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5 Quantum tunneling and simple harmonic motion

In this section we will apply the Schrödinger equation to understand the phenomenon of quantum
tunneling. We will investigate quantum tunneling in action, i.e. via alpha particle decay of radioac-
tive elements and via Scanning Tunneling Microscopy (STM). Finally, we will discuss the quantum
description of simple harmonic motion and its application to molecular physics.

5.1 The potential barrier

We consider the case of a particle of energy E directed towards a potential barrier of height V0 and
width L (Figure 1).

Figure 1: A schematic representation of a potential barrier.

We describe the potential V (x) via

0 x ≤ 0

V (x) = V0 0 < x < L (1)

0 x ≥ L

5.1.1 Particle energy E > V0

Classically the particle crosses the barrier every time. The velocity of the particle decreases when
crossing the barrier. We see this as the total energy of the system can be written as

K =
1

2
mv2 = E − V0. (2)

Our quantum mechanical model describes the particle as a wave function. We consider an analogy
with optics: when light in the form of an electromagnetic wave travels from one medium to another,
for instance from air to glass, the wavelength changes because of the changing index of refraction.
Some of the incident light is transmitted and some is reflected. We extend this analogy to the
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quantum scale and describe the wave function in terms of an incident wave, a reflected wave and
a transmitted wave. We can solve the Schrödinger equation for each wave function using the
appropriate boundary conditions.

Once again we emphasize that classical physics predicts total transmission for E > V0 and total
reflection for E < V0. As we will see, quantum mechanics predicts almost total transmission for
E � V0 and almost total reflection for E � V0. It is in the regime E ∼ V0 that we expect unusual,
or quantum, phenomena.

We can summarize the particle properties in each region of Figure 1:

Region 1: p1 =
√

2mE ⇒ k1 =

√
2mE

h̄
(3)

Region 2: p2 =
√

2m(E − V0) ⇒ k2 =

√
2m(E − V0)

h̄
(4)

Region 3: p3 =
√

2mE ⇒ k3 = k1 =

√
2mE

h̄
(5)

We can also write down the time independent Schrödinger equation for each region:

Region 1:
d2ψ1

dx2
+

2m

h̄2 E ψ1 = 0 ⇒ ψ′′1 + k2
1ψ1 = 0 (6)

Region 2:
d2ψ2

dx2
+

2m

h̄2 (E − V0)ψ2 = 0 ⇒ ψ′′2 + k2
2ψ2 = 0 (7)

Region 3:
d2ψ3

dx2
+

2m

h̄2 E ψ3 = 0 ⇒ ψ′′3 + k2
3ψ3 = 0 (8)

The wave functions then display solutions of the form

ψ1 = Aeik1x +Be−ik1x (9)

ψ2 = Ceik2x +De−ik2x (10)

ψ3 = Feik1x +Ge−ik1x, (11)

Where we have intentionally dropped the use of the k3 term. Each solution represents the time
independent component of a travelling wave. If we consider the region 1 wave function, i.e. ψ1 =
Aeik1x +Be−ik1x, and include the time dependence via Ψ1 = ψ1e

−iωt we obtain

Ψ1 = Aei(k1x−ωt) +Be−i(k1x+ωt). (12)
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Amplitude Direction
Aeik1x incident wave moving right
Be−ik1x reflected wave moving left
Ceik2x barrier wave moving right
De−ik2x barrier wave moving left
Feik1x transmitted wave moving right
Ge−ik1x = 0 incident wave moving left

Table 1: Wave functions in the potential barrier problem.

Each term is referred to as an amplitude. The first amplitude (A) is a wave travelling towards
x > 0, i.e. towards the right. We summarise each of the amplitudes in Table 1. Note that we impose
the initial condition that the incident wave arrives from the left moving in the positive x-direction.
The following boundary conditions must be satisfied

ψ1(x = 0) = ψ2(x = 0) and ψ′1(x = 0) = ψ′2(x = 0)

ψ2(x = L) = ψ3(x = L) and ψ′2(x = L) = ψ′3(x = L)

The boundary conditions generate four equations

A+B = C +D (13)

ik1A− ik1B = ik2C − ik2D (14)

Ceik2L +De−ik2L = Feik1L (15)

ik2Ce
ik2L − ik2De

−ik2L = ik1Fe
ik1L (16)

We are now in a position to define the transmission and reflection probabilities:

1. Transmission probability

T ≡ ψ∗transψtrans

ψ∗incidψincid

=
F ∗e−ik1xFeik1x

A∗e−ik1xAeik1x
=
F ∗F

A∗A
. (17)

2. Reflection probability

R ≡
ψ∗refψref

ψ∗incidψincid

=
B∗eik1xBe−ik1x

A∗e−ik1xAeik1x
=
B∗B

A∗A
. (18)
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We can further specify that R + T = 1. The calculation of T requires the boundary conditions to
obtain an expression for F/A.

1. Eliminate B by taking ik1× Eqn. 13 + Eqn. 14:

2ik1A = i(k1 + k2)C + i(k1 − k2)D. (19)

2. Eliminate D by taking ik2× Eqn. 15 + Eqn. 16:

2ik2Ce
ik2L = i(k1 + k2)Fe

ik1L. (20)

3. Eliminate C by taking ik2× Eqn. 15 − Eqn. 16:

2ik2De
−ik2L = −i(k1 − k2)Fe

ik1L. (21)

4. Substitute Equations 20 and 21 into Equation 19 to obtain

2ik1A =
i2(k1 + k2)

2 Feik1L

2ik2eik2L
− i2(k1 − k2)

2 Feik1L

2ik2e−ik2L
(22)

A

F
=

eik1L

4k1k2

[(k1 + k2)
2e−ik2L − (k1 − k2)

2eik2L] (23)

=
eik1L

4k1k2

[(k2
1 + 2k1k2 + k2

2)e
−ik2L − (k2

1 − 2k1k2 + k2
2)e

ik2L] (24)

5. We next make use of the following trigonometric relations

cosx =
eix + e−ix

2
sin x =

eix − e−ix

2i
, (25)

in order to write
A

F
=

eik1L

4k1k2

(4k1k2 cos(k2L)− 2i(k2
1 + k2

2) sin(k2L)). (26)

6. We next inspect the expression for A/F and notice that

A

F
looks like eiθ(a− ib),

(
A

F

)∗
looks like e−iθ(a+ ib),

(
A

F

)∗ (A
F

)
looks like a2 + b2.
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Therefore, we write(
A

F

)∗ (A
F

)
=

1

16k2
1k

2
2

(16k2
1k

2
2 cos2(k2L) + 4(k2

1 + k2
2)

2 sin2(k2L)) (27)

= cos2(k2L) +
(k2

1 + k2
2)

2 sin2(k2L)

4k2
1k

2
2

(28)

= 1− sin2(k2L) +
(k2

1 + k2
2)

2 sin2(k2L)

4k2
1k

2
2

(29)

= 1 +

(
(k2

1 + k2
2)

2 − 4k2
1k

2
2

4k2
1k

2
2

)
sin2(k2L) (30)

= 1 +

(
(k2

1 − k2
2)

2

4k2
1k

2
2

)
sin2(k2L) (31)

1

T
= 1 +


(

2mE
h̄2 − 2m(E−V0)

h̄2

)2

4 · 2mE
h̄2 · 2m(E−V0)

h̄2

 sin2(k2L) (32)

1

T
= 1 +

(
2mV0

h̄2

)2

16m2

h̄4 E(E − V0)
sin2(k2L) (33)

T =

(
1 +

V 2
0 sin2(k2L)

4E(E − V0)

)−1

for E > V0. (34)

7. The transmission formula predicts two distinct outcomes for E > V0:

(a) We note that T = 1 for k2L = nπ where n = 1, 2, . . ., i.e. the result looks like the
classical outcome where an exact number of wavelengths fit within the width of the
potential barrier.

(b) In all other cases we note that T < 1 and R > 0, i.e. there is a certain probability that
the particle will be reflected even when it has sufficient energy to clear the barrier.

5.1.2 Particle energy E < V0

Classically, a particle of energy E < V0 is always reflected by the potential barrier. When we
consider a particle described by a quantum wave function we observe a small but finite possibility
for the particle to “tunnel” through the barrier and continue on the other side. The analysis of the
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Figure 2: Wave function solutions across a potential barrier.

situation E < V0 follows the previous analysis for E > V0 with the exception that we must modify
the wave number within the barrier (Equation 7)

k2 =

√
2m(E − V0)

h̄
=

√
−2m(V0 − E)

h̄
, (35)

which is now an imaginary quantity. We therefore define k2 = iκ where

κ =

√
2m(V0 − E)

h̄
, (36)

and the wave function within region 2 may be re-written as

ψ2 = Ce−ik2x +Deik2x = Ceκx +De−κx, (37)

i.e. the wave function within the barrier is now described by an exponential, rather than an
oscillatory, term. When computing the transmission and reflection probabilities for E < V0, the



5 QUANTUM TUNNELING AND SIMPLE HARMONIC MOTION 7

algebra follows that used previously until we reach Equation 26 and take the complex conjugate,
i.e.

A

F
=

eik1L

4k1k2

(
4k1k2

[
eik2L + e−ik2L

2

]
− 2i(k2

1 + k2
2)

[
eik2L − e−ik2L

2i

])
. (38)

At this point we let k2 = iκ and write

A

F
=

eik1L

4k1κ

(
4k1κ

[
e−κL + eκL

2

]
− 2i(k2

1 − κ2)

[
e−κL − eκL

2i

])
(39)

=
eik1L

4k1κ
(4k1κ cosh(κL) + 2(k2

1 − κ2) sinh(κL)), (40)

where we have used the trigonometrical relations

coshx =
ex + e−x

2
sinh x =

ex − e−x

2
. (41)

We can now take the complex conjugate of the expression A/F and write(
A

F

)∗ (A
F

)
=

1

16k2
1κ

2
(16k2

1κ
2 cosh2(κL) + 4(k2

1 − κ2)2 sinh2(κL)). (42)

Note that cross terms involving cosh(x) sinh(x) equal zero. Furthermore, by using cosh2(x) −
sinh2(x) = 1 we may write the inverse transmission probability as

1

T
= 1 + sinh2(κL) +

(k2
1 − κ2)2

4k2
1κ

2
sinh2(κL) (43)

= 1 +

(
4k2

1κ
2 + (k2

1 − κ2)2

4k2
1κ

2

)
sinh2(κL) (44)

= 1 +

(
(k2

1 + κ2)2

4k2
1κ

2

)
sinh2(κL) (45)

= 1 +


(

2mE
h̄2 + 2mV0

h̄2 − 2mE
h̄2

)2

4 · 2mE
h̄2 · 2m(V0−E)

h̄2

 sinh2(κL) (46)

= 1 +
(2mV0)

2

16m2E(V0 − E)
sinh2(κL) (47)

i.e. T =

(
1 +

V 2
0 sinh2(κL)

4E(V0 − E)

)−1

. (48)
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The fact that T takes a non-zero value indicates the finite probability that the particle tunnels
through the barrier and continues on the other side. What form does the tunneling probability
take? Assuming κL� 1 we may write

T = 16
E

V0

(
1− E

V0

)
e−2κL, (49)

i.e. the tunneling probability decays exponentially for a thicker potential barrier. As κ ∝
√
V0 − E

we note that the tunneling probability is more sensitive to the thickness of the barrier L than its
height V0.

T-Rex Example 6.14: A beam of electrons is accelerated through a potential of 5 V toward a
potential barrier of width 0.8 nm and height 10 eV. What fraction of the electrons tunnel through
the barrier?

The exact expression for the tunneling probability is given in Equation 48. We begin by determining
the value of κ

κ =

√
2m(V0 − E)

h̄

=

√
2mc2(V0 − E)

h̄c

=

√
2× (511× 103 eV)× (10− 5 eV)

197.3 ev nm

= 1.15× 10−10m−1

Therefore,
κL = 1.15× 10−10 × 8× 10−10 = 9.2.

Using the exact expression for the tunneling probability we obtain

T =

[
1 +

(10 eV)2 sinh2(9.2)

4(5 eV)(5 eV)

]−1

= 4.1× 10−8.

If we use the approximate form of the tunneling probability, assuming κL� 1 we obtain

T = 16
(

5 eV

10 eV

)(
1− 5 eV

10 eV

)
e−18.4

= 4.1× 10−8.
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The two formulae give the same answer and we see that the approximation κL� 1 is valid.

End of T-Rex Example 6.14

We can understand quantum tunneling in terms of the uncertainty principle. Within the barrier
the particle wave function is dominated by the e−κx term. The probability of the particle existing
within the barrier is |ψ2

2| ≈ e−2κx. We can define a distance ∆x = κ−1 over which the probability
density describing the particle within the barrier decreases markedly, i.e. e−2κx = e−2 = 0.14. If we
insert this value for ∆x into the uncertainty principle, we obtain ∆p ≥ h̄/∆x = h̄κ. The minimum
kinetic energy required over this interval is

Kmin =
(∆p)2

2m
=
h̄2κ2

2m
= V0 − E. (50)

Therefore the uncertainty in the kinetic energy of the particle tunneling through the barrier is equal
to the energy deficit required to cross the barrier. In a sense, the particle is able to penetrate a
short distance into the barrier by “borrowing” energy from the uncertainty principle.

5.2 Alpha particle decay and quantum tunneling

Alpha particle decay occurs from heavy, radioactive nuclei. Although many types of nuclei emit
alpha particles, the rate of emission varies from nucleus to nucleus by a factor of order 1013. However,
the energies of the emitted alpha particles are remarkably constant, being of order 4 to 8 MeV. These
large variations in emission transparency can be understood in terms of the probability for the alpha
particles to tunnel through the nuclear binding potential (Figure 3).
Within the nuclear radius rN the combination of the strong nuclear force (attractive) and Coulomb
force of the nuclear protons (repulsive) approximates to a zero net potential. However, to escape the
nucleus the alpha particle must break through the Coulomb barrier formed by the nuclear protons.
The height of the Coulomb barrier can be equal to several times the KE of the alpha particle
(∼ 5 MeV) – effectively trapping the alpha particle in the nucleus. However, the alpha particle
has a small chance of tunneling through the nuclear Coulomb barrier and, as the transmission
probability T ∝ e−2κL, small changes in the barrier height and width can produce a change in the
transmission probability of many orders of magnitude.

T-Rex Example 6.17: Consider alpha particle emission from a 238U nucleus. The alpha particle
has a KE of 4.2 MeV and is initially contained within a nuclear radius of rN = 7 × 10−15m.
Find the barrier height and the distance the alpha particle must tunnel through. Use a suitable
approximation to compute the tunneling probability.

1. We compute the barrier height by determining the Coulomb potential at the nuclear radius,
i.e.

Vc(r = rN) =
Z1Z2e

2

4πε0rN
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Figure 3: Alpha particle tunneling.

=
(2)(90)(1.6× 10−19C)2(9× 109 Nm2C−2)

7× 10−15 m
× 1

1.6× 10−13 J MeV−1

= 37 MeV.

2. The alpha particle will have effectively escaped the nucleus when it reaches a radius r′ given
by

KE = 4.2 MeV = Vc(r
′) =

Z1Z2e
2

4πε0r′
.

We can solve this in a fairly straightforward fashion by noting that

Vc × r =
Z1Z2e

2

4πε0
= constant,

i.e.,
Vc(rN) rN = Vc(r

′) r′,

and

r′ =
Vc(rN)

Vc(r′)
rN =

Vc(rN)

KE
rN
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=
37 MeV

4.2 MeV
× 7× 10−15 m

= 6.2× 10−14 m = 62 fm.

The width of the barrier through which the alpha particle must tunnel is therefore

L = r′ − rN = 62 fm− 7 fm = 55 fm.

3. Now modeling the barrier as a square well of height Vc and width L is pretty unrealistic –
especially given the exponential dependence of the tunneling probability on κ and L (Figure
4). A reasonably accurate model would see the barrier split into five bins of width 11 fm. We
can calculate the transmission probability of each bin and the total transmission probability
will be given by their product.

Figure 4: Modeling the potential barrier.

We compute the value of κ explicitly for the first bin and then tabulate the remaining results
(Table 2).

κ1 =

√
2m(V1 − E)

h̄

=

√
2mc2(V1 − E)

h̄c

=

√
(2)(3727 MeV)(V1 − 4.2 MeV)

197.3 MeV fm

=

√
(2)(3727 MeV)(20.7 MeV − 4.2 MeV)

197.3 MeV fm

= 1.7 fm−1.
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We then form the quantity κL, i.e.

κ1L = 1.7 fm−1 × 11 fm = 18.7 � 1.

We can therefore compute the transmission probability as

T1 = 16
E

V1

(
1− E

V1

)
e−2κ1L

= 16
4.2

20.7

(
1− 4.2

20.7

)
e−37.4

= 1.6× 10−16.

r (fm) V (MeV) κ (fm−1) κL log T
12.5 20.7 1.7 18.7 -15.8
23.5 11.0 1.1 12.5 -10.2
34.5 7.5 0.8 8.7 -7.0
45.5 5.7 0.5 5.9 -4.6
56.5 4.6 0.3 3.7 -3.1

Table 2: Transmission probabilities across the Coulomb barrier.

The total transmission probability is T = 1.6× 10−41. Though this seems like a prohibitively
small escape probability, we must consider how many “escape attempts” the alpha particle
will make. A 4.2 MeV alpha particle is non-relativistic. Its velocity is therefore

v =

√
2K

m
=

√
2× 4.2 MeV

3727 MeV/c2
= 0.047 c = 1.4× 107ms−1.

The diameter of the uranium nucleus is 2 rN and the alpha particle will cross the nucleus in
a time

t =
2 rN

v
' 10−21 s.

If this is the time required to make one escape attempt, and the alpha particle requires 1041

attempts in order to escape, it will escape on average after of order 1020 seconds. The observed
half-life of 238U is of order 1017 seconds (about 4.5 billion years) – our approximate approach
is therefore not “too” bad.
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5.3 Scanning Tunneling Microscopes (STM)

STM provides a method to image atomic structures on scales down to a few tenths of a nanometre.
To understand the advances made by STM, it is worthwhile considering for a moment Scanning
Electron Microscopes (SEM).

SEM has existed as a techniques for about 80 years. To image a source you must first coat it in
a thin gold foil. The “light” source is an electron beam fired at the target. The electrons in the
beam interact with the conduction electrons in the gold foil and scatter off into a detector that
surrounds the target. By studying the varying scattering angle as you move the electron beam
around the target you build up a “picture” of the target (in this case a termite). However, the
resolution achievable with SEM is limited by the De Broglie wavelength of the electrons in the
beam and its energy resolution, ∆E/E, which translates to ∆λ/λ. In contrast to this STM (Figure
5) uses electron tunneling to map out atomic structures on two dimensional surfaces – typically for
conducting and semi-conducting materials.
• A STM consists of a very sharp (e.g. single atoms at the tip) conducting stylus which is moved
over the target material a small distance above it, i.e. a distance L.
• Conducting electrons in the target material have some thermal energy E and would like to jump
across the distance L to the tip. However, they are prevented from doing so by the work function
of the material, φ, i.e. E < φ.
• STM works by encouraging the conduction electrons in the target material to tunnel across this
barrier. This is achieved by applying an accelerating potential V across the material-tip distance.
The potential is adjusted such that E < φ−V but this time only by a very small amount. Applying
the potential reduces κ and therefore maximises the transmission probability (and thus the tunneling
current) for a given L.
• The potential is kept constant and the transmission probability is T ∝ e−2κL. A constant potential
ensures that κ is constant and small changes in L result in large changes in the transmission
probability.
• As the received tunneling current I ∝ T , one can now measure the varying height of the tip above
the surface. In practice though the height of the tip is varied in order to keep the tunneling current
constant but the height variation is measured nonetheless.
• This method is very sensitive to the tunneling gap. Although the tunneling current can be as
small as 10−12A, a change of only 0.4nm can cause the current to vary by a factor 104.

5.4 Simple Harmonic Motion

Simple Harmonic Oscillators (SHOs) occur commonly in nature. The familiar example is of a mass
suspended on a string. However, on the quantum scale pairs of atoms in diatomic molecules or
arrays of atoms bound into a lattice structure act as SHOs. SHM results from the basic form of
the potential acting on a massive particle. For example, consider a mass m attached to a spring
described by a spring constant κ that is free to move in the x-direction. The resulting force about
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Figure 5: Scanning tunneling microscopy in action.

the equilibrium position x0 is
F = −κ(x− x0) (51)

and the potential energy stored in the spring (effectively the potential acting on the particle) is

V =
κ(x− x0)

2

2
. (52)

Consider a simple quantum potential: an atom bound in a lattice that is at equilibrium at x0 and
experiences a potential V (x) that depends upon the separation (x − x0) (Figure 6). For small
displacements about the equilibrium position we can expand the potential as a Taylor series, i.e.

V (x) = V0 + V1(x− x0) +
1

2
V2(x− x0)

2 + . . . (53)

If x = x0 is an equilibrium position then there must exist a minimum in the potential

dV

dx
= 0 at x = x0. (54)

This requires that V1 = 0 and by re-scaling the zero point of the potential energy we can obtain
V0 = 0. Therefore, we may write

V (x) =
1

2
V2(x− x0)

2. (55)

Which we may write as

V (x) =
κx2

2
(56)

if the motion is about x0 = 0.



5 QUANTUM TUNNELING AND SIMPLE HARMONIC MOTION 15

Figure 6: A simple potential representing a diatomic molecule.

5.4.1 What of the Schrödinger equation for this system?

We can write

Eψ = − h̄2

2m

d2ψ

dx2
+
κx2

2
ψ

d2ψ

dx2
= −2m

h̄2

(
E − κx2

2

)
ψ. (57)

Setting

α2 =
mκ

h̄2 and β =
2mE

h̄2 (58)

We have
d2ψ

dx2
= (α2x2 − β)ψ. (59)

Solutions to this equation, in the most general case, take the form

ψ(x) = Ce−αx2/2. (60)

Substituting this into the Schrödinger equation we obtain

dψ

dx
= −Cαx e−αx2/2 (61)
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d2ψ

dx2
= −Cαe−αx2/2 + Cα2x2e−αx2/2 (62)

Eψ = − h̄2

2m
[−α+ α2x2]ψ +

1

2
κx2ψ. (63)

If the Schrödinger equation is to hold for all values of x, then the coefficients of each power of x
must be equal. Equating coefficients of x2 we have

− h̄2

2m
α2 +

1

2
κ = 0. (64)

Therefore, α2 = mκ/h̄2, as defined in Equation 58. Equating the constant coefficients we have

E =
h̄2

2m
α (65)

=
h̄2

2m

√
mκ

h̄2 (66)

=
h̄

2

√
κ

m
. (67)

However,
√
κ/m = ω, the angular frequency of SHM. Therefore

E =
h̄ω

2
. (68)

5.4.2 The uncertainty principle and the ground state energy of a quantum SHO

Consideration of the uncertainty principle demonstrates that the term E = h̄ω/2 is the minimum
energy permitted for a particle constrained to move in a potential of the form V (x) = κx2/2. The
total energy of the SHO is

E = KE + PE. (69)

The minimum energy can be expressed in terms of the uncertainty in ∆p and ∆x, i.e.

E =
(∆p)2

2m
+

1

2
κ(∆x)2. (70)

As κ = mω2 we may write

E =
(∆p)2

2m
+

1

2
mω2(∆x)2. (71)
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Using ∆p∆x = h̄/2 (note that the solution to the Schrödinger equation is a Gaussian wave function)
we can re-write the energy expression as

E =
h̄2

8m(∆x)2
+

1

2
mω2(∆x)2. (72)

The minimum energy occurs at dE/d(∆x) = 0, i.e.

− h̄2

4m(∆x)3
+mω2∆x = 0, (73)

i.e.

∆x =

√
h̄

2mω
. (74)

Substituting this equation back into the expression for the minimum energy gives

Emin = E0 = =
h̄2

8m(∆x)2
+

1

2
mω2(∆x)2

=
h̄ω

4
+
h̄ω

4

=
h̄ω

2
. (75)

Therefore the ground state energy of a particle moving in a harmonic oscillator potential is the
minimum energy permitted for that system. As the minimum quantum energy state E0 > 0 atoms
in a crystal lattice or a diatomic molecule cannot have zero energy even if cooled to absolute zero
temperature. The energy of the ground state is sometimes referred to as the “zero point vibration”
and is responsible for the phenomenon that, at atmospheric pressure, He4 will never freeze, even at
T = 0 K.

5.4.3 The exact form of the wave solution ψn(x)

When we wrote the solution to the Schrödinger equation as

ψ(x) = Ce−αx2/2 (76)

we were actually limiting ourselves to the case n = 0. Note that, confusingly, the ground state of
the SHO is described by n = 0. Before exploring the general solution in more detail, let us compute
the normalisation constant for ψ0(x), i.e.

1 =
∫ ∞

−∞
ψ∗0(x)ψ0(x)dx (77)
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=
∫ ∞

−∞
C2e−αx2

dx (78)

= 2
∫ ∞

0
C2e−αx2

dx (79)

= 2C2
[
1

2

√
π

α

]
(80)

C2 =

√
α

π
(81)

C =
(
α

π

)1/4

. (82)

Therefore, the ground state is a pure Gaussian function given by

ψ0(x) =
(
α

π

)1/4

e−αx2/2. (83)

What is the form of the wave function permitted within the potential? Classically, a particle of
energy E0 will be constrained to move within −a ≤ x ≤ a such that

E0 = V0 =
1

2
κa2. (84)

Similarly, within the limits |x| ≤ a the wave function may take some general, oscillatory form.
However, at |x| > a the wave function must take on an exponentially declining form – recall from
quantum tunneling that this is the form of the wave function permitted for E < V0 (Figure 7).

5.4.4 The correspondence principle and the quantum oscillator

We have constructed a quantum description of a SHO but Newton’s laws still provide an adequate
description for the motion of a mass on a spring. To see how the quantum model transforms into
the classical model we can consider the probability of observing a particle at a particular location
in a simple harmonic system. This is equivalent to forming P (x) = ψ∗ψ and values of Pn(x) are
displayed in Figure 8.

In a classical system, we are most likely to observe the oscillating particle where it spends most of
the time. This probability, Pc ∝ 1/Vx, where Vx is the transverse velocity of the particle. We can
understand the form of Pc(x) by noting that the particle is stationary at x = ±a and is moving most
rapidly at x = 0. Therefore, there is a considerable difference between the classical and quantum
models for n = 0. However, as n tends to some large number the form of Pn(x) tends to Pc(x)
exactly as expected from the correspondence principle.
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Figure 7: The form of the wave function permitted in a simple harmonic potential.
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Figure 8: The relationship between classical and quantum probability for a simple harmonic oscil-
lator.


