4 The dominant form of life on Earth

Biomass is the term given to the total mass of living material in a particular species or habitat. Let's consider the relative biomass of humans and bacteria on Earth.
With 6 billion people on Earth, with an average mass of 50 kg , the biomass of humans is

$$
6 \times 10^{9} \text { people } \times 50 \mathrm{~kg} / \text { person }=3 \times 10^{11} \mathrm{~kg} .
$$

What about bacteria? Let's consider bacteria in oceans. A rough estimate, which certainly varies with location and depth, is 1 billion per liter, i.e. 10^{9} bacteria Lt^{-1} or 10^{12} bactera m^{-3}.
The total volume of the Earth's oceans is $1.4 \times 10^{18} \mathrm{~m}^{3}$. The total number of bacteria is therefore

$$
10^{12} \text { bacteria }^{-3} \times 1.4 \times 10^{18} \mathrm{~m}^{3}=1.4 \times 10^{30} \text { bacteria. }
$$

What is the mass of a single bacterium? A typical bacterium is $1 \mu \mathrm{~m}\left(10^{-6} \mathrm{~m}\right)$ in size or $1 \mu \mathrm{~m}^{3}\left(10^{-18} \mathrm{~m}^{3}\right)$ in volume. Being made mostly of water, the mass of a bacterium is equal to its volume multiplied by the density of water

$$
\text { Mass }(\text { bacterium })=10^{-18} \mathrm{~m}^{3} \times 1000 \mathrm{~kg} \mathrm{~m}^{-3}=10^{-15} \mathrm{~kg} .
$$

The total mass of bacteria is therefore equal to

$$
\begin{align*}
& =1.4 \times 10^{30} \text { bacteria } \times 10^{-15} \mathrm{~kg} / \text { bacterium } \\
& =1.4 \times 10^{15} \mathrm{~kg} \tag{1}
\end{align*}
$$

The ratio of bacterial biomass to human biomass is then

$$
\frac{1.4 \times 10^{15} \mathrm{~kg}}{3 \times 10^{11} \mathrm{~kg}}=\frac{1.4}{3} \times 10^{4} \approx 5 \times 10^{3}
$$

