The habitability of Earth

Outline

How does learning about life on Earth influence the search for life elsewhere?

- Is there a danger of the search for life simply becoming the search for Earth-like environments (i.e. too narrow in scope)?
- What makes the Earth suitable for life?
- Water + organics + energy.
- Vulcanism, magnetic fields, plate tectonics: geological activity.
- So should we start by looking for geologically active worlds in the Solar System?

Worlds in the inner Solar System

What Makes the Earth Habitable?

- Distance of Earth from Sun (not too close, not too far)
- Liquid water
- Surface gravity
- Atmosphere
- Magnetic field
- Solid surface
- Building blocks of life
- Climate suitable for life
- Plate tectonics

The Rock Cycle

a This solidified lava is an example of igneous rock.

b Metamorphic rock has gone through transformations that often give a contorted appearance.

c Sedimentary rock tends to build up in layers like those visible here.

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

oyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Grand Canyon Strata

Atomic Numbers, Isotopes, etc.

atomic number = number of protons atomic mass number = number of protons + neutrons (A neutral atom has the same number of electrons as protons.)

a Uranium-238 decays through a chain of individual decay processes, eight of which involve the emission of a helium nucleus, ultimately leaving lead-206 as its stable daughter isotope. The half-life for the decay chain as a whole is 4.47 billion years.

half-life = 5,730 years

b Carbon-14 decays by emitting an electron from its nucleus, which changes one neutron into a proton to make nitrogen-14 as its stable daughter. The half-life of carbon-14 is 5,730 years.

Copyright @ 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

55 Cs	Ba	57 La	⁷² Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	⁸⁰ Hg	81 TI	82 Pb	83 Bi	Po	Åt	⁸⁶ Rn
Cesium 132.905 4519	Barlum 137.327	Lanthanum 138.905 47	Hafnium 178.49	Tantalum 180.947 88	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.084	Gold 196.966 569	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.980 40	Polonium (209)	Astatine (210)	Radon (222)
87 Fr	BB Ra	AC	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 DS	Rg	Uub*		114 Uuq*		116 Uuh*		
Francium (223)	Radium (226)	Actinium (227)	Rutherfordium (261)	Dubnium (262)	Seaborgium (266)	Bohrium (264)	Hassium (277)	Meitnerium (268)	Darmstadtium (271)	Roentgenium (272)	Ununblum (285)		Ununquadium (289)		Ununhexium (292)		

· The systematic names and symbols for elements greater than 111 will be used until the approval of trivial names by the IUPAC.

The discoveries of elements with atomic numbers 112, 114, and 116 have been reported but not fully confirmed.

58 Ce Cerium 140.116	59 Pr Praseodymium 140.907 65	60 Nd Neodymium 144.242	61 Pm Promethium (145)	62 Sm Samarium 150.36	63 Eu Europium 151.964	64 Gd Gadolinium 157.25	65 Tb Terblum 158.925 35	66 Dy Dysprosium 162.500	67 Ho Holmium 164.930 32	68 Er Erblum 167.259	69 Tm Thulium 168.934 21	70 Yb Ytterblum 173.04	71 Lu Lutetium 174.967
۳ĥ	91 Pa	92 U	93 Np	Pu	Am 95	Cm	97 Bk	° [®] Cf	99 Es	Fm	101 Md	102 No	103 Lr
Thorium 232.038 06	Protactinium 231.035 88	Uranium 238.028 91	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)

Half-life

Fossils

a A dinosaur bone preserved in sandstone in Dinosaur National Monument, which straddles Utah and Colorado.

d This 40-million-year-old leaf still retains organic material, including DNA.

b A 190-million-year-old petrified (stone) tree in Arizona.

 An insect preserved in hardened tree resin (often called *amber*).

c These 375-million-year-old impressions are casts of dead organisms (called ammonites) made when minerals filled the empty space left after the organism decayed.

g This boy is standing in a 150-million-year-old dinosaur track in Colorado.

f These tusks belong to a whole 23,000-year-old mammoth discovered in Siberian ice in 1999.

The Geological time scale

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

How Old is the Earth?

- It must be older than the oldest minerals found on Earth (4.4 Gyr old)
 - zircon found in Australia
- It must be older than the oldest Moon rocks (4.4 Gyr old)
 - we know that the Moon formed after the Earth
- It must be younger than the oldest meteorites (4.57 Gyr old)
- Scientists now estimate that the Earth is about 4.54 Gyr old

Formation of the Moon

The Moon is thought to have formed very soon after the Earth formed
within 50-150 Myr
It is thought to have formed as the result of the impact of a Marssized object

Heavy bombardment on the Moon

- The surface of the Moon preserves a record of ancient impact craters
 this evidence has been erased on the Earth
- The lunar maria exhibit relatively few craters
 these surfaces are about 3.0-3.9 Gyr old
- Most impacts on Earth must therefore have occurred during the Hadean era

Life during the Hadean era

- Radiometric dating of zircons indicates that Earth's crust had already formed 4.5 Gyr ago
- This implies that the Hadean Earth may have been habitable at that time
- Frequent impacts may or may not have sterilized the Hadean Earth
 - sufficiently large impacts could have vaporized all of Earth's oceans!

Earth's Interior

- The interior of Earth has several important effects on the surface
 - Volcanoes have built up much of the atmosphere
 - Plate tectonics have shaped the continents
 - Earth's magnetic field shields life from the solar wind

Geology

Vulcanism

Magnetic field

Protects

Plate tectonics

Recycles

Creates and replenishes

Atmosphere

Plate Tectonics

Earth's surface is broken up into plates which float on the mantle and move around slowly Movement of these plates is responsible for mountain building sea floor spreading earthquakes volcanic hot spots subduction rift valleys continental drift

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Plate Tectonics at Work

Building Earth's Atmosphere and Oceans

- Earth's atmosphere and oceans were produced by several mechanisms
 - Outgassing (e.g. by volcanoes) of gases trapped within the Earth
 - Material deposited during impacts (including comets)
 Life!

How to Lose an Atmosphere

- Several mechanisms can lead to the loss of part or all of a planetary atmosphere
 - thermal escape (gas molecules move too fast)
 - impact-triggered escapesolar wind stripping

The Greenhouse Effect

Greenhouse gases in the Earth's atmosphere make the Earth considerably warmer than it would otherwise be

This is a good thing for life, since it allows liquid water to survive on Earth's surface

However, by adding manmade greenhouse gases, we are now starting to warm the atmosphere further

	Without Atmosphere	With Atmosphere	Water		
Earth	255 K	285 K	Liquid		
Venus	280 K	750 K	Vapor		
Mars	214 K	220 K	Ice		

The Carbon Dioxide Cycle

Earth's Carbon Dioxide Thermostat

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Snowball Earth

What Makes the Earth Habitable?

The size/mass of Earth
Earth's distance from the Sun
Plate tectonics
Impacts: not too many, not too few
Earth's magnetic field
The stabilizing effect of the Moon
Earth's atmosphere and greenhouse effect