The Solar System

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Solar System

- The Solar System as a life bearing habitat.
- The Sun
- The Terrestrial worlds
- The Jovian worlds
- The Grand Tour: Voyager and Pioneer
- The outer solar system: TNOs, the Kuiper Belt, the Oort Cloud
- The Habitable Zone
- The creation of the Solar System

The Sun

- The Sun is a star at the centre of the Solar System.
- The Sun contains 99.86% of the mass of the Solar System
- The Sun is composed of hydrogen (74%), helium (25%) and trace elements.
- The surface of the Sun is called the photosphere.
- The Sun is powered by nuclear fusion reactions occurring in its core (hydrogen fuses into helium).
- In addition to light, the Sun emits a stream of energetic particles into space – the solar wind.

Distances to the planets

Planet	Mean distance (AU)	Light travel time
Mercury	0.39	3 minutes
Venus	0.72	6 minutes
Earth	1	8 minutes
Mars	1.52	12 minutes
Jupiter	5.2	42 minutes
Saturn	9.54	1 hour 16 minutes
Uranus	19.14	2 hours 33 minutes
Neptune	30.06	4 hours
Pluto	39.53	5 hours 20 minutes

The physical distance between the Earth and Sun is 148 million km. This distance is defined as 1 astronomical unit (AU).

Solar energy received by the planets

The Earth receives 1378 W of solar energy per square metre. This energy powers our weather and almost all life on Earth.

Planet	Relative energy
11- 1- 1- 10	flux
Mercury	6.6
Venus	2
Earth	1
Mars	0.44
Jupiter	0.036
Saturn	0.01
Uranus	0.003
Neptune	0.001
Pluto	0.0006

The Terrestrial Worlds

The rocky planets show a number of similar characteristics: they are all approximately Earthsized, they are made of dense, rocky material (silicates) and they possess few if any moons.

 They differ in terms of their atmospheres, surface temperatures, magnetic fields and geology.

The Terrestrial Worlds

Planet	Atmosphere	Magnetic	Surface	Geology
		field	temperature	
Mercury	X	X	650K (100K)	X
Venus		X	737K	
Earth			293K	
Mars	X	X	210K	?

The Jovian Worlds

	Earth	2	
Iunitar	Catura	Uranus	Neptune
Jupiter	Saturn	Distance from Sun = 19.2 AU	Distance from Sun = 30.1Al
Distance from Sun = 5.20 AU	Distance from $Sun = 9.54 \text{ AU}$	Mass = 14 M _{Earth}	Mass = 17 M _{Earth}
Mass = 318 M _{Earth}	Mass = 95 M _{Earth}	Radius = 3.98 R _{Earth}	Radius = 3.81 R _{Earth}
Radius = 11.19 R _{Earth}	Radius = 9.46 R _{Earth}	Density = 1.24 g/cm ³	Density = 1.67 g/cm^3
Density = 1.33 g/cm^3	Density = 0.71 g/cm ³	Composition: H compounds,	Composition: H compounds,
Composition: mostly H, He	Composition: mostly H, He	rock, H and He	rock, H and He

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

S.

The Jovian Moons

Moons of the Solar System Scaled to Earth's Moon

Giant dust ring around Saturn

Enceladus continually replenishes the E-ring

Voyager 2: The Grand Tour

- Voyager 2 is a NASA flyby mission launched in 1977.
- Using a favourable configuration of the Jovian planets it was designed to "slingshot" around each world to perform a Grand Tour of the outer Solar System.
- Voyager 2 visited Jupiter (1979), Saturn (1981), Uranus (1986) and Neptune (1989).
- Voyager 2 carried high resolution cameras that provided stunning close-ups of the Jovian worlds.
- Voyager 2 is now travelling past the very edge of the Solar System to interstellar space.

The outer solar system

- Neptune is the last Jovian world as we head further out.
- Pluto is a very different world: small, rocky and icy.
- The discovery of Eris in 2005 (larger than Pluto) forced astronomers to reconsider what we term a planet.
- Pluto, Eris and thousands of other small bodies make up the Kuiper Belt of objects orbiting beyond Neptune.
- Further beyond the Kuiper Belt lies the Oort Cloud. Lying at some 50000 AU (1 Ly) from the Sun it is thought to contain up to 1 trillion small icy bodies that, if perturbed by a passing star, fall into the Solar System to be observed as comets.

The Solar System's Habitable Zone

Mars orbit
Earth orbit Venus orbit Nercury orbit Sun
Conservative estimate

optimistic estimate

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Disks Around Other Stars

Beta Pictoris

