
4 ELLIPTICAL GALAXIES 1

4 Elliptical galaxies

4.1 Inferring the density from the surface brightness

The surface brightness profile, which essentially traces the distribution of stars, can be used to infer
the underlying 3D matter density distribution.

The projected stellar surface density distribution is the integral over the 3D stellar density distri-
bution. This in turn can be viewed as the total matter 3D density distribution scaled by a suitable
mass–to–light ratio (in practice the use of a single M/L may be simplistic, though useful, assump-
tion).

So what can we learn about the underlying 3D matter density distribution from the distribution of
starlight?

Consider a power law distribution of 3D density, e.g. ρ ∝ r−γ. The projected surface brightness
distribution will be a scaled version of the projected density, i.e.

I(R) ∝
∫ ∞
0

(z2 +R2)−γ/2dz (1)

where the z-axis is defined by the line-of-sight to the observer. Taking g = z/R, this integral
becomes ∫ ∞

0

R dg

Rγ(g2 + 1)γ/2
= R−γ+1G(γ) (2)

where G(γ) =
∫∞
0 (g2 + 1)−γ/2dg and depends only on γ.

Therefore a power-law 3D density of slope −γ projects onto a surface density profile of slope −γ+1.

One of the drawbacks of the de Vaucouleurs surface brightness distribution is that it does not have
an analytic counterpart in 3D density. Various density profiles have been suggested that provide a
good match to observed surface brightness profiles when projected, e.g. the Hernquist (1992) profile

ρ(r) =
M

2π

rc
r(r + rc)3

. (3)

The Hernquist model is particularly appealing as it arises from the numerical simulation of the
merger of two equal mass disk galaxies, each embedded within a dark matter halo.

4.1.1 Cuspy versus cored

Elliptical galaxies display a range of surface brightness properties from luminous, cored galaxies
which show near constant surface brightness within some core radius and cuspy galaxies where the
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central surface brightness continues to rise to a sharp peak at inner radii.

Consider the slide comparing the galaxies NGC 1399 (a cD galaxy, MV = −21.9) and NGC 596
(MV = −20.9, about half as luminous).

Though the inner surface brightness of NGC 1399 is I(R) ∝ R0 i.e. constant, we can see that this
corresponds to a mass density ρ(r) ∝ r−1. NGC 596 displays I(R) ∝ R−0.5 and thus ρ ∝ r−1.5 and
possesses and even steeper central mass density profile.

Recall that 1L�pc−2 = 26.4 MV arcsec−2. Therefore, the central surface brightness of NGC 1399 of
IV (0) = 16 corresponds to a stellar surface density of dex[(26.4 − 16)/2.5] = 14, 450 L�pc−2. The
central stellar density of NGC 596 is approximately 5× 105L�pc−2. Recall that the central stellar
surface density of a spiral galaxy such as NGC 7331 reaches only 350 L�pc−2.

These surface brightness trends were first quantified by Kormendy (1977). Luminous galaxies are
increasingly core dominated according to the relation

µe = 20.2 + 3 logRe or MB = −19.3− 2 logRe. (4)

Taking µe = −2.5 log Ie and MB = −2.5 logLB, one obtains Ie ∝ R−1.2
e ∝ L−1.5 and LB ∝ R0.8

e (and

notice that L ∝ IeR
2
e as expected).

At this point we emphasize again that this relation holds for bright elliptical galaxies. As we shall
see, faint ellipticals appear to follow a different linear relation.

The variation in the central surface brightness properties certainly points to variations in their
evolutionary histories. Indeed, the debate as to whether bright, cored ellipticals and faint, cuspy
ellipticals are separate populations or not still continues actively. We will consider this further below.

However, at this point we can note that within the hierarchical view of galaxy formation that sees
massive galaxies constructed from the accretion of smaller sub units, the presence of lower surface
density cores in bright galaxies may well arise from the increased energy present in stellar orbits
resulting from past mergers.

4.2 Stellar population evolution

Stellar populations in elliptical galaxies are old and simple.

Combined with the absence of gas and dust in elliptical galaxies we can make some simple state-
ments regarding their evolutionary history.
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The absence of stars of spectral type A or earlier indicates that typical elliptical galaxies have not
experienced major bursts of star formation within the last 5 × 108 years – the approximate main
sequence lifetime of an A-star.

(In fact the presence of strong Balmer absorption in the spectra of elliptical galaxies – the signature
of a significant A-star population – defines the “E+A” or “k+a” galaxy type: a post-starburst
elliptical/early-type galaxy.)

This is consistent with the absence of gas and dust (often correlated with giant molecular clouds
and active star forming regions).

We will see that later fundamental plane and colour magnitude diagram arguments applied to pop-
ulations of ellipticals point to early, coeval star formation.

In the absence of young, bright OB stars, the light from ellipticals is dominated by the red giant
population, i.e. L ∝ Nrg.

The number of red giant stars at some time t will be equal to the number of stars with main se-
quence lifetimes t−∆trg < tms < t. Where ∆trg is the red giant lifetime.

The luminosity-mass relationship for main sequence stars is L ∝Mα, with α ≈ 3 for low mass stars.

This corresponds to a main sequence lifetime tms ∝M/L = M1−α if we assume that a fixed fraction
of the mass of each star is converted to energy during the main sequence lifetime.

With this relationship, the range of stellar ages contributing to the red giant population becomes a
range of stellar masses, i.e. M(tms) to M(tms −∆trg) = M(tms) + ∆M .

Defining the stellar initial mass function (IMF) as dN/dM ∝M−1−x as the number of stars in the
mass range M to M + dM , then the number of red giant stars can be written as

Nrg =
dN

dM
×∆M =

dN

dM
× dM

dtms
∆trg. (5)

Re-writing tms ∝ M−1/θ with θ = 1/(α − 1), the number of red giant stars becomes Nrg ∝ t−1+θx.
Note that we assume that the red giant lifetime is constant and thus acts only as a scaling constant.

Taking x = −1.35 (the Salpeter IMF) and θ = 1/3, the luminosity of a galaxy dominated by red
giant stars becomes

L ∝ Nrg ∝ t−0.6. (6)
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These arguments were first formulated by Gunn, Tinsley and Larson in the mid 1970s. The 1980s
and beyond saw the advent of the first stellar population synthesis codes for creating evolutionary
tracks for integrated stellar populations, e.g. Bruzual and Charlot (1983). However, the above
analysis approximates fairly well to the luminosity evolution of bright ellipticals.

4.3 Dynamics

4.3.1 Orbital structure

The 2D shapes of elliptical galaxies results from the 3D distribution of stars.

This in turn may be thought of as a reflection of the 3D orbital structure of the galaxy.

The debate as to the orbital structure of bright ellipticals was eventually resolved via resolved ab-
sorption line spectroscopy during the 1970s and early 1980s.

Ellipticals are not isotropic systems whose 2D morphology arises from rotational flattening.

They are slow rotators compared to their random velocity dispersion. The 2D morphology of bright
ellipticals results from an anisotropic mix of stellar orbits.

As the stellar orbits are incoherent (both positive and negative along the line of sight) let us consider
the mean square velocity 〈v2〉 along each axis. We refer to the mean square velocity along each axis
as σ2 (i.e. 〈v2

x〉 = σ2
x where σ is the velocity dispersion).

Consider a galaxy rotating in the x-y plane (i.e. about the z-axis) with a rotational velocity V .
The velocity dispersions are isotropic, i.e. σ2

x = σ2
y = σ2

z .

The radial extent of stars along each axis should be proportional to their kinetic energies.

Assuming we view the system from the y-axis (side on), then a non zero axis ratio should result
from rotational flattening according to

b

a
≈ Kz

Kx

≈ σ2
z

V 2 + σ2
x

. (7)

The 1D velocity dispersion σr = σy which is equal to the other components following our isotropy
condition.
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We therefore have
b

a
≈ σ2

r

V 2 + σ2
r

, (8)

which can be re-arranged to yield (
V

σ

)2

≈
(
a

b
− 1

)
=

ε

1− ε
, (9)

where ε = 1− b/a is the observed ellipticity.

As can be see from the slides, to obtain b/a = 0.5 (an E5 elliptical) requires V/σ ≈ 1. As a typical
bright elliptical may display σ = 250 kms−1 this means it would have to rotate as fast as a massive
spiral. In practice many bright ellipticals rotate much slower than this limit.

One concludes that rotational flattening does not contribute to the 2D shapes of ellipticals and that
they are instead caused by anisotropic orbits.

Clearly some ellipticals do rotate to the extent that rotational flattening contributes to their mor-
phology. These are generally lower luminosity ellipticals and their morphologies as often referred
to as “disky” (as opposed to the “boxy” bright ellipticals) – thought to indicate a rotating stellar
disk.

4.3.2 Faber-Jackson and the virial theorem

Faber and Jackson (1976) determined that the luminosity of bright ellipticals is related to their
velocity dispersion via L ∝ σnr with 3 < n < 5.

More luminous ellipticals are more massive.

One can take a simple approach to the FJ relation by noting that v2 ∝ GM/R and L ∝ IeR
2
e. This

indicates that

L ∝ v4

Ie(M/L)2
, (10)

which nominally reproduces the FJ relation if both the M/L ratios and surface brightness properties
are relatively constant for bright ellipticals.

4.3.3 Faber-Jackson - a more detailed treatment

As we have noted, the FJ relation is a reflection of the virial theorem applied to elliptical galaxies,
assuming that their surface brightnesses and mass-to-light ratios are relatively constant.
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Beginning with the virial theorem we can write 2K + U = 0 for Ï = 0. For the kinetic energy of
the system we have

K =
1

2

∑
i

miv
2
i =

1

2
M〈v2〉. (11)

We further note that 〈v2〉 = σ2 = 3σ2
r , where σr is the 1D velocity dispersion.

The potential energy takes the form

U =
∑
i>j

−Gmimj

|ri − rj|
= −GM

2

rg
, (12)

where rg is a weighted average separation of the stars in the galaxy. Generally we may write

U = −αGM
2

Re

(13)

where α is a constant of order unity whose value depends upon the form of the density profile.

We can therefore write

3Mσ2
r = α

GM2

Re

M =
3σ2

rRe

αG

L =
3σ2

rRe

αG(M/L)

L ∝ σ2
rRe

(M/L)
but we also have L ∝ IeR

2
e therefore

L ∝ σ2
r(L/Ie)

1/2

(M/L)

L ∝ σ4
r

I2
e (M/L)2

. (14)

Which corresponds to the FJ relation assuming that Ie and M/L are relatively constant for bright
ellipticals (see below).
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4.3.4 Further maths how do we compute α?

Consider a uniform density sphere of radius rs. The potential energy may be thought of as an
integral over successive mass shells dM = 4πρ r2dr, i.e.

U = −G
∫ ∞
0

M(< r)dM

r

= −G
∫ rs

0

16

3
π2ρ2r4dr

= −16

15
π2Gρ2r5, (15)

where we have assumed M(< r) = 4
3
πρr3.

To obtain α we need to express rs in terms of the projected half mass radius Re.

We can consider the mass as a density weighted volume integral (
∫
ρ dV ) or as a surface density

weighted area integral (
∫
σ dA). Consider the change of variable r2 = x2 + y2 + z2 with the z-axis

orientated toward the observer. We can further define the projected distance b2 = x2 + y2.

We then integrate over the z axis, i.e.

σ(b) = 2
∫ zmax

zmin

ρ dz (16)

where the factor 2 represents the integral over two hemispheres. The z limits cover |z| < (r2
s−b2)1/2.

We may express this as a radial integral following

σ(b) = 2
∫ rmax

rmin

ρ
dz

dr
dr. (17)

Taking zmin = 0⇒ rmin = b and zmax =
√
r2
s − b2 ⇒ rmax = rs.

Furthermore, with z = (r2 − b2)1/2 we have dz/dr = r/(r2 − b2)1/2 and the integral becomes

σ(b) = 2
∫ rs

b
ρ

r dr

(r2 − b2)1/2
= 2ρ[(r2 − b2)1/2]rsb = 2ρ(r2

s − b2)1/2. (18)

The projected mass computed using σ(b) takes the form

M(< b) =
∫ b

0
2πσb db
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= 4πρ
∫ b

0
b (r2

s − b2)1/2db

= −4

3
πρ[(r2

s − b2)3/2]b0

=
4

3
πρ[r3

s − (r2
s − b2)3/2]

=
4

3
πρr3

s

[
1− (r2

s − b2)3/2

r3
s

]
. (19)

We can now solve for Re = b as the projected radius which satisfies M(< Re) = 1/2Mtotal =
1/2× 4

3
πρr3, i.e.

1− (r2
s − b2)3/2

r3
s

=
1

2

r3
s

2
= (r2

s − b2)3/2

r2
s

22/3
= r2

s − b2

Re = b = rs

(
1− 1

22/3

)1/2

= 0.608 rs. (20)

4.3.5 The Fundamental Plane

Djorgovski and Davis (1987) were among a number of researchers to note that two parameter scaling
relations such FJ and Kormendy contained real scatter in which the residuals in one plot correlated
with those on the other. This suggested the existence of a three parameter relation encompassing
the above relationships, i.e. a tilted plane of points in 3D of which the FJ and Kormendy relations
are 2D projections.

The Fundamental Plane (FP) relation for bright ellipticals takes the form

logRe = 1.4 log σe + 0.36Σe + constant, (21)

where σe is the 1D velocity dispersion measured within Re and Σe = −2.5 log Ie.
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The FP relation can be reconstructed using the following arguments

R2
e =

L

2πIe
(22)

Re =
M

cσ2
e

(23)

with this second equation being a statement of virial equilibrium and c denoting a combination of
physical constants.

Dividing these two equations one obtains

Re =
(
c

2π

)(
M

L

)−1

σ2
eI
−1
e

logRe = 2 log σe − log Ie + log

[
2

2π

(
M

L

)−1
]

logRe = 2 log σe − 0.4Σe + log

[
2

2π

(
M

L

)−1
]

(24)

which is close to but not exactly equal to the observed FP relation.

We conclude that

1. Bright ellipticals are in virial equilibrium.

2. To 1st order M/L ratios and structural parameters are very similar.

3. Therefore, their stellar populations, ages and DM properties are very similar.

4. To obtain an exact match to observed FP data requires M/L ∝ M0.2, i.e. massive ellipticals
are slightly older than less massive counterparts.

4.4 Reconciling bright and faint ellipticals

Morphological classification and magnitude cuts lead to the definition of giant and dwarf ellipticals
as bulge-dominated systems with MV < −18 and MV > −18 respectively.

In addition, dwarf spheroidal galaxies form an ill-defined class of very faint spheroidal (i.e. not a
disk and not irregular) galaxies with MV > −11 or so.
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Plotting such objects on 2D scaling relation diagrams (e.g. Kormendy) reinforces the idea that Es,
dEs and dSphs are physically distinct classes of objects.

As such we need to explain their origins.

However, an alternative view is to consider them as essentially a single class of galaxy with a con-
tinuum of slowly changing physical properties.

Put another way, if one is to classify them as separate galaxy class, where should you draw the line?
Is an elliptical galaxy with MV = −18.2 physically distinct from an elliptical with MV = −17.8?
One manifestation of this continuum of physical properties is the variation of central (i.e. R ≈
0.02Re) surface brightness properties as a function of magnitude.

Taking a sample of bulge dominated galaxies from either the Virgo of Fornax clusters one observes
that bright (MV < −18) galaxies display a central luminosity deficit with respect to a single de
Vaucouleurs/Sersic model, i.e. an approximately constant surface brightness core. This core is
modeled as a power law of slope α with a smooth transition to a larger scale Sersic profile – the
so-called core-Sersic model.

At fainter magnitudes (MV > −18), galaxies display a central luminosity excess with respect to a
single model fit, i.e. a bright nuclear region fit with an additional Sersic component (a double Sersic
model).

Viewing the sample of galaxies as a function of magnitude one observes that the trend from central
deficit to central excess galaxies is relatively (there is some scatter) smooth and continuous.

Finally, one can plot all of the parameters normally considered in 2D scaling relations, e.g. µ0,
Sersic n, Re, µe, 〈µ〉e, as a function of magnitude. This reveals a smooth, continuous variation of
galaxy properties from giants, through dwarfs, to dwarf spheroidals.

Certainly if one selected any pair of these properties, e.g. µe and Re (the Kormendy relation),
one would compute different linear relations for dwarfs and giants and perhaps conclude that they
represented different classes of galaxy.

Clearly though the changing gradient of quantities such as µe versus MB do reflect different physical
histories as a function of brightness (mass) and we consider these below.
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4.5 The formation of elliptical galaxies

How do ellipticals form? In a hierarchical universe massive galaxies are predicted to be the result
of the successive mergers of less massive galaxies (White and Rees 1978).

The weak dependence of the M/L ratios of bright ellipticals on their mass indicates that star for-
mation – potentially associated with the merging/mass assembly process – occurred earlier in more
massive galaxies. This is reasonable insofar that galaxies (or pre-galactic clumps) in dense regions
of the universe would be expected to merger faster and earlier, leading to the production of more
massive galaxies.

Merging produces an incoherent mix of stellar orbits.

As we have seen, long two-body relaxation times preserve the memory of individual encounters in
the form of stellar streams, tidal tails and stellar shells.

However, violent relaxation – stellar encounters in a rapidly changing potential – results in more
complete orbital mixing.

The products of N -body simulations recreating the merger of massive disk dominated galaxies pro-
duce slowly rotating, pressure-supported bulge dominated galaxies whose Hernquist-like 3D density
distributions indicate that they would result in de Vaucouleurs-type surface brightness distributions
(Hernquist 1992).

The central surface brightness profiles of bright ellipticals are “core-like”, i.e. flattening toward the
centre. This suggests that they formed via “dry” or gas-poor merging. This is a collisionless pro-
cess – little angular momentum is lost via two-body encounters – and the additional orbital angular
momentum of the merging galaxies results in a “puffing up” of the central stellar distribution.

However, as one moves to fainter ellipticals there is a relatively smooth trend to observe high-surface
brightness stellar nuclei. This suggests an increasing importance of “wet” or gas-rich mergers as
one considers lower mass ellipticals.

Gas-rich mergers are collisional and the orbital angular momentum of the merging galaxies can
be dissipated away. This allows the gas to accumulate in the centres of such systems, potentially
triggering dense, nuclear starbursts.

Bright ellipticals and faint ellipticals form a single family; they are not fundamentally different
objects. This can be seen from plots showing the continuity of scaling relations of red-sequence
selected galaxies (ellipticals).
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The relations linking bright and faint ellipticals are not linear. Put another way, if you tried to
define linear scaling relations (e.g. the Kormendy relation) for bright and faint ellipticals you would
compute different gradients and assume that the objects are different.

However, it is clear that different physical effects have played a role in the evolution of bright and
faint ellipticals and that there appears to have been a relatively smooth transition between com-
peting effects as a function of luminosity (mass).

Elliptical galaxies dominate the galaxy populations in the centres of rich clusters. However, the
Butcher-Oemler effect indicates that the ellipticals we observe in rich clusters today have undergone
relatively recent transformation.

This suggests that merging/interactions, accentuated by ram pressure stripping, have played a role
in their formation.


