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E&M and the Faraday Field Tensor

Introduction
We all love Maxwell's equations:

∇⋅B⃗=0 , ∇×E⃗+ ˙⃗B=0⃗ , ∇⋅E=0c2=

0

and ∇×B⃗−
1

c2
˙⃗E=μ0 J⃗

These equations state the relationship between electric and magnetic fields (E 
and B) and charge and current densities (ρ and J⃗) . The divergence and curl

(∇⋅ and ∇× ) derivative operations are prominent here. 

There is a compact and coordinate independent way of writing Maxwell's 
equations:

dF=0 and ∗d∗F=μ0 J⃗b

I will explain why we write it this way and the meaning of F , d , and ∗ .
This topic is usually presented with c=1 and μ0=1 . This journey will illuminate 
the relationship between special relativity and electrodynamics, and the role of 
the vector potential.

What is F ?
We begin by writing down the calculations required to calculate the combined 
electric and magnetic force density on an object with given charge and current 
densities.  Inspired by matrix representation of a cross product, write the Lorenz 
force law in matrix notation as:

f⃗ =[
0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0
](

ρ

Jx

Jy

Jz
) → (−E⃗ ⋅⃗J ; ρE⃗+J⃗×B⃗ )

The right three coordinates of the result give the force density vector, while the 
zeroth  coordinate gives the power loss density. We will be associating this 
coordinate with time.  

I have been vague about how I am using row and column vectors. I am going to 
change the above expression into tensor notation. Tensor notation is a way of 
writing vectors, matrices and multi-index arrays so that the rules for changing 
coordinate systems are clear, if you know the derivatives of the coordinate 
transformation.  
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Define the electromagnetic Faraday field tensor:

Fij ≡ [
0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0
] as a doubly covariant tensor. 

Fij acts on the four-current density vector Ji
=J = 


Jx

Jy

Jz


which expresses charge and current density.

The Lorentz force law can be expressed as f i=FijJ
j .

The resulting vector is covariant, which is why I originally wrote it as a row vector.
The choice of covariant or contravarient representation needs to be done 
carefully, but ultimately it is a matter of convenience. 

The benefit of writing the Lorentz force law in tensor notation is that, we know 
how to do the calculations in other coordinate systems, such as polar 
coordinates. The alternative is to figure out the expression for differential 
operators ( such as the divergence) in the other coordinate system.

What is dF ?
I will explain dF after I describe differential forms and the exterior derivative.

Differential Forms 
Differential forms are frequently used as infinitesimal expressions for calculating 
the area or volume spanned by a set of infinitesimal vectors. This value 
associated with a set of vectors can be represented as a covariant tensor. A 
differential form tensor is anti-symmetric because of its relationship with area 
and volume. Because of this symmetric redundancy, a wedge notation is often 
used.  

A second order differential form acts on a pair of vectors to obtain a scalar 
(representing area). In this case we can abuse notation slightly, and represent it 
as a matrix. The action on a pair of vectors is denoted by writing one vector as a 
row on the left of the matrix and the other as a column vector on the right.  

We will not be using infinitesimal thinking on differential forms. Instead, we will 
be using their special linearity properties. 

In the case of Fij , we see that it is a differential form because it is doubly 
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covariant and anti-symmetric. We will remove the symmetric redundancy in our 
expression of F by changing to wedge notation. I will use the following graphic to 
help me write the terms:

[
0 dt∧dx dt∧dy dt∧dz
⋅ 0 dx∧dy dx∧dz
⋅ ⋅ 0 dy∧dz
⋅ ⋅ ⋅ 0

]
So, we can express F as:

F=−Ex dt∧dx −Ey dt∧dy − Ez dt∧dz + Bz dx∧dy −By dx∧dz + Bx dy∧dz

This will help us in later calculations because we can use wedge product rules 
like: dx∧dx=0 and dx∧dy=−dy∧dx  

The Exterior Derivative 
The exterior derivative of a differential form (dω) , results in a new form with a 
higher degree. The divergence and curl of a vector field are manifestations of the
exterior derivative. The exterior derivative is an extension of the ordinary 
derivative that also extends the fundamental theorem of calculus to the general 
Stokes theorem. Also, if the exterior derivative is applied twice, the result is zero

(ddω=0) , like curl grad=0 . The exterior derivative is a tensor, unlike the 
naive Jacobian matrix of a vector field. The role of Gauss' law and Stokes 
theorem in electrodynamics is a hint that  the exterior derivative may be involved.

The calculation method for taking the exterior derivative involves taking all the 
partial derivatives and applying the wedge product rules. For example:

d(Bx dy∧dz )

       =
∂Bx

∂ t
dt∧dy∧dz +

∂Bx

∂ x
dx∧dy∧dz +

∂ Bx

∂ y
dy∧dy∧dz +

∂Bx

∂ z
dz∧dy∧dz

       

=
∂Bx

∂ t
dt∧dy∧dz +

∂ Bx

∂ x
dx∧dy∧dz +0+0

Similarly we calculate dF as:

dF=(∂Bx

∂ x
+

∂By

∂y
+

∂Bz

∂ z )dx∧dy∧dz+(∂ Bx

∂ t
+

∂Ez

∂ y
−

∂ Ey

∂ z )dt∧dy∧dz

−∂By

∂ t


∂Ez

∂x
−

∂Ex

∂ z dt∧dx∧dz∂Bz

∂ t


∂Ey

∂x
−

∂Ex

∂ y dt∧dx∧dy
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Maxwell's Homogeneous Equations
We now have a simple coordinate independent expression for two of Maxwell's 
equations.

Note that the expression dF=0  means that all the terms in the above 
expression are zero. Then we re-interpret the terms of dF and get:

∇⋅B⃗=0 and ∇×E⃗+
˙⃗B=0⃗

So dF=0 expresses Maxwell's two Homogeneous equations. 

Maxwell's Inhomogeneous Equations  

Maxwell's inhomogeneous equations are ∇⋅E=

0

and ∇×B−
1

c2
̇E=0

J

They can also be expressed as ∗d∗F=μ0 J⃗b where J⃗b is the flattened 
(lowered index) four-current density.

To understand this, we will visit special relativity and the related Hodge star 
operation. 

Special Relativity
An important way to study special relativity is through the Minkowski pseudo-
metric on space-time: 

gij=[
−c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

]
Typically, a metric is an extension of the idea of a dot product. So, it is a 
symmetric covariant tensor (not a differential form). Given the idea of a dot 
product, the square norm of a vector can be defined. Here, the Minkowski square

norm of a vector is given by −c2 t2
x2

y2
z2

= ∥x∥M
2

=−c2 t2
∥x∥3

2
.

Typically, the expression for gij and the algebra for calculating  the norm of a 
vector will change, when you change coordinate systems. The Minkowski metric 
is special because the expression for the Minkowski norm does not change 
under a Lorentz transformation.  

We demonstrate Lorentz invariance by examining a basic Lorentz 
transformation:

x '= x−v t  t '=  t−v x /c2
or x '= x− ct  t '=  t− x /c 
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where v is in the x direction, =
1

1−
2 and =

v
c

so that 2 1−2 =1

Also y '=y and z '=z

The primed coordinates are stationary with respect to the moving coordinate 
system. They represent “proper” coordinates where v' = 0 . 

We try the square norm expression on a transformed vector and find that the 
expression is unchanged:

−c2  t '
2
x ' 

2
y '

2
z '

2
=−c2  t −x /c 

2
−ct  x 

2
y2

z2

=−c2 t2 2
−

2


2 x2 2
−

2


2y2
z2

=−c2 t2
x2

y2
z2

The invariance of the Minkowski norm will illuminate the invariance of Maxwell's 
equations under Lorenz transformations. 

The Hodge Star Operation
The Hodge star operation on a differential form is similar in spirit to finding an 
orthogonal subspace. The metric of the space becomes involved because of the 
role of area and volume. You are invisibly using the star operation, when a vector
field is used in the context of flux integration through a surface rather than line 
integration along a path.

With the Minkowski pseudo-metric there is an associated Hodge star operation 
on differential forms.

For our purposes, the Hodge star is defined for a differential form ω by
∧∗=〈 , 〉 ∣gij∣ det  

In our case(the signature is -+++)  ∧∗=〈 , 〉 c dt∧dx∧dy∧dz 

∗(dt∧dx∧dy∧dz )=−1 /c ∗1=cdt∧dx∧dy∧dz   

5

∗(dt∧dx)=−1/c dy∧dz
∗(dt∧dy)=1/c dx∧dz
∗(dt∧dz )=−1/c dx∧dy
∗(dx∧dy)=c dt∧dz
∗(dx∧dz )=−cdt∧dy
∗(dy∧dz )=cdt∧dx

∗dt=−1/c dx∧dy∧dz
∗dx=−c dt∧dy∧dz
∗dy=cdt∧dx∧dz
∗dz=−cdt∧dx∧dy

∗(dx∧dy∧dz )=−cdt
∗(dt∧dy∧dz )=−1/c dx
∗(dt∧dx∧dz )=1/c dy
∗(dt∧dx∧dy)=−1 /c dz
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Calculating ∗d∗F=μ0 J⃗b

We have been using J⃗ as a contravariant vector: J⃗ = (
ρ

Jx

Jy

Jz
)  .

In Euclidian space, a contravariant column vector can be changed to a covariant 
vector simply by writing it as a row vector, because of its trivial metric. With our 
given Minkowski pseudo-metric, we use the flattening  operation, denoted by the 
musical flat symbol. It is defined by J⃗b=J j=Ji gij . This operation is also called 
lowering an index. 

We have J⃗b= (−ρc2 ,Jx, Jy, Jz)  

Any covariant vector field can also by considered a differential form of order one 
because it can act on a vector field to produce a scalar field. Anti-symmetry is 
not an issue because the differential form only acts on one vector. 

J⃗b=−ρc2dt+Jx dx+Jydy+Jzdz

Before doing the calculation, note that:
F is a 2-form
∗F is a 2-form (4 - 2 = 2)
d ∗F is a 3-form
∗d∗F is a 1-form (4 - 3 = 1)
μ0 J⃗b is a 1-form

Now calculate, 
∗F=Ex /c dy∧dz−Ey/c dx∧dz+Ez/c dx∧dy+cBz dt∧dz+cBy dt∧dy+cBx dt∧dx

 =cBx dt∧dx+cBy dt∧dy+c Bzdt∧dz+Ez/c dx∧dy−Ey/c dx∧dz+Ex/c dy∧dz

d ∗F=
1
c  ∂Ex

∂ x


∂Ey

∂ y


∂Ez

∂z dx∧dy∧dz1
c

∂Ex

∂ t
−c

∂Bz

∂ y
c

∂By

∂ z dt∧dy∧dz

     −1
c

∂Ey

∂ t
−c

∂Bz

∂ x
c

∂Bx

∂z dt∧dx∧dz1
c

∂Ez

∂ t
−c

∂ By

∂ x
c

∂Bx

∂ y dt∧dx∧dy

∗d∗F=−∂Ex

∂ x


∂Ey

∂ y


∂Ez

∂ z dt− 1
c2

∂Ex

∂ t
−

∂Bz

∂ y


∂By

∂z dx

− 1
c2

∂Ey

∂ t


∂Bz

∂ x
−

∂Bx

∂ z dy− 1
c2

∂Ez

∂ t
−

∂By

∂ x


∂Bx

∂ y dz
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=−∂Ex

∂ x


∂Ey

∂ y


∂Ez

∂z dt∂Bz

∂y
−

∂By

∂ z
−

1
c2

∂Ex

∂ t dx

∂B x

∂ z
−

∂Bz

∂x
−

1
c2

∂Ey

∂ t dy∂By

∂ x
−

∂Bx

∂y
−

1
c2

∂Ez

∂ t dz

Reinterpreting the terms, we get Maxwell's inhomogeneous equations: 

∗d∗F=μ0 J⃗b ⇒ ∇⋅E⃗=μ0ρc2
=

ρ
ϵ0

and ∇×B⃗−
1

c2
˙⃗E=μ0 J⃗ (and vice versa)

Invariance of Maxwell's Equations under Lorentz Transformations 
In a naive view of Newtonian mechanics, laws like conservation of momentum,  
should remain invariant in moving coordinate systems as long as there is no 
acceleration (Galilean invariance). The laws of electricity and magnetism are not 
invariant under Galilean transformations as demonstrated by magnetic effects. 
  
Our philosophy of physical invariance is rescued when we consider Lorentz 
transformations. Our tensorial expressions for Maxwell's equations gives us an 
easy way to show that the vector algebraic expressions for Maxwell's equations 
are identical in any Lorentz transformed coordinate systems. (Mechanics is also 
invariant after tweaking the definition of momentum.) 

We have expressed Maxwell's equations in tensor form as
dF=0 and ∗d∗F = μ0 J⃗b

As tensor expressions, they remain true in different coordinate systems. 

However,  the expressions for F and the corresponding fields E , B , and
J⃗b could change.

In the case of the homogeneous expressions, the algebra of the exterior 
derivative is the same in any coordinate system. So the homogeneous equations
have the same expression regardless of coordinate system. 

In the case of the inhomogeneous equations, the algebraic expression for the 
metric and the ∗ operation will change. So the algebraic expressions for the 
inhomogeneous Maxwell equations might also change. However, if the change in
coordinate systems is a Lorentz transformation, the metric will be unchanged. 
So, the ∗ operation will be unchanged. This invariance propagates to the 
algebraic expressions of the inhomogeneous Maxwell equations.  
  

7



Copyright (c) Jan 2020 Jed Chapin

Invariance of the Homogeneous Equations and Polar Coordinates
The Lorentz transformations are quite restrictive. It is plausible that Maxwell's 
equations have an unchanged representation in the transformed coordinates. 

What about the homogeneous equations and more general transformations such
as polar coordinates? For example, why not use the spherical divergence rather 
than the naive divergence defined by transcribing the Cartesian divergence?

The above contradiction is explained away by noting that the transformed electric
and magnetic fields are transcribed from the transformed electromagnetic field 
tensor. In previous experience, you may have left the fields unchanged, but used
transformed differential operators. In this presentation, it is the fields and 
differential forms that get transformed and the differential operators remain 
unchanged. 

Why Differential Forms?
We have used the mathematics of differential forms to express Maxwell's 
equations. This formalism is a good choice to express the Physics of E&M 
because the divergence theorem and Green's theorem are embedded in the 
mathematics of differential forms. Also, we can encode special relativity via the 
Minkowski metric.

The Four-Potential
Note that the electromagnetic Faraday field tensor F is a 2-form. We will 
consider the idea of having a 1-form Φ =−ϕdt+Ax dx+Aydy+Az dz with the 
property that F = dΦ .

If this is the case then we automatically get dF = ddΦ = 0 .

But first, we mention the Poincaré lemma and Helmholtz' decomposition 
theorem.

Poincaré Lemma
A differential form ω is called closed if dω = 0 . 

A differential form ω is called exact if it is the exterior derivative of something,
ω = dα  

We automatically get that an exact form is closed from dω = ddα = 0
The converse is the subject of  the Poincaré lemma and is most easily proved 
using algebraic topology. For our purposes, the Poincaré lemma says that a 
closed form is exact if it is defined on a space without holes. 

We illustrate this with a vector field having a zero curl. This (co-) vector field v⃗ ,
represents our closed form ω . We know that the line integral around any loop 
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is zero, inside a simple region. So, we can construct a real valued function f, on 
the simple region where the vector field v⃗ is the gradient of f . The scalar 
function f represents α in this discussion.     

Consider the case of the circulating magnetic vector field around a thin wire. 
Away from the wire, it has a zero curl. However, there is a discontinuity at the 
wire, and we have to cut the wire out of our space of field definition. In this 
idealization, we cannot construct a scalar valued function whose gradient is the 
vector field. We can construct such a function if we restrict our view to a simple 
region (no holes). It looks like part of a helical ramp. 

Helmholtz' Decomposition Theorem
This theorem roughly states that any vector field in R3 can be expressed as the
gradient of something plus the curl of something. We will use this to express 
electric and magnetic fields. 

Finding The Four-Potential of F
We take courage from the Poincaré Lemma and inspiration from the Helmholtz' 
decomposition theorem and define a 1-form four-potential as

Φ =−ϕdt+Ax dx+A ydy+Az dz , where  and A  are called scalar and 
vector potentials. This expression of  will lead to definitions of E and B
that are consistent with d=F .  

Calculate the exterior derivative of  as:

dΦ = −
∂ϕ

∂ x
dx∧dt−

∂ϕ

∂ y
dy∧dt−

∂ϕ

∂ z
dz∧dt


∂Ax

∂ y
dy∧dx

∂A x

∂z
dz∧dx 

∂ Ax

∂ t
dt∧dx


∂Ay

∂ x
dx∧dy

∂ Ay

∂z
dz∧dy 

∂ Ay

∂ t
dt∧dy


∂Az

∂ x
dx∧dz

∂ Az

∂ y
dy∧dz 

∂ Az

∂ t
dt∧dz

= (∂ϕ

∂x
dt∧dx+

∂ϕ

∂y
dt∧dy+

∂ϕ

∂z
dt∧dz)

∂ Ax

∂ t
dt∧dx

∂ Ay

∂ t
dt∧dy

∂Az

∂ t
dt∧dz

∂ Ay

∂x
−

∂ Ax

∂ y dx∧dy∂ Az

∂x
−

∂ Ax

∂ z dx∧dz∂Az

∂ y
−

∂ Ay

∂z dy∧dz
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If the  four-potential Φ exists, the E-M fields must satisfy E⃗≡−∇ ϕ−
˙⃗A  and

B⃗≡ ∇×A⃗ to get F = dΦ . And of course we get 0 = ddΦ = dF .

Using Maxwell's inhomogeneous equations ∗d∗F = μ0 J⃗b  , we can extract 
charge and current density. So, the four-vector potential Φ , gives a full 
description of an electrodynamic system. 

Given the Poincaré Lemma, we can go the other way and know that there is a 
four-potential Φ for any 2-form F on R4 , and extract fields analogous to E⃗
and B⃗ with an analogous four-vector J⃗ satisfying Maxwell's equations. 

Special Relativity Summary
Electrodynamics is completly described by special ralativity via the Minkowski 
metric, the mathematics of differential forms and any four-potential.   

Conservation of charge  
Maxwell's inhomogeneous equations ∗d∗F = μ0 J⃗b imply the conservation of 
charge. 

In classical 3-d E&M charge conservation is expressed as
∂ρ

∂ t
+∇⋅⃗J = 0 . 

Having serendipitously  chosen ρ as the temperal component of four-current, 
we can write conservation of charge as ∗d∗J⃗b = 0 . We verify with

J⃗ =(
ρ

Jx

Jy

Jz
) J⃗b= (−c2

ρ ,Jx, Jy, Jz)=−c2
ρdt+Jx dx+Jydy+Jzdz

∗J⃗b = cρdx∧dy∧dz − cJx dt∧dy∧dz + cJy dt∧dx∧dz − cJzdt∧dx∧dy

d∗J⃗b = c
∂ρ

∂ t
dt∧dx∧dy∧dz

+ c
∂ Jx

∂x
dt∧dx∧dy∧dz + c

∂Jy

∂ y
dt∧dx∧dy∧dz +c

∂Jz

∂ z
dt∧dx∧dy∧dz

∗d∗J⃗b =−(∂ρ

∂ t
+

∂ Jx

∂x
+

∂Jy

∂ y
+

∂ Jz

∂ z )
 So, ∗d∗J⃗b = 0 is equivalent to ∂ρ

∂ t
+

∂Jx

∂ x
+

∂Jy

∂ y
+

∂Jz

∂ z
= 0  
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But this  follows directly from Maxwell's inhomogeneous equations

∗d∗J⃗b =
1
μ0

∗d ∗(∗d∗F) = −
1
μ0

∗dd∗F = 0

Note that defining J0
= ρ is a good choice because of continuity of charge. 

Thank You Solomon Akaraka Owerre

Most of the information described here is extracted from a paper by
Solomon Akaraka Owerre.

Maxwell's Equations in Terms of Differential Forms
https://scholar.google.ca/citations?user=ZcQiAIMAAAAJ&hl=en
https://bbs.pku.edu.cn/attach/13/c8/13c819b28e8fb43c/maxwell_hodge.pdf

My only addition to his beautiful expression of this topic is the inclusion of ϵ0 ,
μ0 , and c.

Questions and Comments are Welcome jed@islandnet.com
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