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13. Riemann Curvature
As a feature of curvature, a vector field has a deficit angle  obtained from 
integrating the covariant derivative of a vector field around a loop with area A. 
Of course 0 as the loop gets smaller. We define the Riemann curvature as

KR= lim
A0



A
 . This definition is intrinsic to the Riemannian manifold and does 

not depend on the embedding. We will see that this limit exists and KR=KG .

Vector Valued Differential Forms
While studying curvature, we considered the line integral of the covariant 
derivative of a vector field. To this end, it helps to extend our notion of scalar 
valued differential forms to vector valued differential forms. This extension 
follows a comfortable pattern. A vector valued 0-form is just a vector field. A 
vector valued 1-form is a field of linear maps from vectors to vectors. A vector 
valued k-form is a field of skew symmetric linear maps from k-tuples of vectors to
vectors. Major operations on general vector valued k-forms are problematic, 
such as wedge product and exterior derivative. 

We will use the general stokes theorem as a guiding principle for evaluating the 
loop integral of the derivative of a vector field. Stokes theorem extends to vector 
valued forms in a Cartesian space where we interpret a vector valued k-form 
using the individual components as scalar valued k-forms. 

To use the general stokes theorem, we will need an extended version of the 
exterior derivative. Since the ordinary derivative of a vector field is not a tensor, 
We use the covariant derivative in the definition. The exterior derivative of a 
vector valued 1- form  u  can be calculated in a Cartesian space as:

d  V , W =∇ V   W −∇ W  V −  [V , W ]   (a tensor).

In a Riemannian space the covariant derivative can be used to get
the tensor d  V , W =V   W − W   V − [V , W ] 

There are problems using stokes theorem for vector valued forms. In the above 
discussion, the integral of the derivative along the path does not equal the 
difference of the vectors at the ends. We will address this next.

The Riemann Curvature Tensor
We wish to determine the covariant change in a vector field (disallow full circle 

rotations) around a small loop as: ∮
loop


̇s
v dt . For the vector valued 1-form 

defined by v ̇s≡̇s
v in terms of the vector field v . We would like to use the 

general stokes theorem and calculate: ∬
loop area

d ω⃗v⃗ . 
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Stokes Theorem does not extend to vector valued forms. However, we can work 
around this with scalar valued differential forms.  Our scalar valued forms will 
represent rotation and we will define the Riemann curvature tensor.

Expressing Rotation
Consider two orthonormal vector fields α̂ and β̂ . The 1-form
ωαβ (ṡ)=〈δṡ α̂ ,β̂〉 captures the idea of α̂ rotating while traversing a path s

Using an Orthogonal Coordinate System
Consider an orthogonal coordinate system with variables α and β with 
corresponding vector fields α⃗ and β⃗ following the coordinate grid, and the 
normalized fields α̂ and β̂ . 

We want to find the rotation of α̂ around a loop by integrating the 1-form ωαβ .
Instead, we will integrate its exterior derivative over the interior area of the loop.

Use d V , W =∇ V   W −∇ W  V −  [ V , W ]   to get

dωαβ( V⃗ , W⃗ )=〈δV⃗ δW⃗ α̂ ,β̂〉+〈δW⃗ α̂, δV⃗ β̂〉−〈δW⃗ δV⃗ α̂ ,β̂〉−〈δV⃗ α̂ ,δW⃗ β̂〉−〈δ[V⃗ , W⃗ ] α̂ ,β̂〉

We will simplify the above expression by defining the Riemann curvature tensor 
by R⃗ (U⃗, W⃗ ) v⃗≡ δU⃗δW⃗ v⃗−δW⃗δU⃗ v⃗−δ[U⃗, W⃗ ] v⃗ .

Traditionally, this tensor is encountered by examining derivatives of the metric 
tensor. Here, we encountered it through analyzing vector field rotation and 
Stokes theorem. This tensor has symmetry properties that are useful to us. 

Now use R⃗ (α⃗ , β⃗) α̂=δα⃗δβ⃗ α̂−δβ⃗δα⃗ α̂−δ
[ α⃗ ,β⃗ ]

α̂ to get

dωαβ( α⃗ , β⃗)=〈R⃗ (α⃗ , β⃗ )α⃗ , β⃗〉+〈δβ⃗ α⃗ ,δα⃗ β⃗〉−〈δα⃗ α⃗ ,δ
β⃗
β⃗〉

We have 〈δβ⃗ α̂ ,δα⃗ β̂〉 = 0 and 〈δα⃗ α̂ ,δ
β⃗
β̂〉 = 0 , because α̂ and β̂ are 

orthonormal. 

So dωαβ(α⃗ , β⃗)= 〈R⃗ (α⃗ , β⃗)α̂ , β̂〉= 1
∥α⃗∥∥β⃗∥

〈R⃗ (α⃗ , β⃗) α⃗ , β⃗〉 .
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In our case of an orthogonal coordinate system , we can calculate the deficiency 

angle as −ϕ= ∬
loop interior

1
∥α⃗∥∥β⃗∥

〈R⃗ (α⃗ , β⃗) α⃗ , β⃗〉 dαdβ

Calculating Riemann Curvature
In our orthogonal coordinates case,

KR = lim
A→0

ϕ

A
=− lim

A→0

∬
loop interior

1
∥α⃗∥∥β⃗∥

〈R⃗ (α⃗ , β⃗) α⃗ , β⃗〉 dαdβ

∬
loop interior

∥α⃗∥∥β⃗∥ dαdβ
=−

〈R⃗ (α⃗ , β⃗)α⃗ , β⃗〉
∥α⃗∥

2∥β⃗∥
2

                                             
Generalizing Riemann Curvature
What happens if we use different vector fields α⃗ and β⃗ ?  Our calculations 
are based on a particular choice of independent vector fields  and  and 
their total rotation. Any other pair of vector fields should experience the same 
total rotation for a given loop. 

To deal with a non-orthogonal coordinate system we conjecture the 
generalization 

KR =−
〈R⃗ (α⃗ , β⃗) α⃗ , β⃗〉

∥α⃗∥
2∥β⃗∥

2
−〈α⃗ , β⃗〉

2

The independence of KR on α⃗ and β⃗ can be shown by considering 
replacing α⃗ and β⃗ with independent linear combinations of these two and find
that this reduces to the original expression. This reduction uses linearity and 
these symmetry identities for the Riemann curvature tensor:

R⃗ (u⃗ , v⃗ ) w⃗ =−R⃗ (v⃗ , u⃗) w⃗ and 〈R⃗ (u⃗, v⃗ ) w⃗, z⃗ 〉= 〈R⃗ (w⃗ , z⃗)u⃗ , v⃗ 〉 .

Relating Gaussian and Riemann Curvature
For a 2-d manifold embedded in 3-d, we have two definitions of curvature that 
turn out to be the same. To show this, we explore the relationship between the 
tipping of the embedded normal with the rotation of vector fields within the 
surface. We will build a field of 3-d axes over the embedded surface and 
examine its behavior around a loop. First we consider a small region of the  
manifold and the vector field of normals  . With some exertion, we can 
choose a coordinate system with parameters  and  where the local basis 
vectors  and  are orthogonal eigenvectors of the derivative of  . In the 
3-d embedding space, ∇ =  and ∇

=
 . Also, we can have

∥∥∥∥ =× ,with  =
∥∥

∥∥
×  and  =

∥∥
∥∥

×  
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We will show the relationship between the eigenvalues of the derivative of 
and the rotation of the coordinate vectors. To this end, we follow the triple of 
vectors  ,  ,  along a path s(t) and view its 3-d rotational velocity as an axial
vector  . For any vector field v that remains fixed with respect to the
 ,  ,   along the path, the velocity due to rotation is given by ×v ,

At any point in the path, we can express the rotation velocity as the sum of  a 
rotation  tipping  away from  about an axis tangent to the surface, and a 
rotation about  which reflects the rotation involved with Riemannian curvature:

 ̇s= ×∇ ̇s  
1

∥∥∥∥
∇ ̇s⋅

  = // ̇s ⊥
̇s

If we follow the vector field v around a loop, we find that the net change is 0 .
So, the loop integral must satisfy:

∮  ̇s×vdt = 0

We can choose a vector valued 1-form defined as  ̇s≡ ̇s×

and note that  =  // ̇s⊥
̇s

In summary  is the rotational speed resulting from traversing the path. 
And we have vector valued 1-forms  ,  // , and ⊥ that depend on
 and  . 

We can evaluate ∮ ̇sdt = 0 on an arbitrarily small loop using Stokes 
Theorem on the 3-d Cartesian embedding space. Then we find that

d  //  ,=−d  ⊥  ,  .

Evaluating d  // , results in an expression with the required eigenvalues 

because it contains terms like ∇
̇ =  Evaluating d ⊥ , will result in 

an expression containing R  ,  . After comparing corresponding 
components of d  // and d ⊥ we find that KR=KG .
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