.r.t. the CMB is vCMB = 606 kms−1 toward the direction l =
268◦, b = 27◦.

(d) Redshift space distortions – the “Finger of God” effect: redshift observations of massive
galaxy clusters (virialised systems of galaxies with apparently discrete spatial boundaries)
appear elongated along the radial axis in redshift versus sky projection plots. This
phenomenon arises from the well–defined distribution of orbital velocities within the
cluster being superposed upon the Hubble flow.

2.5.4 The Hubble diagram test in practice

The m(z) test is observationally challenging – redshifts must be secured for distant, “standard
candle” sources. Differences in dL(z) for difference cosmological models only become appreciable
(or measurable by practical means) at large redshifts (i.e. z > 0.5). At such distances, typical
sources become very faint and redshift determination is challenging. A menagerie of standard
candles has and continues to be used to approach this problem:

• Novae

• Cepheids – excellent distance indicator, though not visible to “cosmological” distances

• Brightest galactic star
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• Characteristic magnitude of cluster galaxy magnitude distribution

• Brightest, or “first ranked”, cluster galaxies

• Radio galaxies

• Tully–fisher relation for spirals (L ∝ vc)

• Tip of red giant branch

• Supernovae Type Ia (SNe Ia) – currently a highly favoured standard candle

How standard should a “standard candle” be? Ideally, absolute magnitude variations within a given
class of object should be significantly smaller than variations in the cosmological distance modulus
for the cosmological models of interest. In practice, many of the above standard candles do not
satisfy this criterion due to physical evolution and observational biases.

We focus on two standard candles that have passed the test of time: Cepheid variable stars and
Type Ia supernovae.

Cepheid variable stars are hyper luminous giant stars with luminosities in the range L̄ = 400→
40, 000L�. Cepheids are pulsationally unstable: as they pulse radially the total luminosity varies
due to the changing surface area and temperature of the photosphere. Pulsation periods lie in the
range P = 1.5→ 60 days. The range in luminosity demonstrated by Cepheids would preclude their
use as a standard candle were it not for a well-defined period-luminosity relation governing the
period P and the mean flux f̄ (or luminosity L̄) emitted over one period. This relationship was
defined observationally for Cepheids in the Small Magellanic Cloud (SMC), i.e. it was initially a
period-flux relationship but, assuming all Cepheids in the SMC to be at the same distance (and once
you obtain the distance to the SMC using “secondary” indicators1) it becomes a period-luminosity
relation. Consider the observation of two Cepheid variable stars of period 10 days – one in the
Large Magellanic Cloud (LMC) and one in M31 (Andromeda). Observation yields the result

f̄LMC

f̄M31

= 230, (31)

from which one can conclude that the ratio of the luminosity distances is

dL(M31)

dL(LMC)
=

(
f̄LMC

f̄M31

)1/2

=
√

230 = 15.2. (32)

Subsequent secondary distance indicators provide dL(LMC) = 50 ± 3 kpc from which one infers
that dL(M31) = 760± 50 kpc.

1This was achieved using a combination of main-sequence fitting and secular parallax distances.
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One of the main reasons for constructing the Hubble Space Telescope (HST) was to measure Cepheid
variable stars out to luminosity distances dL ∼ 20 Mpc in order to determine an accurate value
for the the Hubble constant. Consideration of Hubble’s law indicates that 20 Mpc corresponds to
a very small redshift. Looking back at the form of the luminosity distance versus redshift relation
(Equation 15) one notes that at z � 1 all redshift terms vanish. Therefore, the measurement of
H0 is not affected by any ignorance of history of the scale factor (e.g. acceleration or deceleration).
However, observing Cepheids out to 20 Mpc still places them within the “local” universe where
deviations from the Hubble flow arising from peculiar velocities (e.g. from Virgo) will bias any
measurement. Measurements of individual Cepheid redshifts (velocities) must be corrected for the
local velocity field. The value of H0 determined by the HST Key Project team is 75±8 kms−1Mpc−1.

Type Ia supernovae are a specific sub-class of exploding stars that display exceptionally uniform
peak luminosities. Supernovae classes were initially defined observationally: Type II supernovae
display hydrogen lines in their spectra, Type I do not. Type II supernovae are massive stars
(M > 8M�) whose cores collapse to form a neutron star or black hole when nuclear burning can
no longer support the star. Further observation indicated that Type Ib supernovae were similar to
Type II’s with the exception that the hydrogen in the stellar envelope has been blown away prior to
collapse. Type Ia supernovae appear to be fundamentally different. They are thought to originate
in binary systems containing a massive star accreting onto a white dwarf companion. When the
growing mass of the white dwarf passes the Chandrasekhar limit (1.4 M�) the white dwarf collapses
under its self-gravity with the effect that the density increases to the point where internal nuclear
fusion re-commences and the star is consumed in a well-calibrated nuclear explosion.

Type Ia supernovae are very bright and have been observed to redshifts z = 1.7. The typical peak
brightness of a Type Ia supernova is L = 4 × 109L� – about MV = −19.2. Type Ia supernovae
can therefore be observed well beyond the region of the universe that is locally flat to greater
distances where the effect of space curvature (matter and dark energy) are important. All of these
observations are part of a “distance ladder” and, taking the distance to the Virgo cluster measured
using Cepheids, the value of H0 determined using SNe Ia is 70± 7 kms−1Mpc−1.

2.6 The number–magnitude test – N(m): Are galaxies distributed uni-
formly in space?

In contrast to the Hubble diagram test, the N(m) test is observationally easier to construct. Images
of apparently blank regions of the sky provide an unbiased sample of the galaxy distribution. Such
“blank field” observations may extend to large areas (to sample a greater number of galaxies)
and faint magnitude limits (to sample more distant galaxies and to increase the sensitivity to
cosmological parameters). However, the dependence of N(m) upon cosmological parameters is
more complex than the m(z) test and involves additional physics such as the luminosity function
(LF) as a function of galaxy type.
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In the local universe one may consider the N(m) distribution of galaxies distributed uniformly in
space and displaying a fixed luminosity L. In this case (remember that local is akin to saying
spatially flat)

f = L/4πl2, (33)

is the apparent brightness of a galaxy at a distance l. For a uniform number density of galaxies, n,
the total number brighter than f is

N(> f) =
4

3
πl3n =

4

3
πn

(
L

4πf

)3/2

∝ f−3/2. (34)

Employing the relation, f ∝ 10−0.4m, one may re–write the above relationship as

logN(< m) = 0.6m+ constant. (35)

As the original relationship may be written as df = dL/4πl2, the above analysis is applicable to a
population of objects described by some general LF.

Hubble (1926) and Shapley & Ames (1932) confirmed that this relation holds to mpg ∼ 18 and thus
that galaxies are distributed uniformly in local space – which in turn may be considered as spatially
flat. This was the first direct indication that galaxies are reliable tracers of the wider universe.
Though large scale structures (e.g. galaxy clusters) do exist, if one averages over a large enough
region of space, a uniform distribution results. In contrast to this, a similar analysis was employed
to assess N(m) for stars in the Galaxy. The above relation does not hold, indicating that the Galaxy
(as traced by stars) is limited in space. From the initial results of Hubble and Shapley & Ames,
the N(m) test was extended to fainter magnitude limits in order to detect any deviation from the
N(m) relation predicted for a spatially flat universe. Could the signature of space curvature be
detected?

To compare observedN(m) values to values predicted for a general cosmology and galaxy population
model, one must construct a relation of the form

N(m) dm|T=all =
∑
i

∫ m+dm

m

∫ ∞
0

φ(m(M, z), Ti, z)
dVc
dz

dm dz, (36)

where N(m) dm|T=all is the number of galaxies occupying the apparent magnitude interval m to
m + dm, summed over all galaxy types. The quantity φ(M,T, z) is the galaxy LF considered as a
function of absolute magnitude, galaxy type and redshift.

2.6.1 Eddington bias

Eddington bias described the effect of observational uncertainty in m upon the form of the N(m)
relation. Consider an ideal N(m) relation where N(m) increases monotonically with increasing m.
If one convolves this relation with a Gaussian error in m of the form

f(m) dm = Ae−[(m−m̄)2/2σ2], (37)
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where σ is the observed error, then galaxies within a particular m to m+ dm interval are scattered
into neighbouring intervals. However, as N(m) increases to faint m, any particular magnitude “bin”
receives more galaxies scattered from fainter magnitude bins that from brighter ones (figure 4). The
observed N(m) relation is shifted systematically to brighter magnitudes.

Figure 4: The effect of Eddington bias on the N(m) relation.

To account for this effect in the predicted N(m) relation, one replaces φ(m) with φobs(m) where

φobs(m) =
1√
2πσ

∫ ∞
−∞

φ(m′) e−(m′−m)2/2σ2

dm′, (38)

expresses analytically a Gaussian smoothing of the galaxy LF.

2.6.2 The history of the N(m) test

Following the early observations of Hubble and Shapley & Ames, considerable observational effort
was expended in extending the N(m) test to fainter apparent magnitudes. Surveys were performed
using photographic plates with telescope + camera combinations offering large fields of view (e.g.
Schmidt plate surveys). Though CCDs were available from the early 1980’s onwards, their restricted
fields of view (FOVs) did not permit large area N(m) studies (low area = cosmic variance) despite
providing greatly enhanced sensitivity. However, all tests of the cosmological model using the
N(m) relation were eventually undermined by the realisation that the effects of galaxy evolution –
parameterized by the [e+k](z) and φ(z) terms – dominated over the effects of a varying cosmological
model (i.e. dL(z) and dVc(z)) at redshifts where the N(m) test was applicable.


