5 Planetary cooling: The surface area to volume ratio

The total heat contained in a planet depends upon its volume. However, as the planet cools, this heat escapes through the planet's surface.
The rate at which a planet cools will in part be determined by the ratio of its surface area to its volume. For a spherical planet of radius r, the volume is $\frac{4}{3} \pi r^{3}$ and the surface area is $4 \pi r^{2}$. The ratio of these two quantities may be written as

$$
\mathrm{SAV}=\frac{4 \pi r^{2}}{4 / 3 \pi r^{3}}=\frac{3}{r}
$$

So the SAV ratio is smaller for larger planets. Therefore, all else being equal, a larger planet will cool more slowly than a smaller planet.

Let's compare the SAV ratios for the Moon, Earth and Mars.

$$
\begin{aligned}
& r_{\text {Moon }}=1,738 \mathrm{~km}, \quad r_{\text {Earth }}=6,378 \mathrm{~km}, \quad r_{\text {Mars }}=3,397 \mathrm{~km} \\
& \frac{\mathrm{SAV}_{\text {Moon }}}{\mathrm{SAV}_{\text {Earth }}}=\frac{3}{r_{\text {Moon }}} \times \frac{r_{\text {Earth }}}{3}=\frac{6378 \mathrm{~km}}{1738 \mathrm{~km}}=3.7 \\
& \frac{\mathrm{SAV}_{\text {Mars }}}{\mathrm{SAV}}=\frac{3}{r_{\text {Earth }}} \times \frac{r_{\text {Earth }}}{3}=\frac{6378 \mathrm{~km}}{3397 \mathrm{~km}}=1.9
\end{aligned}
$$

Therefore, ignoring effects such as internal heat from radioactive decay, the Moon cools twice as fast as Mars, which cools twice as fast as the Earth.

