3 Radiometric dating

The radioactive decay of an element is essentially a random event. Radioactive decay occurs due to a quantum process ocurring within the nucleus of an atom.
The end result is that we cannot predict precisely when a particular radioactive nucleus will decay. However, we can make a statistical statement as to when it will occur. We can measure the time taken for half of a large sample of radioactive atoms to decay.
This is referred to as the half-life, or $t_{\text {half }}$.
Consider a sample of 8 million radioactive atoms with a half-life $t_{\text {half }}=20$ minutes. We start the experiment at $t=0$. After 20 minutes half the sample, 4 million atoms, remains undecayed. After a further 20 minutes 2 million atoms remain undecayed, i.e. $1 / 2 \times 1 / 2=1 / 4$ of the original sample. We can express the proportion of the sample remaining as

$$
\frac{\text { current amount }}{\text { original amount }}=\left(\frac{1}{2}\right)^{t / t_{\text {half }}} .
$$

In the case of rock dating, t is the time since the rock formed. By rearranging our first equation we obtain

$$
t=t_{\text {half }} \times \frac{\log _{10}(\text { current/original })}{\log _{10}(1 / 2)}
$$

Consider the following problem: you analyse a small sample of meteoritic rock. Potassium-40 and argon- 40 are present in the ratio of 0.85 units of potassium- 40 atoms to 9.15 units of argon- 40 atoms. How old is the meteorite?
Because no argon gas could have been present in the meteorite when it formed, the 9.15 units of argon- 40 must have been potassium- 40 that has decayed with a half-life of 1.25 billion years. The original amount of potassium- 40 must have been $0.85+9.15=10$ units. The age of the meteorite is then

$$
\begin{aligned}
t & =1.25 \text { billion } \mathrm{yr} \times \frac{\log _{10}(0.85 / 10.0)}{\log _{10}(1 / 2)} \\
& =1.25 \text { billion } \mathrm{yr} \times \frac{-1.07}{-0.301} \\
& =4.45 \text { billion } \mathrm{yr} .
\end{aligned}
$$

Therefore, the meteorite solidified 4.45 billion years ago.

