4 The dominant form of life on Earth

Biomass is the term given to the total mass of living material in a particular species or habitat. Let's consider the relative biomass of humans and bacteria on Earth.

With 6 billion people on Earth, with an average mass of 50 kg, the biomass of humans is

$$6 \times 10^9$$
 people $\times 50$ kg/person = 3×10^{11} kg.

What about bacteria? Let's consider bacteria in oceans. A rough estimate, which certainly varies with location and depth, is 1 billion per liter, i.e. 10^9 bacteria Lt^{-1} or 10^{12} bactera m^{-3} .

The total volume of the Earth's oceans is 1.4×10^{18} m³. The total number of bacteria is therefore

$$10^{12}$$
bacteria m⁻³ × 1.4×10^{18} m³ = 1.4×10^{30} bacteria.

What is the mass of a single bacterium? A typical bacterium is $1\mu m (10^{-6} m)$ in size or $1\mu m^3 (10^{-18} m^3)$ in volume. Being made mostly of water, the mass of a bacterium is equal to its volume multiplied by the density of water

Mass (bacterium) =
$$10^{-18}$$
 m³ × 1000 kg m⁻³ = 10^{-15} kg.

The total mass of bacteria is therefore equal to

=
$$1.4 \times 10^{30} \text{ bacteria} \times 10^{-15} \text{ kg/bacterium}$$

= $1.4 \times 10^{15} \text{kg}$. (1)

The ratio of bacterial biomass to human biomass is then

$$\frac{1.4 \times 10^{15} \text{kg}}{3 \times 10^{11} \text{kg}} = \frac{1.4}{3} \times 10^4 \approx 5 \times 10^3.$$